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ABSTRACT
Cyber security is increasingly important for defending com-
puter systems from loss of privacy or unauthorised use. One
important aspect is threat analysis — how does an attacker
infiltrate a system and what do they want once they are in-
side. This paper considers the problem of Active Malware
Analysis, where we learn about the human or software in-
truder by actively interacting with it with the goal of learn-
ing about its behaviours and intentions, whilst at the same
time that intruder may be trying to avoid detection or show-
ing those behaviours and intentions. This game-theoretic
active learning is then used to obtain a behavioural cluster-
ing of malware, an important contribution for both under-
standing malware at a high level and more crucially, for the
deployment of effective anti-malware defences. This paper
makes the following contributions: (i) A formal definition
of the game-theoretic active malware analysis problem; (ii)
A fast algorithm for learning about a malware in the ac-
tive analysis problem which utilises the concept of reducing
entropy in the beliefs about the malware; (iii) A virtual
machine based agent architecture for the implementation of
the active malware analysis problem and (iv) A behaviour
based clustering of malware behaviour which is shown to be
more accurate than a similar clustering using only passive
information about the malware.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Security, Experimentation
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Cyber security has emerged as one of the most important
problems in the modern internet age, with cyber attacks
resulting in millions of pounds of damage to organisations
and individuals. The rise of the internet has enabled the
propagation of malicious software (malware), exposing home
computer users and organisations alike to threats previously
unimagined. Such threats include the stealing of users pri-
vate data such as usernames, passwords and email contacts.
These malware can also turn an unwitting computer users
system into a tool for attacking the rest of the internet such
as in Distributed Denial of Service attacks and the sending
of spam. As a result, the problem then is of Cyber Security
— how to defend a computer system against unauthorised
use either by a piece of software or by a human attacker.

With this established, the aspect of cyber security consid-
ered in this paper is in threat analysis: Given a piece of mal-
ware or a human intruding on a system, can we learn about
the behaviours and intentions of that intruder. This is also
known as malware analysis. Here behaviours are taken to
mean the software vulnerabilities exploited to gain access to
some part of a system (such as opening a port or installing
some keylogging software), and intentions are the goals of
the attackers, do they want to steal some information or use
the machine as part of a larger coordinated attack. This
process has clear game-theoretic implications since intrud-
ers often want to mask their access in order that the attack
can be used again. Consequently, we have the situation that
we want to learn the maximum information possible about a
malware on our computer system. Conversely that malware
wants to avoid giving away information about it’s behaviours
and intentions. It is important to note that this is a central
problem in cyber security, as the results of malware analysis
are used to power virus detection.

Against this background, malware analysis is performed
by a human security expert on each newly discovered mal-
ware. The security expert must use various tools to iden-
tify how the malware infiltrates a working system, how it
propagates to other systems and what it does whilst on the
infected system. This is a time consuming manual process
during which the the expert will examine the malware bi-
nary, execute it, examine logs and make some trial inter-
actions with the infected system. Due to the volume of
threats that need to be analysed, several authors have pro-
posed automated analysis techniques. Now, these techniques
can generally be classified according to whether they are
static, which means that the binary is analysed, or dynamic,



which means that the malware is executed and its effects
monitored. Automated static analysis techniques include
Eureka [6] which analyses the code and produces a control
flow graph representing the malware logic. It does this by
scanning for system calls and grouping them together and
assigning functions (since several system calls are involved
in a high level operation such as creating a file). However
static analysis is becoming increasingly difficult as malware
becomes more sophisticated at using techniques such as code
obfuscation (where the binary is randomised but preserves
the original logic) and polymorphic binaries (the code is
mutated to change its identifiable features such as variable
names). Consequently, dynamic analysis is an interesting
avenue to consider further. Here the malware is actually
executed and the results are analysed (which bypasses the
problems with static analysis). Several automated analysis
techniques have been proposed here including [1], [7] and
[4] which gather execution traces (a list of the operations
the malware performed) and then attempt to classify these
traces. There are several means to classify the traces i.e.
support vector machines or distance measures [2].

