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Abstract. SafeStack, initially proposed as a key component of Code
Pointer Integrity (CPI), separates the program stack into two distinct
regions to provide a safe region for sensitive code pointers. SafeStack
can prevent buffer overflow attacks that overwrite sensitive code point-
ers, e.g., return addresses, to hijack control flow of the program, and has
been incorporated into the Clang project of LLVM as a C-based language
front-end. In this paper, we propose and implement SafeStack+, an en-
hanced dual stack LLVM plug-in that further protects programs from
data-flow hijacking. SafeStack+ locates data flow sensitive variables on
the unsafe stack that could potentially affect evaluation of branching
conditions, and adds canaries of random sizes and values to them to
detect malicious overwriting. We implement SafeStack+ as a plug-in on
LLVM 3.8 and perform extensive experiments to justify a lazy checking
mechanism that adds on average 3.0% of runtime and 5.3% of memory
overhead on top of SafeStack on SPEC CPU2006 benchmark programs.
Our security analysis confirms that SafeStack+ is effective in detecting
data-flow hijacking attacks.
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1 Introduction

Many techniques have been proposed to fight against memory attacks, e.g., Data
Execution Prevention (DEP) [8] to prevent code execution in non-executable
memory regions, Address Space Layout Randomization (ASLR) [3] to random-
ize the location where executable is loaded into memory, Control Flow Integrity
(CFI) [31, 26, 23] to prevent redirecting of execution flows. Code Pointer Integrity
(CPI) [22] is a recent addition to the family of defenses to provide integrity of
code pointers in a program and thereby prevent control-flow hijacking attacks.
The core of CPI is a C-based language front-end of LLVM called SafeStack that
splits the regular stack into two parts: a safe stack and an unsafe stack. All
proven-safe objects are placed onto the safe stack while those that cannot be
proven safe are placed onto the unsafe stack, such as buffers which may over-
flow. SafeStack prevents a buffer overflow on the unsafe stack from corrupting
anything on the safe stack, and thereby prevents control-flow hijacking attacks.



It introduces negligible runtime overhead of less than 0.1%, and has been in-
corporated into the Clang project of LLVM due to its increasing acceptance by
developers.

Being proposed as a defense to provide code pointer integrity, SafeStack,
however, is susceptible to data-flow hijacking attacks. In particular, objects on
the unsafe stack could overwrite each other, and such unsafe objects could po-
tentially be used subsequently in an evaluation of branch conditions, changing
which would lead to a successful data-flow hijacking attack. In this paper, we
propose SafeStack+, an enhanced dual stack mechanism that works on top of
SafeStack to detect data-flow hijacking attacks. The idea of SafeStack+ is to
add protections into the unsafe stack rather than leaving it as the attackers’
playground. SafeStack+ first locates all variables on the unsafe stack that could
potentially affect the execution of conditional branches using a def-use analy-
sis, and then adds canaries of random sizes and values around them. Finally,
SafeStack+ adds runtime checks into the program to verify the integrity of the
canaries to detect data-flow hijacking attacks.

Although the idea sounds simple, the key to a successful defense of memory
attacks that can gain acceptance by developers is a low runtime overhead in the
resulting binary executable. To achieve this goal, we implement SafeStack+ on
LLVM 3.8 with various canary checking mechanisms to test the corresponding
runtime overheads. The extensive experiments show that our lazy checking mech-
anism that verifies the integrity of canaries at the point of branching evaluation
results in a small runtime overhead of 3.0% and memory overhead of 5.3% on
average on top of SafeStack. We further confirm SafeStack+’s enhanced security
with a real-world vulnerability CVE-2013-0230.

In summary, this paper makes the following contributions:

1. We propose SafeStack+, an LLVM plug-in on top of SafeStack that adds
canaries around sensitive objects on the unsafe stack to detect data-flow
hijacking attacks.

2. We perform extensive testing on various canary checking mechanisms to
justify our lazy checking technique, and show that it results in low runtime
and memory overhead.

3. We demonstrate that SafeStack+ can be used to effectively defend against
data-flow hijacking attacks with a real-world vulnerability.

