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Abstract. The Google Suggestions service used in Google Search is one
example of an interactivity rich Javascript application. In this paper,
we analyse the timing side channel of Google Suggestions by reverse
engineering the communication model from obfuscated Javascript code.
We consider an attacker who attempts to infer the typing pattern of a
victim. From our experiments involving 11 participants, we found that
for each keypair with at least 20 samples, the mean of the inter-keystroke
timing can be determined with an error of less than 20%.

1 Introduction

Fig. 1. Suggestions for ‘secure’

Rich and complex Javascript (JS) applica-
tions provide sophisticated GUI updates and
fast client-server communications that ap-
proaches the capabilities of traditional desk-
top applications. For example, Google In-
stant [1] and Google Suggestion(GS) [2] al-

low users to view results and suggestions on–the–fly while typing search queries.
The front-end JS communicates using HTTP(s) with the back-end server in
response to various events such as keypress. Figure 1 and Table 1 shows respec-
tively the GS interface and HTTP requests when a user types in the search term
‘secure’. In this paper we explore whether the improved GUI creates a timing
side channel. We hope a detailed study of one application yields insights on the
threats that may apply to the entire class of such applications.

Related work Similar side channels attack had been demonstrated by Chen et
al. [3] (inferring encrypted JS traffic from packet size) and Song et al [4] (reducing
search space of SSH passwords from packet timing). This paper differs from prior
work in the following ways. It is the first to analyse JS timing side channels
and use it to derive typing patterns, which raise a privacy concern as prior
research showed that typing patterns are unique and allows user identification [5–
8]. Moreover, personalized typing patterns improves the SSH attacks by Song et
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(a)

GET /s?. . .&q=s&

GET /s?. . .&q=se&
GET /s?. . .&q=sec&

GET /s?. . .&q=secu&
GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

(b)

GET /s?. . .&q=s&

GET /s?. . .&q=se&
GET /s?. . .&q=sev&

GET /s?. . .&q=se&
GET /s?. . .&q=sec&
GET /s?. . .&q=secu&

GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

(c)

GET /s?. . .&q=s&

GET /s?. . .&q=se&
GET /s?. . .&q=sec&

long pause
GET /s?. . .&q=secure&

(d)

GET /s?. . .&q=sec&

GET /s?. . .&q=secur&
GET /s?. . .&q=secure&

Table 1. Query scenarios: (a) Slow typing. (b) Typing correction. (c) Typing s, e, c,
then choosing secure from the suggestions. (d) Fast typing (not handled in this paper)

al. [4] and allows imitation attacks [9] on keystroke biometrics systems [10, 7, 5,
11, 12]. JS timing side channels are challenging to analyse because keystroke and
network traffic timing are only loosely correlated. This is because JS applications
(a) are far slower as compared to native binary applications and (b) typically
run in a single threaded co-operative multitasking execution model.

Key results In the following sections, we study GS’s communication model and
derive a set of techniques to construct a keypair timing model (probability dis-
tribution of keypair intervals) for each pair of keystroke from unencrypted GS
traffic. We conducted a user study on 11 participants to collect their keystrokes
and timings. Results show that if at least 20 samples of each keypair are avail-
able, the recovered mean timing differs from the actual mean by at most 20%.
However, the recovered standard deviation is less accurate: with at least 40 sam-
ples, the maximum difference is 46%. The accuracy improves with the increase
in the pool of samples indicating the effectiveness of long term attacks.

2 Communication model

Fig. 2. Setup for black-box and white-box testing

Our approach to study the GS
communication model is based
on both black-box testing and
white-box analysis. We used
the setup of Figure 2. The client
under testing connects to the
Google servers in the back-end
through a proxy server. For
blackbox testing, we captured
Google query packets using a
packet sniffer [13] installed on
the client. For whitebox testing,
we hosted a copy3 of the Google
HTML and JS files on another
web server and selectively redirect the proxy server [14] to fetch our copy rather
than from the actual Google server. This allows us to make arbitrary changes to
the scripts for our testing.

3 Retrieved Apr 2012
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2.1 Approach

Black-box analysis allowed the quick identification of traffic patterns and content.
For example, we quickly found that different network traffic patterns are possible
even for the same query (see Table 1). On the other hand, when we analysed
the timings of the keypress and the packets, we encountered significant difficulty
correlating them. For example, after the user pressed a key, the corresponding
HTTP request can be observed on the network from between approximately 3
ms to over 100 ms later with 2 distinctive frequency peaks at around 7 ms and
45 ms. Whitebox analysis is therefore necessary.