That said, we can identify a weakness with automated dy-
namic analysis techniques when compared with a human se-
curity expert. Specifically, all of these techniques are passive,
meaning that the malware is executed and a log is generated.
However, a human security expert would interact with an
infected system by placing honey in several locations. Ex-
amples of this include creating fake Internet Explorer activ-
ity or sending emails. Malwares have unique responses to
such activity which are missed by passive analysis. Conse-
quently, we propose an automated technique based on Active
Dynamic Analysis. This means that the system will interact
with the malware, basing its next action on the response of
the malware, with the aim of learning the maximum amount
of information about the policy of that malware. There exist
some steps in this direction such as [5] which acknowledges
that some malware require an input and so they define a
set of possible inputs to test. However, a weakness with this
approach is that the input sets must be defined before execu-
tion and are not reactive to what the malware has done thus
far. This makes this approach potentially slow since many
unproductive paths may be explored. We will attempt to
address this weakness by using software agents to react to
what the malware has done and choose the next input. Table
1 summarises our classification of this space.

Table 1: Malware Analysis
Dynamic Static

Active [5]
Passive [1], [7], [2], [4] [6]

Finally, this paper makes the following contributions: (i)
A formal definition of the game-theoretic active malware
analysis problem; (ii) A fast algorithm for learning about
a malware in the active analysis problem which utilises the
concept of reducing entropy in the beliefs about the mal-
ware; (iii) A virtual machine based agent architecture for
the implementation of the active malware analysis problem
and (iv) A behaviour based clustering of malware behaviour
which is shown to be more accurate than a similar clustering
using only passive information about the malware.

2. MOTIVATING SCENARIOS
This section provides examples of active malware analysis on

a single machine and on a network of machines. In the rest
of this paper we will formalise these examples in terms of the
Active Malware Analysis Game. We provide these illustra-
tive examples to make concrete the process of active malware
analysis and how it contrasts with simple passive analysis.
Specifically, both of these examples will show that simply
passively monitoring what a malware does is not guaranteed
to find all aspects of that malwares behaviour and that many
modern malwares only exhibit some actions in response to
data or actions on the infected system, or even worse than
that, may potentially try to evade analysis.

2.1 Malware acting on a Single Machine
We first show the difference between passive and active anal-
ysis in the case of a single malware. Now, passive analysis:

The malware BZub.ji is executed in a clean test environ-
ment. The subsequent trace is analysed by a technician and
it is discovered that a browser helper object (RBHO) has been
installed, which calls a new program placed in the Windows
system directory. This program is analysed separately, but
code obfuscation techniques render static analysis redundant.
The program is executed but seems to be inert.

By way of contrast, using active analysis techniques:
The malware BZub.ji is executed in a clean test envi-

ronment, alongside an analysis agent. The agent monitors
that a browser helper object has been installed and that a
secondary program has been installed. The agents model of
existing malware indicates that these two activities indicate a
modification of Internet Explorer has been used. The agent
tests this aspect of it’s model by executing a simulated in-
teraction with Internet Explorer and it observes that a file
has been created and is updated as it uses Internet Explorer.
Simple textual matching shows that this file contains some
of the honey that it used in IE. Consequently the agent has
confirmed an aspect of the malware behaviour that passive
analysis could only find with a human help.

Figure 1 shows the difference in information received be-
tween the two types of analysis.

(a) Passive analysis (b) Active analysis

Figure 1: Analysis of the single malware scenario

2.2 Malware acting on a Network (Botnets)
The following example takes place in the context of a net-
work of computer systems linked by some arbitrary topol-
ogy. Assuming infiltration starts with a single machine, we
first describe what we learn about the botnet using passive
techniques and then contrast with active analysis:

The malware Sinowal.aj is executed on a single clean
machine. Analysis of subsequent network traffic reveals that
the infiltrated machine attempts to connect to a series of
domains (presumably the command centre of the botnet).
However no domains exist within the restricted network, so
nothing further happens. Some connections to neighbours
are recorded and the botnet grows larger by capturing these
machines. The botnet takes no further action.

This is contrasted with a more active analysis:
The malware Sinowal.aj is executed on a single clean

machine. The infiltrated machine attempts to connect to a



series of domains, so a second machine on the network (with
an analysis agent) poses as one of these domains and a con-
nection is formed. This machine is now posing as the com-
mand centre of the botnet. After some trial and error with
the command protocol employed by the botnet, the machine
is able to successfully communicate with the bot. Fake activ-
ity on the infiltrated machine causes it to connect to other
machines on the network via shares and it is found that the
malware can spread through these actions. Dummy informa-
tion placed on these machines is also found to be harvested
and sent to the command machine. Note that honey can
take the form of fake private information such as passwords
or fake user activity such as opening a network share.