The remainder of this paper is structured as follows. We first discuss in
Section 2 the limitation of SafeStack and our motivation. Section 3 introduces
the design and implementation of SafeStack+. We demonstrate the efficiency
of SafeStack+ with extensive performance evaluations and present the security
analysis in Section 4. Section 5 briefly introduces the related work on memory
corruption countermeasures and points out the limitation of SafeStack+. In the
end, we conclude in Section 6.



2 SafeStack and Our Motivation

As mentioned in Section 1, SafeStack is a core component of Code Pointer In-
tegrity (CPI). In this section, we first briefly discuss how SafeStack works and
its limitations. After that, we present our motivation of SafeStack+ in tackling
SafeStack’s limitations.

2.1 SafeStack

Kuznestsov et al. [22] proposed Code Pointer Integrity (CPI) to guarantee the
integrity of all code pointers in a program (e.g., function pointers and saved
return addresses) by storing the sensitive pointers and their metadata (which
describes the target object on which the sensitive pointer is based) in a safe
memory region. Every dereference of a sensitive pointer is instrumented to check
at runtime whether it is safe using the metadata associated with the pointer being
dereferenced. CPI treats the stack specially, because the safety of most accesses
to stack objects requires no runtime checks as they can be checked statically
during compilation.

SafeStack is used to protect critical data on the stack by separating the
native stack into two areas. There is a safe stack which is used for control flow
information and data that is only ever accessed in a safe way (safe in the sense
that the pointer dereference is safe – the memory it accessed lies within the target
object on which the dereferenced pointer is based). There is an unsafe stack which
is used for everything else that is stored on the stack. By arranging information
on the two separated stacks, the safe stack can be accessed without any checks.
The two stacks are located in different memory regions in the process’s address
space and thus prevents a buffer overflow on the unsafe stack from corrupting
anything on the safe stack.

Listing 1 shows an example where we indicate results of the static analysis
in SafeStack as comments below the code lines. We encourage readers to refer
to the original paper of CPI [22] and source code of SafeStack [2] for the precise
definitions.

SafeStack is implemented as a plug-in of LLVM to statically analyze source
code of a program to identify its safe and unsafe objects. After identifying the
safe and unsafe objects, SafeStack allocates space for unsafe objects in the unsafe
memory region, which is accessible through a dedicated segment register (%gs in
x86-32). Unsafe objects are placed onto the unsafe stack next to each other to
minimize memory overhead.

Although the design of SafeStack meets the requirement of minimal memory
overhead which is likely an important reason why it has been gaining developers’
acceptance, it leads to an important limitation – unsafe objects are located at
predictable locations on the unsafe stack, and could overwrite one another in a
predictable manner.

Figure 1 shows the layout of the safe and unsafe stacks when the code in
Listing 1 executes. We notice that all unsafe objects are pushed onto the unsafe
stack one next to the other, and other proven-safe objects are stored on the



Listing 1. Example code

1 void determine_privilege_level(int *pl) {
2 *pl = get_priviliege();
3 }
4 int main() {
5 int i = 0;
6 int pl;
7 int *ptr;
8 char buffer[16];
9 int p[16];

10 int b = 1;
11 int len;
12

13 ptr = &b;
14 /*b is unsafe -- conservatively assume that storing a pointer is unsafe as
15 there’s no way to tell whether it points to a valid object or not.*/
16

17 memset(p,0,20);
18 /*p is unsafe -- the size of memory access region of p is 20, greater than
19 the allocated size of 16.*/
20

21 determine_privilege_level(&pl);
22 /*pl is unsafe -- potential information leak when a pointer to a local
23 variable is passed to another function.*/
24

25 gets(buffer);
26 /*buffer is unsafe -- potential information leak when a pointer to a local
27 variable is passed to another function.*/
28

29 len = pl;
30 if (pl == 0x42)
31 access_file(FILE *f);
32 else
33 printf("Not allowed to access the file");
34

35 return &i;
36 /* i is unsafe -- returning a pointer may cause information leakage.*/
37 }

safe stack. This ensures that unsafe objects could not modify objects on the
safe stack; however, e.g., pl can be overwritten by buffer and p in a typical
buffer overflow, and since the offsets between pl and the buffers are fixed and
can be easily learned from the code, the overwriting of pl is easy and its effect
is predictable by an attacker.