Our approach is to first manipulate the obfuscated source code using the tool
JSBeautifier [15]. The decision to host a separate copy of the script files in Fig-
ure 2 allowed us to make arbitrary changes to the JS source code independently
of the Google servers. Next, we use the console logging feature of Firebug to
pinpoint the code that initiated the HTTP requests. This formed the starting
point for subsequent investigations, where we incrementally assign meaningful
symbols to the variables and functions through (a) monitored calls to standard
functions, and (b) selectively breaking execution and examining the call stack
and variables. Please note that our investigation focuses specifically on the tim-
ing aspects. Hence we did not deobfuscate all the script code involved in GS.
The rest of this section documents our findings.

2.2 Communication model obtained

JS uses an event driven execution model [16]. For GS, there are 3 classes of event
handlers of interest. Hpoll is a handler for polling events. The polling is setup
and removed when the query input box receives and loses focus respectively.
Although the specified polling interval is 10 ms, the actual firing interval fluctu-
ates. The reason is likely to be due to other events firing and executing, thereby
delaying the execution of this handler. Hui handles UI events, e.g., keydown,
keypress, keyup, etc. The same handler code fires for different events but with
different closure scope. The handler function for the keydown event, named Hkdui,
is installed during GS code initialization. The GS code includes a mechanism to
defer execution of a function. Hdefer handles the events which are deferred. The
2 key parts to this are the postMessage JS function and an array of deferred
functions (Arrdefer ). At load time, GS setups a message event handler. This
handler fires when a message is posted to it using postMessage. When fired,
it removes the first function from Arrdefer and executes it. If Arrdefer is not
empty, it posts a message to itself and exits. Any JS code deferring execution
calls a wrapper function defer which first pushes the function to defer onto the
bottom of Arrdefer and then post a message to Hdefer.

When a user presses and releases a key, JS fires four events in this order:
keydown, keypress, input, keyup. Under normal circumstances, Hkdui uses the
deferred execution mechanism to invokes a function named Hx to send out the
network traffic. However, it is also possible for Hpoll to run before Hkdui. In such a
case, Hpoll invokes Hx directly (without deferring execution) to send out the query.
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Regardless of the path taken, Hx is executed at most once for each keystroke.
The end result is a race (to execute Hx) between the synchronous mechanism
of Hpoll and the asynchronous mechanism of Hkdui, resulting in the introduction
of a variable delay. The race is won mostly by Hkdui. Another factor affecting the
execution delay is the number of task on each execution path. For example,
the first keypress for GS also updates the UI in preparation for not just the
suggestions of GS, but also the results of Google Instant. This additional code
increases the execution delay by approximately 6 times (∼45 ms).

Listing 1
trace Hx

if xhrtimer not pending then

xhrm enter

· · ·

exit

end if

end trace

trace TimerEvent

Call xhrm
end trace

procedure xhrm
if unsent_query then

xhri enter

· · ·

send query to Google
· · ·

exit

timeout ← compute_timeout

create TimerEvent

end if

end procedure

A third factor affecting the delay is sub-
mission throttling [17]. Most search engines
used this technology to limit the amount of
search traffic to their website while the user is
typing the query. In the case of GS, regardless
of whether Hpoll or Hkdui won the race, Hx is al-
ways invoked. The role of Hx is to send queries
and receive results from the Google servers.
Listing 1 shows how submission throttling is
implemented in GS when Hx is invoked. The
sending mechanism of GS uses a timer named
xhrtimer. This timer is initially cleared. When
Hx is invoked it checks this timer. If xhrtimer
is cleared, Hx calls a sub function xhrm to send
out the query immediately. Otherwise, it ex-
its without sending any HTTP traffic. When
xhrm runs, it sets up the timer xhrtimer to call
itself (xhrm) again after a timeout value. The
detailed computation of the timeout is out of

the scope of this paper, but on a fast network, this value is 100 ms. After this
timer is set, xhrm will not run again until the timer expires. Any keystrokes typed
during this time accumulate and are sent together in the same HTTP request
when the timer expires. If xhrm runs but does not find any unsent query (that is,
between the previous and current invocation of xhrm, the user did not press any
key), it does not set any new timer. xhrtimer therefore becomes cleared again. If a
new key is now pressed, xhrm will again send it out without delay. The described
process then repeats itself. The implication is that correlation between keystroke
and packet timing is poor whenever xhrm is in timer mode.