Again Figure 2 shows the difference in information re-
ceived between the two types of analysis.

(a) Passive analysis (b) Active analysis

Figure 2: Analysis of the botnet scenario

As we can see from these two examples the basic notion
of active analysis remains the same, namely that more infor-
mation about a malware can be found by interacting with an
infected system (be it a single machine or network) than by
just watching what a malware does. However the only dif-
ference between these two systems is the types of monitoring
required (file system/ registry changes on a single machine
verses network traffic in the botnet scenario) and the types
of actions that can be taken (dummy Internet explorer activ-
ity versus connecting to network shares or sending emails).
After establishing some basic notation we generalise these
scenarios into the Active Malware Analysis Game.

3. BACKGROUND
This section describes the necessary background for the use
of agent techniques in malware analysis. We first present a
model of multi-agent interactions, Stochastic Games which
can be used to model the game-theoretic interactions we pre-
sented in the previous section. Then we consider multi-agent
learning within those games, the RMax algorithm which is
capable of learning about the policies of unknown agents.

3.1 Stochastic Games
{N,S,A, {Rj}j≤N , T} describes a discounted stochastic game:

• N is the set of players.

• S is the state space.

• A = A1 ×A2 × · · · ×AN , represents the full set of ac-
tions, with Aj representing the set of actions for agent
j.

• Rj : S ×A→ R is the reward function for agent j.

• T : S ×A× S′ → R[0,1] is the transition function.

Algorithm 1 The RMax algorithm.

1: while true do . For each time step
2: s← CurrentState . Get current state
3: a← Action(s) . Get best action for s using model
4: r, s′ ← Execute(a, s) . Reward and resulting state
5: if Times played a in s ≤ Threshold then
6: Update av(r, s, a)
7: Update av(s′, s, a)
8: if Times played a in s = Threshold then
9: R(s, a) = av(r, s, a) . Set model

10: T (s, a, s′) = av(s′, s, a) . Set model

The game is played as follows. At the first stage the game
is in an initial state s1 ∈ S. At stage m the players are in-
formed of the past history

(
s1, a1, s2, . . . , am−1, sm

)
, where

st is the state of the game at timestep t and at is the action
combination the players played at that state. Every player
j chooses, independently of the others from its policy, πi re-
ceives a stage payoff Rj (sm, am), where am =

(
amj
)
j∈N , and

the game moves to a new state sm+1 according to the transi-
tion probability T

(
sm, am, sm+1

)
. Less formally, a stochas-

tic game consists of a finite set of stage games between two
or more agents. In each of these stage games, the agents can
choose from a set of possibly unique actions, and depending
on the choice made by all agents, are assigned a reward. Fur-
ther to this, again depending on the actions chosen and the
original stage game, a transition will occur to a new stage
game, with possibly different actions and rewards.

The goal is to compute policies, πi : G→ Ai for all agents
i at every time step t, such that no agent has an incentive
to deviate. G indicates the history of observed states and
actions of other agents. Put simply, this policy is a function
which maps the history of the game to an action for agent i.
The optimal policy returns the best action for that player.

3.2 The RMax Algorithm
RMAX [3] is an algorithm for learning an appropriate pol-
icy in a stochastic game. It assumes that the opponent is an
initially unknown part of the environment, so it is suitable
for single agent problems with an unknown underlying tran-
sition and reward function or multi-agent problems, such
as ours, with an unknown opponent. The algorithm starts
off with an optimistic model which assumes the maximum
possible reward for all possible state actions. The learning
procedure then proceeds by computing an optimal policy
for this model and as states and actions become known (ac-
cording to a polynomial threshold) updating the model and
re-computing the policy. This algorithm is guaranteed to
learn the policy for the agent in polynomial time. Figure
1 gives the algorithm in detail. The updates at lines 6 and
7 are the mean results of the previous trials. This purpose
of using the average is to capture what happens when that
action is taken both in the presence of a stochastic world
model (which may result in different outcomes for the same
action) or an opponent with an unknown policy (who may
change which action she plays in the same state).