To make things worse, pl is a sensitive variable in the sense that its value
determines the branching decision at line 30 of Listing 1, which makes the over-
writing of pl a successful data-flow hijacking attack.

2.2 Motivation

As shown in Section 2.1, SafeStack defeats control-flow hijacking attacks with
minimal overhead, but it is vulnerable to data-flow hijacking attacks. This limi-
tation stems from the fact that SafeStack was initially proposed in the project of
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Fig. 1. Layout of the unsafe stack and safe stack

Code Pointer Integrity (CPI) which concerns only control flow integrity. In this
paper, we investigate the possibility of enhancing SafeStack such that it is resis-
tant to data-flow hijacking attacks while retaining the advantages of SafeStack
in its negligible runtime overhead.

A simple yet effective way of protecting data-flow sensitive variables is to
add canaries around them and to check for integrity of the canaries during pro-
gram execution. However, in such an approach, it is crucial to precisely identify
sensitive data for canary introduction to minimize the potential overheads –
runtime overhead for checking their integrity and memory overhead for storing
the canaries. Not only that, the runtime checking of the canaries also need to
be efficient enough not to cause excessive runtime overheads. In this paper, we
focus on protecting data whose values could potentially affect the evaluation of
conditional branches (e.g., pl as in Listing 1; referred to as sensitive data in the
rest of the paper), since other control-sensitive data (e.g., the return addresses)
are already well protected in the safe stack.

3 Design and Implementation of SafeStack+

To show how SafeStack+ achieves its objects in defending against data-flow hi-
jacking attacks, we present our design and implementation of SafeStack+, an
enhanced dual stack mechanism built on top of SafeStack. SafeStack+ is an
enhancement to SafeStack in the sense that it retains the dual-stack design of
SafeStack and its definition of safe and unsafe objects. SafeStack+ achieves its
design objective by introducing canaries in the unsafe stack to detect modifica-
tions to sensitive data.

In this section, we will begin with the threat model of SafeStack+, and then
present its detailed design. We then present some implementation details of
SafeStack+ to improve its performance.



3.1 Threat Model

This paper is concerned with control flow (return) and data flow hijacking at-
tacks, namely ones that give the attacker control of the return targets and ones
in which the attacker can overwrite data that affect the execution of conditional
branches. The purpose of the former type of attacks is to divert control flow to
a location that would not otherwise be reachable in the same context, whereas
the latter is to corrupt the decision making data and make the program execute
another path.

We assume that the attacker can fully control over the process memory, but
he does not have the ability to modify the code segment. Attackers can carry
out arbitrary memory reads and writes by exploiting input-controlled memory
corruption errors in the program. They cannot modify the code segments as code
pages are marked read-executable and not writable. Meanwhile, they cannot
control the program loading process. These assumptions ensure the integrity of
the original program code instrumented at compile time, and enable the program
loader to safely configure the dedicated segment register used by the canaries
and the unsafe stack.

3.2 Design

The high-level design of SafeStack+ follows that of SafeStack in that both consist
of a static analysis pass that identifies important objects in a program P (sensi-
tive unsafe variables in the case of SafeStack+) and an instrumentation pass that
rewrites P to protect the important objects. However, SafeStack+ differs from
SafeStack in that we introduce canaries to further protect unsafe objects on the
unsafe stack. In this section, we present our detailed design of SafeStack+.

Figure 2 shows the workflow of SafeStack+. We run static analysis to find
sensitive variables first, and then instrument the code for canary insertion and
runtime canary checking.