With this established, the next section builds on stochas-
tic games in order to represent the unique characteristics
of malware analysis on a computer system. Then in Sec-
tion 4, we utilise RMax in the construction of a learning
algorithm for active malware analysis which exploits those
unique characteristics of the problem to learn quickly.

4. ACTIVE MALWARE ANALYSIS GAME
In this section we present the Active Malware Analysis Game
between an analysis agent, n1 and a malicious agent (mal-



ware) n2. This formalisation captures, amongst others, the
two scenarios presented in Section 2. The game specifies the
interactions between a malware, who is trying to infiltrate
a system, and an analyser who wants to learn about that
malware. In turn the malware may be trying to avoid such
learning. The game is defined as follows:

• The infiltrated system is represented as a weighted
graph where V is the set of vertices, E is the set of
edges connecting the vertices. Each vertex is a state
of core components of the system (ex: important flags
in the registry) and edges represent transitions in the
state of the computer that the malware can induce.

• The malware, n2, may change several components of
the infiltrated system. This represents a path through
the graph past those vertices indicating the affected
components. Thus the effects of the malware are rep-
resented by its location on the graph vm ∈ V .

• The strategy space of the malware n2 is the next change
it can take from its current location, given as the neigh-
bours of that location a2 = vm ∪ neighbour(vm)

• The analysis agent, n1, may place within the system
honey (simulated user activity). The set of locations of
places honey can be placed is described by the subset
of leaf nodes of the graph V H ⊂ V .

• The strategy space of n1, a1 = V H means it can move
the honey h from its current location, vh, to a new
location (or leave it where it is), vh ∈ V H . That is,
the agent can create new simulated user activity and
remove other activity. We use location on the graph
to represent some fake user activity or data in place,
with the preceding vertices representing state changes
before this information is introduced.

• The global state space is given as the location of the
honey, vh, and of the malware, vm, S = V × V H .

• Agent n2 has a fixed, possibly stochastic, but unknown
policy π : S → a2 which gives the probability of mov-
ing to a connected vertex given the location of the
agent and the distribution of the honey on the graph.

• There is a reward function for agent n1 associated with
learning the policy and preferences of agent n2. We
will consider this further in the next section.

• We assume that the malware always starts out on a
clean system at the start vertex v0 = s1.

If we refer back to the description of stochastic games, we
can see that the graph represents a computer operating sys-
tem and that vertices represent the different physical states
that the operating system may be in (whether a certain reg-
istry variable is set or a type of file exists). Further to this,
edges in the graph represent actions that the malware can
take to change the condition of the operating system and ex-
ploit weaknesses (the transition function). Honey locations
are the action space of the analysis agent. Consequently, it
can be seen that a path from the start vertex to a honey
represents a behaviour of the malware and we are interested
in learning which behaviours a malware exhibits. We can
see this in the Figures 1 and 2 where paths along the graph
are an accumulation of the changes the malware has made,
and that some edges are only taken in response to a partic-
ular honey (in these figures we represent this as the labels
on the edges for simplicity).

Finally, it is clear that this is an instance of learning an
opponents unknown policy in a stochastic game — both the
analysis agent and the malware (be it software or a human
agent) take sequential decisions and the reward function is
linked because the analysis agent wants to learn the malware
policy whilst that agent may want to hide its own policy.

5. LEARNING IN THE ACTIVE MALWARE
ANALYSIS GAME

This section describes the learning algorithm we employ
within the malware analysis game. Specifically, we describe
several variants of the RMax algorithm that we later test in
the empirical section. For these variants we compare their
respective learning rates and finally describe how we repre-
sent learnt information for a user interested in generating a
signature for the new malware.

5.1 Learning using Entropy Reduction
RMax assumes the optimal policy will be learnt with poly-
nomial time. Now, in a real application such as ours, this
is not feasible since placing a piece of dummy information
on a computer system can take seconds. As a result, we are
not interested in obtaining the eventual optimal policy, but
in learning the most possible about the malware in very few
timesteps (≤ 20). Consequently, we incorporate this notion
into the reward function. However, we still want to employ
RMax so that we can guarantee that the analysis agent is
exploiting its knowledge of the malware effectively, whilst at
the same time learning as much as possible. Given this, we
define an information-centric utility function for the agent
which can be used within RMax, and optimised in-order to
learn about the malware as fast as possible.