Fig. 2. Illustration of SafeStack+’s workflow

Static Analysis We determine the set of sensitive variables using def-use anal-
ysis in LLVM where a variable is considered sensitive if it affects the execution of
conditional branches and it is unsafe. The definition of an unsafe variable follows
that in SafeStack that the pointer dereference of it is unsafe – the memory it



accessed may not lie within the target object on which the dereferenced pointer
is based. We could do this via a forward execution analysis by keeping track
of all code locations where an unsafe variable is used (directly and indirectly).
If the target location involves a conditional branch, we add the unsafe vari-
able to the sensitive set. Alternatively, we can also perform a backward tracking
analysis starting from the sink of conditional branches, and trace back to the
unsafe variables as sources. Since we implement SafeStack+ as an LLVM plug-in
and perform the static analysis during compilation time, we choose the former
method for its simplicity. Note that if an unsafe variable is used as the argument
of a call instruction, the analysis needs to jump inside the callee function to
check whether the arguments will be used by a conditional branch.

Instrumentation for Runtime Checking We protect the sensitive unsafe
variables by inserting canaries around them and checking the integrity of the
canaries at runtime. A canary is a piece of data inserted on the stack to detect
memory corruption attacks [13]. For example, if any buffer is overflown in an
attack, the canary on the stack is likely overwritten before the sensitive data
next to it is modified. Therefore, checking the integrity of the canaries enables
detection of memory corruptions. Both inserting and checking the canaries are
done via instrumenting the target program during compilation.

As shown in Figure 3, a canary is added next to the sensitive variable at the
lower address (toward the direction of stack growth) to detect overwriting by
other unsafe variables from lower addresses. To deal with brute-force attacks,
canaries added in SafeStack+ do not have fixed sizes or values. There is a trade-
off between security and performance when setting the maximum size of the
canaries – bigger size gives better security in that it provides higher entropy to
the canary value, but also adds more runtime overhead to checking its integrity
and bigger memory usage. SafeStack+ randomly chooses from three different
sizes: 4, 8, and 16 bytes (for memory alignment purposes) at compile time.
Canaries are accessible through a dedicated segment register (%gs) to prevent
attackers from obtaining them easily.

After canaries are inserted next to the sensitive variables, we need to check its
integrity at runtime. The time of checking also involves trade-off between security
and performance: checking integrity at every access of the sensitive variable
(reading from and writing to) gives better security, but the frequent access might
introduce prohibitive overhead. We introduce a lazy checking mechanism by
delaying the integrity check till the point of conditional branch evaluation. We
consider this an acceptable security policy since SafeStack+ is designed to fight
against data-flow hijacking attacks, and the lazy checking right before branching
satisfies the security requirement. Although it may lead to a delay in detecting
the corresponding attack, it could greatly improve performance due to the lower
checking frequency.

Figure 4 shows the different locations to check the integrity of the canary
for the sensitive variable pl in the sample code in Listing 1. We can perform
checking



int b

...

p[16]

buffer[16]

canary

int i

Unsafe stack

S
ta

ck
 g

ro
w

s
int pl

Random size

Fig. 3. SafeStack+ Approach

– When reading the value of the sensitive variable from memory, see Fig-
ure 4(a);

– When storing the value of the sensitive variable to memory, see Figure 4(b);

– or, when evaluating the branching condition, see Figure 4(c).

void determine_privilege_level(int *p){

     *pl = get_priviliege();

}

int main(){ 

��

    determine_privilege_level(&pl);

    gets(buffer);

    // canary checking

    len = pl;

   // canary checking

    if ( pl == 0x42 )

        printf("Accessed\n");

    else

        printf("Not allowed to access the file\n");

    return 0;

}

(a) When reading from
memory,

void determine_privilege_level(int *p){

    *pl = get_priviliege();

    // canary checking

}

int main(){ 

��

    determine_privilege_level(&pl);

    gets(buffer);

    len = pl;

    if ( pl == 0x42 )

        printf("Accessed\n");

    else

        printf("Not allowed to access the file\n");

    return 0;

}

(b) When storing to mem-
ory,

void determine_privilege_level(int *p){

    *pl = get_priviliege();

}

int main(){ 

��

    determine_privilege_level(&pl);

    gets(buffer);

    len = pl;

    // canary checking

    if ( pl == 0x42 )

        printf("Accessed\n");

    else

        printf("Not allowed to access the file\n");

    return 0;

}

(c) When evaluating branch
conditions,

Fig. 4. Lazy checking of integrity of canaries

Intuitively, delaying the checking at branching evaluation might result in
the smallest number of checks because each branching evaluation might corre-
spond to multiple reads and writes of the sensitive variable. We delay our further
discussion on the design choice to Section 4 where we discuss the experiments
performed, since we want to measure the amount of saving before making the
design decision.



3.3 Implementation

We obtained the source code of SafeStack integrated in LLVM 3.8 compiler in-
frastructure [5], and added more than 700 lines of code in C++ to implement
SafeStack+. Most of the additional code is added to perform static analysis to
find instructions that manipulate the sensitive variables and to add instructions
to check the value of the canary. Some code is also added to add canaries when al-
locating space for these sensitive variables. SafeStack+ accepts unmodified C/C++

program source as its input.

Sensitive Variable Analysis We implement the sensitive data analysis for
SafeStack+ as an LLVM pass. The LLVM pass operates on the LLVM In-
termediate Representation (IR), which is a low-level strongly-typed language-
independent program representation tailored for static analysis and optimiza-
tion. The LLVM IR is generated from the C/C++ source code by clang [1], which
preserves most of the type information that is required by our analysis and the
def-use chain can be used easily to get the locations for each variable.

For every unsafe alloca instruction that allocates memory on the stack
frame, we traverse the list of instructions that make use of it using the def-use
chain provided by LLVM. If the corresponding memory is used by a conditional
branch, we consider it as sensitive. When checking whether arguments of each
function call are involved in the evaluation of a conditional branch, if the caller
and callee are located in different modules, it will be difficult to carry out the
analysis. We take a simple solution to first compile all source code into one IR
file.

Note that the determination of sensitive variables is a conservative process
– a sensitive variable may not be overwritten forever as there are no vulnerable
buffers being stored beyond it. We leave a more precise static analysis to find
sensitive variables our future work.

Canary Insertion and Integrity Check Canaries on SafeStack+ are stored
in the thread control block which can be accessed only directly through one of
the segment registers. We implement this by using the InitialExecTLSModel

flag. To insert a canary to protect a sensitive variable, we modify function
moveStaticAllocasToUnsafeStack() so that a canary is created right after
allocating spaces for unsafe variables on the unsafe stack.

Integrity checking of the canaries at every reading (or writing) of the sensi-
tive variables is implemented by traversing the list of instructions that make use
of the corresponding sensitive variable, and inserting a call before (or after) the
instruction to check for integrity. Our lazy checking, on the other hand, is imple-
mented by finding conditional branches whose evaluation is affected by sensitive
variables and inserting a call before the evaluation to check for integrity of the
Canaries. We do not make additional effort to optimize the instrumentation code
(e.g., by inlining the code of integrity checking instead of inserting a function
call) because the compiler will perform further compilation and optimization
after our instrumentation.



4 Evaluation

In this section, we perform a number of experiments to demonstrate the efficiency
and effectiveness of SafeStack+. Specifically, we first perform some simple sta-
tistical analysis on software programs to find out the number of variables that
require protection in order to defend against data-flow hijacking. After that,
we empirically test a number of ways of implementing our idea to justify our
lazy checking mechanism. Finally, we test SafeStack+’s capability in defending
against a suite of security attacks and a real-world data-flow hijacking attack.

All experiments were performed on a desktop computer with an Intel i7
4510u CPU with 8GB of memory running the x86 version of Ubuntu 14.04. All
experiments were conducted 10 times, average of which is reported in this paper.

4.1 Variables to be Protected for Data-flow Hijacking

The first experiment we performed is to find out how many sensitive variables
need to be protected to defend against data-flow hijacking. If there are many,
then it may make sense to just add canaries for every one and skip the process of
locating sensitive ones. Table 1 shows some simple statistics for SPEC CPU2006
programs compiled without optimization. Specifically, we show percentage of
unsafe functions (functions with at least one unsafe variable) upon all functions,
percentage of unsafe variables upon all variables, and percentage of sensitive
variables upon all unsafe variables.