Now, the malware policy π is defined as the distribution
over the possible edges towards the honey (V H) given the
current location of the honey vh and the malware position
vm. From the starting position v0 to each of the honey loca-
tions vH there is a path pi which is defined as the list of edges
ei ∈ E the malware will take to that honey e0, e1, . . . , en.
The malware then, must select a path pi ∈ PH from the set
of paths based on the location of the honey and its policy.
The aim is to learn this policy which describes the probabil-
ity of taking path pi based on the location of the honey s,
Pr(pi|s = vH) for all possible honey locations.

Pr(pi|s = vH) =
∏
en∈pi

Pr(en|s = vH) (1)

where Pr(en|s = vH) is the probability of taking edge en.
We need a utility function which rewards the agent for

learning this function online (since the initial value is an
uninformative distribution). Consequently, we maximise the
negative of the entropy of this function, where πi is the
current estimate of the malware policy:

U(πi) = −[
∑
s∈VH

∑
pi∈PH

Pr(pi|s) log(Pr(pi|s))] (2)

With this established, the MYOPIC algorithm uses this
utility function for 1-step lookahead action selection. At
each timestep t the agent selects the action which maximises
U(πt) and then updates πt to a new policy πt+1 by updating
the probabilities of taking an edge. Specifically the malwares
historical frequency of playing edge en in s is defined as:

Pr(en|s = vHj ) = σten,s =
1

t

t−1∑
τ=0

I{eτn = s},



Figure 3: Myopic example.

where I{e′n = eτn} is an indicator function equal to one if
e′n is the action played by the malware at time τ , and zero
otherwise. This algorithm works as follows: The example in
Figure 3 shows a simple policy space for a dummy malware
which starts in the first node attempts to move to the nearest
honey, which can be at T or B. Previous trials have shown
that the malware will steal information at B if it exists, but
as yet we do not know what happens when information is
at T, except that the malware moves to the second node in
either case. Here we can see that if the honey is placed at B
again, in this case (and assuming the malware tries to steal
it), no new information is gained so the total entropy in the
policy remains at -0.693. However, if the honey is placed at
T then the entire policy can be learnt and entropy goes to
zero, so MYOPIC would choose this action.

It should be noted that we abandon the optimality guar-
antees given by RMAX, however an optimal polynomial so-
lution is not appropriate in our problem. Further to this,
after presenting some benchmarks, the next section shows
that this entropy reduction algorithm is guaranteed to be at
least as fast as a random walk, and in general faster.

5.2 Benchmarks
PASSIVE: This algorithm does not take any action in re-
sponse to the malware and represents the learning performed
by dynamic, passive malware analysis such as [1]. This ap-
proach assumes that the malware will reveal its policy with-
out interaction from the analysis agent. This allows us to
benchmark our results against passive automated.

RANDOM: Selects a uniform distribution random action.

RMAX OPTIMAL: Now, the aim of the problem is to
learn the behaviour of the malware whilst she is changing the
underlying system. As a result, this seems like a straight-
forward application of the RMax algorithm to the Active
Malware Analysis Game. This is in contrast to using single
agent learning algorithms which potentially ignore the prob-
lem that the malware may be trying to hide its policy from
the analysis agent. However, this is potentially slow.

5.3 Exploration Rates
Now we define the exploration rates for our algorithms and
justify the information-centric reward measure.

The single step expected entropy reduction E[H] in the
belief of the malware policy πb is defined as:

E[H(πb, v
m)] =

∑
p∈P (vm)

∑
vh∈VH

π(p, s)A(πb, v
m, vh)

∗[H(b(πb, p, v
h))−H(πb)]

where p is a path from the set of all paths from the malware
position vm to the honey locations and π(p, vh) is the true
malware policy and is the probability of taking path p in
state vh. A(πb, v

m, vh) is the action selection function and is

the probability of selecting honey location vh for the current
belief and malware position. Finally, b(π, p, vh) is the belief
revision function giving a new belief π′b when the malware
takes path p in state vh for prior belief πb.

A random action selection policy is defined as follows:

A(πb, v
m, vh) =

1

|V H | (3)

whilst the MYOPIC action selection gives:

A(.) =

{
1 vh = h′ ∧ argmaxh′ [H(b(πb, p, h

′))−H(πb)]
0 otherwise

Since RANDOM gives the expected entropy over all pos-
sible choices of vh ∈ V H then this must include the vh that
would be chosen by MYOPIC. This means that we can
decompose the expression for the expected entropy using
RANDOM in terms of the expected entropy for MYOPIC
and the expected entropy over all states not including that
one chosen in MYOPIC. Now, we define J as the expected
entropy using MYOPIC:

J = argmaxvh
∑

p∈P (vm)

∑
vh∈VH

π(p, vh)[H(b(πb, p, v
h))−H(πb)]

(4)
where Jv is the vh chosen in J which maximises the ex-
pression. Then remembering the choice of Jv, the expected
entropy, using RANDOM, over the remaining set is:∣∣V H ∣∣− 1

|V H |
∑

p∈P (vm)

∑
vh∈VH

−Jv

π(p, vh)[H(b(πb, p, v
h))−H(πb)]

(5)
Now, let K represent the maximum entropy in the remain-
ing set, K =

∑
p∈P (vm)

∑
vh∈VH

−Js

π(p, vh)[H(b(πb, p, v
h))−

H(πb)] then the expected entropy for RANDOM is at most
as large as:

1

|V H |J +

∣∣V H ∣∣− 1

|V H | K (6)

Putting all of this together,

RANDOM ≤MYOPIC

1

|V H |J +

∣∣V H ∣∣− 1

|V H | K ≤ J

K ≤ J

Which means that as long as there is an vh which is larger
than all others, MYOPIC will reduce the entropy more
quickly. If not, then it will do the same as RANDOM.

These expressions can be extended to a finite horizon n:

E[Hn(πb, v
m)] =

∑
p∈P (vm)

∑
vh∈VH

π(p, vh)A(πb, v
m, s)[IH(πb, p, v

h)

+E[Hn−1(b(πb, p, v
h), d(vm, p))]]

where IH(πb, p, v
h) = H(b(πb, p, v

h))−H(πb) and d(vm, p)
is the malware transition from vm along p to a new m′.

5.4 Learning over Multiple Malware
The techniques defined thus far are adequate for learning
about a single malware, however they do not answer our
larger research question: how similar is a new malware to
an existing family of malwares? This is important in the con-
text of using the information to power anti-virus defences.
Specifically, by indicating a malwares similarity to existing



Figure 4: Active Malware Analysis Framework.

malwares the process of generating a signature is simplified.
This is the goal of all automated techniques. To address
this, we will use the standard K-Means clustering approach
which maintains a set of k families of malware together with
a representative mean malware policy. The goal then is to
learn the policy of a new malware sample, and then assign
it to an existing family or even create a new one, using a
simple distance metric.

The distance metric takes the learnt policy and computes
the distance for each transition (in all states). This is then
summed to give a measure over the entire policy:

distance(πi, πj) =
∑
vh∈S

∑
p∈P (v0)

|πi(p, vh)− πj((p, vh)| (7)

6. ARCHITECTURE
This section describes the implementation of the Active Mal-
ware Analysis Game. The overall architecture is given in
Figure 4. Since we are interacting with real examples of
malware, we must run that malware binary (MALWARE)
on a virtual machine (VM), and in order that the VM can
be reset by the analysis agent (AGENT) must be located on
the host system (HOST). Now, the agent makes use of sev-
eral sensors to detect the state of the VM operating system
(OS). Also, in order to interact with the malware, our agent
needs access to a suite of actuators on the VM. Consequently
we require an interface between the agent on the host and
the sensors (SENSORS) and actuators (ACTUATORS) on
the VM (VM INTERFACE). Next we give specific details of
the actuators and sensors deployed in our empirical analysis.

6.1 Sensors
The Active Malware Analysis Game depicts the operating
system state as a graph with vertices representing states for
core components and edges are transitions between those
states. Now, in order to detect the current state of the
operating system and when such transitions occur (at the
behest of the malware), we require a suite of sensors. Each
sensor is designed to monitor one specific component such as
whether a process has been registered to autorun when the
operating system is started. For example this requires mon-
itoring changes to the registry for the key: \Software \Mi-
crosoft\Windows\CurrentVersion\Run. Similarly for other
aspects such as browser helper objects, hidden services, pa-

rameters, and file system changes. By starting with the anal-
ysis performed by security experts on previous malware, we
can generate a comprehensive set of such sensors, and the
graph construction between them can be automated.