Table 1. Simple statistics of SPEC benchmark programs

Program Unsafe Functions Unsafe Variables Sensitive Variables

bzip2 23.3% 8.3% 44.4%

gcc 13.1% 4.0% 47.0%

mcf 8.3% 4.4% 87.5%

sjeng 27.1% 13.2% 60.4%

libquantum 33.0% 8.6% 14.9%

astar 15.1% 9.7% 21.3%

namd 43.2% 4.6% 78.9%

soplex 11.9% 7.7% 19.5%

lbm 28.5% 8.6% 18.2%

average 22.6% 7.7% 43.6%

The first two columns of results basically show that there are not that many
functions requiring an unsafe stack, and there are not that many unsafe variables
on the unsafe stack when it is needed. This explains why, in general, SafeStack
has small overheads. The last column of results, which are more specifically
about SafeStack+, show that the percentage of sensitive variables upon all unsafe
variables covers a relatively big range from 18% to 87%. That said, the average



is still below 50%, which justifies our strategy of locating only sensitive variables
for added protection.

Note that the analysis above is purely static, which may not closely corre-
spond to the overhead experienced by end users.We therefore need some dynamic
analysis in order to precisely find out the user experience in terms of runtime
overhead.

4.2 Dynamic Analysis for Various Strategies of Integrity Check

Having shown that there are fewer than 50% of the unsafe variables requiring
protection against data-flow hijacking attacks, we now move on to dynamically
analyzing the overhead when the benchmarking programs are running on certain
workloads. At the same time, we also want to try out different integrity checking
mechanisms to test the extent to which our intuition of lazy checking generating
less overhead is correct. Figure 5 shows the results for our three canary integrity
checking strategies – before reading sensitive variables from memory, after stor-
ing them to memory, and before evaluating branching conditions. Please refer to
Section 3.2 for more discussions of the three strategies. Note that here we show
the additional overhead of dynamically executing the benchmarking programs
on SafeStack+ over that on SafeStack, when the programs are given the workload
of the largest input file under the ref folder provided by SPEC CPU2006.
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Fig. 5. Additional runtime overhead of SafeStack+ over SafeStack



Results show that performing integrity check before branch condition eval-
uation enjoys a smaller runtime overhead of 3.0% compared to 5.8% and 4.5%,
respectively, when checking before reading or after storing the sensitive variables.
This confirms our intuition since each branch condition evaluation may corre-
spond to multiple variable reads and writes. We therefore decide that SafeStack+

shall adapt the lazy checking mechanism for improved efficiency. sjeng experi-
ences much higher runtime overhead than other programs. We investigate the
detailed execution, and find that this is due to a large number of looping that
result in more integrity checking needed. That said, our general finding of lazy
checking enjoying better efficiency still holds true for this special case.

Table 2 shows the number of additional instructions executed for integrity
checks of the canaries when the benchmarking programs are running the same
workload. Results are consistent with those shown in Figure 5, which, again,
confirms our intuition that lazy checking enjoys better efficiency in general.

Table 2. Instructions added for canary integrity check

Program
Reading Storing Branch evaluation
# % # % # %

bzip2 4.56E+09 12.17 1.32E+09 3.53 3.49E+09 9.32

gcc 8.91E+09 3.93 6.22E+09 2.74 5.39E+09 2.38

mcf 1.06E+08 0.28 5.02E+07 0.13 3.57E+07 0.09

sjeng 2.54E+11 38.36 2.39E+11 36.04 2.19E+11 33.01

libquantum 3.29E+11 5.89 3.29E+11 5.90 3.28E+11 5.89

astar 1.63E+10 6.66 9.79E+09 4.01 7.75E+09 3.17

namd 1.60E+08 0.00 1.44E+08 0.00 8.50E+07 0.00

soplex 3.17E+07 0.01 3.59E+06 0.00 1.65E+07 0.00

lbm 2.40E+07 0.00 9.99E+06 0.00 1.29E+06 0.00

The percentage of additional instructions executed for some programs, such
as namd, soplex, and lbm is around 0%. However, the runtime overhead for
them is still about 2% to 3% as shown in Figure 5. This is because the number
of additional instructions executed cannot be ignored although the percentage
number is small. Executing these additional branches still produces runtime
overhead, but the overhead is small.