6.2 Actuators
The Active Malware Analysis Game allows the analysis agent
to take actions in the operating system which the malware
may or may not respond to. These actions allow the agent
to move honey around the system. The purpose is to learn
how the malware changes the operating system (using the
sensors) in response to all of the possible honeys that might
be deployed by the analysis agent. Consequently, our ar-
chitecture requires a suite of honey actions. These include
placing dummy sensitive information in several key locations
or performing some simulated user activity on the operat-
ing system. One example of this includes opening Internet
Explorer, going to a website and entering a username and
password in fields denoted as such. Other examples include
creating dummy configuration files for common programs or
an address book of email address amongst others. In a simi-
lar fashion to the sensors, we start with types of honey iden-
tified by security experts to create a comprehensive suite.

As a final note, it can be seen that the architecture is
easily expanded with new actuators and sensors should these
be deemed necessary. The analysis agent will continue to
learn as before with these new components and no change
is required in the underlying algorithm.

7. EXPERIMENTS
In this section we demonstrate the utility of our active anal-
ysis framework by clustering a dataset of several previously
analysed malwares. We show that the automatic clustering
is accurate with regards to a human generated clustering
and that it outperforms clustering performed using passive
dynamic analysis. Further to this, we demonstrate that our
entropy reduction learning algorithm is more useful in this
malware analysis scenario than an RMax based algorithm.
First we describe the experimental scenario, and then show
the clustering performance over several algorithms.

7.1 Experimental Configuration
We experiment with a dataset of 50 malwares drawn from
several families. These families are given in Table 2 All
of these malware have previously been analysed manually
and assigned to a cluster (both based on their static and
dynamic properties). We allow each of our 4 learning algo-
rithms (RMAX OPTIMAL, MYOPIC, RANDOM and
PASSIV E) to interact with each malware for 20 timesteps
in a clean virtual machine. This is repeated 30 times and
the average learnt policy is used in the clustering phase. Fol-
lowing this, we initialise the K-MEANS algorithm with 10
random means in the policy space and allow the clustering
algorithm to run for 1000 iterations. This is repeated 30
times for the average clustering. Table 3 summarises the

Table 2: Experimental Malware
Zlob Hooker KeyLogger LdPinch

PdPinch QQPass Sinowal AdvanceKeyLogger
BZub Luzia VB

types of behaviours and intentions we consider in this ex-
ample (although the real set is larger):

Now, the interesting thing to note about this set of mal-
ware is that some parts of their behaviour are conducive to



Table 3: Experimental Behaviours and Intentions
FSys/Rservice Install service

Address Emails
FSys/RBHO Install BHO

Text File contents
RAuto Autorun

IE/Keylog Private data from websites
RFile Register file location

IE/Keylog/Cache Private data from history
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Figure 5: Cluster Identification Rate.

passive analysis and some are more appropriate for active
analysis. Specifically, many of the malware will install them-
selves in the system in various ways such as hidden services
or injecting DLLs into other processes for example. Parts of
this behaviour is identifiable by passive analysis because it
always happens when the malware executed. However some
parts are not, such as when a keylogger writes a file in re-
sponse to entering a username or inferring that an already
running process has been captured by the malware.

7.2 Clustering
We first compare the clustering obtained by our various al-
gorithms with an ideal clustering identified by malware anal-
ysis experts. As Figure 5 shows, the algorithm MYOPIC
is significantly more accurate when identifying clusters than
PASSIV E, with a correct identification rate of 81% verses
54%. This is because MYOPIC can identify a far larger
part of the malware policy and consequently obtains a more
informative clustering. Also, both RMAX OPTIMAL and
RANDOM also outperform PASSIV E because they all do
active learning. However, the learning time is severely con-
strained and they do not learn as fast as MYOPIC so con-
sequently they are not as effective as that algorithm. We
will show these results in more detail next to explain the
improvement in performance.

Moving on, when we compare the features learnt in the
malware policies we can see the impact on clustering to
see why MYOPIC performs much better than PASSIV E.
Specifically, Figures 6, 8, 10 and 9 show the clustering for the
algorithmsMYOPIC, PASSIV E, RMAX OPTIMAL and
RANDOM respectively. Further to this, Figure 7 shows the
clustering done by a security expert. The x-axis shows the
feature space for the possible mechanisms employed by the
malware to infiltrate the system. The y-axis shows the pos-
sible locations of sensitive data that a malware might steal
from. Both of these are in our restricted scenario. Each
figure shows boxes for each identified cluster located in the
space of mechanisms and intentions. The size of the box in-
dicates the relative proportion of the corpus of sample mal-
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Figure 6: Feature extraction using MYOPIC.
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Figure 7: Expert classification.

wares in this particular cluster.
With this established, in Figure 6 we can see that a large

grouping of malwares installs a DLL as a system service
and proceeds to keylog the users actions. The next smallest
family registers an executable and steals data from text files.
An even smaller cluster registers a browser helper object and
uses Internet Explorer to steal information. Finally a small
group of malwares installs an autorun entry and raids the
address book of Outlook.

As we can see in Figure 7, the clustering by MYOPIC
is very close to the one done by an expert. However the
only divergence is in the large clusters which perform in-
formation stealing using keylogging and the cache at the
same time. In some cases, MYOPIC fails to differentiate
between information stolen from the cache and from key-
logging. This is because the malware in this case is able to
perform both actions at the same time which breaks some of
the underlying assumptions of a stochastic game. Further to
this, sometimes there are some delays in placing the honey
and when the malware reacts (perhaps because of errors in
the malware or when it does polling) However, despite these
physical limitations, as we will see next this clustering is still
highly accurate compared to other approaches.

Specifically, the clustering from MYOPIC should be con-
trasted with Figure 8 which has not learnt as much detailed
information and so the clusterings are much courser. Here
the algorithm typically can learn about how the malware is
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Figure 8: Feature extraction using PASSIV E.

Null

Address

Text

IE/Keylog

IE/Keylog/Cache

Null FSys/RService FSys/RBHO RAuto RFile

Figure 9: Feature extraction using RANDOM .

installed (a browser helper object or hidden service) but can-
not find out about the intentions. An exception is the cluster
of malwares that steals from text files - some of these files
are created by the system and so are present even if a user
does not create them. This is because, whilst the analysis
is dynamic (meaning the malware is executed), it is passive,
meaning that we do not interact with the malware as a se-
curity expert tasked with analysis would. An illustrative
example is the cluster of malwares which register a file: In
Figure 6 we also see that this cluster does some keylogging,
however in Figure 8 this information is missing and the clus-
tering puts most of these malwares with other groups. As a
result, automated analysis is limited in its usefulness unless
it is active because many variants of malware require some
user interaction to exhibit their full suite of behaviours.

Finally, we should consider what happens with active anal-
ysis using a slower learning algorithm - Figures 10 and 9.
Here we can see that RANDOM is effectively the same as
PASSIV E in the clustering it performs because it does not
learn the important part of the policy space in the short time
allotted. This highlights the importance of learning quickly
in this domain. RMAX OPTIMAL is better, and does in
fact learn one of the clusters which requires active analy-
sis (the cluster installing a keylogger in Internet Explorer),
however even it does not learn the complete set of intentions
for this cluster because it misses that this type of malware
family also searches the cache.
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Figure 10: Using RMAX OPTIMAL.

8. CONCLUSION
This paper has introduced the application of Automated
Active Malware Analysis using stochastic games and multi-
agent learning. We defined a game capturing the active
malware analysis problem. Following this, we developed an
extension of RMax based on reducing entropy for learning
quickly in the constrained time horizon of such games. We
showed theoretically that this extension is faster than stan-
dard techniques. Finally, we presented a comprehensive em-
pirical demonstration of our deployed framework for active
malware analysis. We learnt the policies of 50 malwares
and achieved a clustering very close to the one proposed by
human security experts.

In future work, we intend to extend the application frame-
work to the issue of learning about botnet malware. The
game remains the same as in this paper, but a new archi-
tecture must be developed to monitor networks of systems,
rather than the single system implemented in this paper.
We also intend to extend the theoretical justification for the
entropy reduction based algorithm, showing that it is faster
than any other heuristic in this game.
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