4.3 Memory Usage Overhead

Table 3 shows the memory overhead of our experiments with the benchmarking
programs in terms of the number of bytes and percentage. As shown, the memory
overhead ranges from 24 bytes to 5,220 bytes with an average of 960 bytes, which
is about 5.3%. We find such memory usage overhead acceptable.

Note that the memory usage overhead is proportional to the number of sensi-
tive variables statically found in the program and not dynamically related to the
specific workload. For example, lbm contains only two sensitive variable, which



Table 3. Memory Usage Overhead

Program Memory Overhead (Bytes) Percentage (%)

bzip2 224 0.01

gcc 5220 5.76

mcf 52 18.31

sjeng 496 0.18

libquantum 64 6.45

astar 108 1.89

namd 1632 0.13

soplex 820 5.87

lbm 24 9.09

average 960 5.3

result in 24 bytes of memory overhead; however, its runtime overhead is still
noticeable at 1.3% with some specific workload, as shown in Figure 5.

Security Evaluation on the RIPE Benchmark Having shown that SafeStack+

enjoys reasonably small runtime and memory overhead, we now turn to the se-
curity evaluation. First, we want to make sure that SafeStack+ is no worse than
SafeStack in defending against control-flow hijacking attacks. For this purpose,
we use the RIPE [29] benchmark that contains 850 exploits that attempt to per-
form control-flow hijacking attacks. Table 4 summarizes the evaluation results
under three different settings.

Table 4. Statistical results on RIPE Benchmark

System Name # of success # of failure

RIPE with ASLR 130 720

RIPE with ASLR and compiled with SafeStack 80 770

RIPE with ASLR and compiled with SafeStack+ 80 770

Our evaluation shows that SafeStack+ and SafeStack enjoys the same ad-
vantages in defending against control-flow hijacking attacks (not only the same
number of exploits failed but they are the exact same set). Although this result
is as expected, it is interesting to observe the consistency of the behavior of
these exploits under SafeStack and SafeStack+, i.e., although the unsafe stack
has quite different structure, all the exploits behave in the same way on both
SafeStack and SafeStack+.

4.4 Security Evaluation on a Data-flow Hijacking Attack

In this section, we use a real-world example to show how SafeStack+ defends
against a data-flow attack. This experiment was based on CVE-2013-0230 on a
memory corruption vulnerability for miniupnpd.



CVE-2013-0230 reports a buffer overflow bug in miniupnpd before version 1.0.
The vulnerability can be exploited by overflowing the stack [4] which results in
potentially a control-flow hijacking and a data-flow hijacking scenario. We will
show how SafeStack+ defends against the data-flow hijacking attack. Listing 2
presents (part of) the source code of miniupnpd 1.0, with line 11 showing a
stack-based buffer overflow if methodlen is more than 2048 bytes long.

Listing 2. ExecuteSoapAction

1 ExecuteSoapAction(struct upnphttp * h, const char * action, int n)
2 {
3 char * p;
4 char method[2048];
5 int i, len, methodlen;
6 i = 0;
7 p = strchr(action, ’#’);
8 methodlen = strchr(p, ’"’) - p - 1;
9 .......

10 memset(method, 0, 2048);
11 memcpy(method, p, methodlen);
12 syslog(LOG_NOTICE, "SoapMethod: Unknown: %s", method);
13

14 SoapError(h, 401, "Invalid Action");
15 }

Figure 6 shows the stack layout when function ExecuteSoapAction is called
under SafeStack (left) and SafeStack+ (right), respectively. As we can see, HttpCommand[16]
and HttpUrl[128] can be overwritten by method[2048] in SafeStack, which may
cause a data-flow hijacking since both HttpCommand[16] and HttpUrl[128] are
sensitive variables whose values may affect the execution of conditional branches.
However, on SafeStack+, we add canaries for these two variables, which can help
detecting the overflow of method[2048] .

We stress that this is a real-world example of vulnerability and the corre-
sponding data-flow hijacking exploits detected by SafeStack+.

5 Limitations and Related Work

In this section, we briefly discuss limitations of SafeStack+ and some related
work.

5.1 Limitations

As discussed earlier, the set of sensitive variables we find is an over approximation
– a sensitive variable may not be overwritten at all as there are no vulnerable
buffers being stored beyond it. We leave it our future work – a more precise
static analysis to find the sensitive variables.
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A simple idea of attacking SafeStack+ is to brute force the size and value
of the canary. With a canary size of 4 bytes, the expected number of tries the
attack has to make is 231. Having a canary of bigger size or multiple canaries (for
multiple sensitive variables) makes the attack even more impractical. Memory
leakage attacks are possible but very difficult since canaries are only accessible
through a dedicated segment register (%gs).

Now we have to find the data-flow vulnerability described in this paper man-
ually, which is time consuming. We leave it our future work – automatically find
the data-flow vulnerability that can overwrite the data which could potentially
affect evaluation of branching conditions.

5.2 Related Work

Many bounds checking methods are proposed to fight against memory corrup-
tions. Cyclone [21] and CCured [25] fuse pointer values and associated bounds
meta information into one unified object. With this, bounds information can
be read directly from this object and this information can be used for bounds
checking instrumentation. SoftBound [24] and Baggy Bounds Checking [7, 15]
store the bounds meta information in a shadow space or shadow memory that
is separated from the main memory of the program. Shadow memory has better
binary compatibility as the layout of objects in main memory is not changed.
LowFAT [16] extends the low-fat pointer to stack objects by using pointer mir-
roring and memory aliasing.

StackGuard [13] patches gcc to add a canary before every return address and
checks the value of the canary before a function returns. StackGuard ensures tar-
gets of return instructions are not overwritten, while SafeStack+ ensures that
both targets of return instructions and path sensitive variables are not overwrit-
ten. PointGuard [12] encrypts pointers when they are in memory, and decrypts
encrypted pointers when they are loaded into CPU registers. PointGuard is sim-
ilar to SafeStack+ with the main difference being that PointGuard needs to



check when each pointer is loaded into register, which may produce a high run-
time overhead. SafeStack+ just checks path sensitive variables when they are
loaded from memory (stored into memory or before the execution of conditional
branches). Therefore, the performance overhead is much smaller.

Address Space Layout Randomization (ASLR) [3] randomizes the base ad-
dresses of the text segment, data segment, stack, and heap at load time. Software
diversity [28, 20, 18] implements fine-grained code randomization to mask impor-
tant details of a program. StackArmor [11] focuses on stack layout randomiza-
tion. It disrupts the traditional stack organization by making the stack frames
and vulnerable buffers neither temporally nor spatially adjacent in memory.

Control Flow Integrity (CFI) [6] ensures that the targets of all indirect
branches point to legitimate locations determined statically. However, getting
all precise targets for each indirect branch statically is difficult, so many coarse
grained CFI methods are proposed [31, 26, 23] to simply include every function
in a program in the set of valid targets. CFI could not guarantee protection
against all control flow hijacking attacks. Recent results [10, 19, 27] show that
many existing CFI solutions can be bypassed in a principled way.

Shadow stack techniques [9, 17, 30, 14] split the stack into two parts: a shadow
stack for storing sensitive data such as return addresses and the main stack for
storing everything else. SafeStack [22] can be seen as one special case of shadow
stack. It stores local variables (called unsafe variables) that may cause memory
error onto one unsafe stack (shadow stack), and return addresses and other safe
variables are placed onto the main stack. However, this strategy alone does not
prevent unsafe variables from attacking each other.

6 Conclusion

This paper presents SafeStack+, which extends SafeStack to make it can defend
against both control flow and data flow hijacking attacks. We show that the
average runtime and memory overhead of SafeStack+ are 3.0% and 5.3% respec-
tively. In addition, we evaluate how different checking locations would affect the
runtime overhead. Results show that, for most programs, checking at memory
related operations experiences more runtime overhead and adds more instruc-
tions. The security evaluation shows SafeStack+ can effectively counter against
both control flow and data flow hijacking attacks.
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