3 Recovery of keypair timing model

Section 2 identifies the timeout mechanism and atypical execution path as major
noise contributors. Packet timings thus affected are considered unreliable. Fig-
ure 3 shows that if we discard the unreliable timing, the delay between pressing
of keystroke and sending of packet becomes significantly more consistent. (tks
and tpkt refer to the keystroke and packet timing respectively.) This allows the
recovery of the derived keypair timing model.
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Fig. 3. Noise model

For each keypair, the recov-
ery process involves (a) identi-
fying the corresponding packet-
pairs, (b) determining if each
packet timing is reliable, (c)
choosing packet-pairs where the
earlier timing is reliable, (d) fur-
ther dividing the chosen packet-
pairs into a set where the latter
packet timing is reliable and an-
other set where it is not, (e) com-
puting the mean and variance of

the packet-pair timing model and finally (f) applying a correction to the variance
to obtain the derived keypair timing model. This process requires an assump-
tion of normally distributed timing models which are independent. Prior work [4]
investigating keypair timing model found the normal distribution to be a rea-
sonable approximation. In step (d), the size of the first set (reliable latter packet
timing) is denoted by No. The size of the complementary set is denoted by Nu.
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Fig. 4. Different scenarios for the building of DTMkey
from TMpkt

In step (e), depending on
the values of No and Nu, there
can be 4 different scenarios,
3 of which are shown in fig-
ure 4. TMkey denotes the key-
pair timing model, TMpkt de-
notes the packet-pair timing
model, and DTMkey denotes the
derived keypair timing model,
which is an approximation of
TMkey obtained by applying a
variance correction to TMpkt.
In type 1 scenarios, Nu = 0.

The mean and variance are calculated directly from the observed intervals.

For type 2, Nu < No. The timeout translates to a cutoff time beyond which
certain intervals are not observed. The peak though is still visible. We first
estimate the median from Nu and the observable parts of the distribution. We
next obtain the mean which is equal to the median. We estimated the missing
part of the distribution by reflecting the observable part about the mean. From
the reconstructed distribution, we can calculate the variance.

For type 3, Nu ≥ No. The peak is not visible. Our aim is to fit a normal
distribution (with unknown mean x̄ and std. deviation s) based on the interval
observations on the right tail. Let l denote the cutoff time (timeout + a small
allowance). x̄, s, l, α are related by l = x̄+ αs, where α is a multiplier s.t. for a
standard normal distributed random variable X , Pr(X > α) = No/(No +Nu).
The curve fitting iterates over a possible list of values for x̄, and computes the
corresponding s. The values providing the best fit (least squares) is chosen.
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In type 4 scenarios, No = 0. The mean of the keypair timing is far less than
the timeout, resulting in no interval observations. Hence it is not plotted in
Figure 4. To recover the timing for a keypair such as c1 − c2 where ci denotes
a key pressed, we need to have the parameters of another 2 distributions: the
keypair c2 − c3 and the triplet c1 − c2 − c3. The latter 2 distributions would be
observable if there exists c3 such that c2 − c3 is much longer than the timeout.

Given two independent normally distributed random variables X and Y , the
random variable Z = X+Y is also normal [18] with mean z̄ = x̄+ȳ and standard

deviation sz =
√

s2x + s2y. The relation between c1 − c2, c2 − c3 and c1 − c2 − c3

is analogous to that of X , Y and Z. Therefore, if we let Z and Y represent the
distribution for c1− c2− c3 and c2− c3 respectively, we can obtain the mean and
standard deviation of the unobservable c1 − c2 from X .
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Fig. 5. Difference in the p.d.f. of TMkey compared to
the corresponding p.d.f. of TMpkt.

In step (f) we need to ap-
ply a correction to the vari-
ance but not the mean. This
is because there is residual
noise even after accounting
for the timeout and atypical
execution path. This noise af-
fects both timing observations
of a packet-pair. It cancels
out for the interval mean, but
adds to the variance. Figure 5
shows this effect for a keypair.
To compute the required vari-
ance correction, we use a sim-

ple heuristic. A Monte Carlo simulation based on the model of Section 2 com-
putes the observed variance for a set of variances. The differences are stored in
a table and looked up whenever a correction is needed.

4 User study

To verify the theory of Section 3, we conducted a user study. 11 participants
are asked to install a plugin on their browser which captures the keystroke tim-
ings of GS queries. The duration of the study ranges from 32 to 49 days. Users
are allowed to inspect and delete any sensitive entries in the capture log be-
fore submission. Towards the end of the study, users with too few queries were
given a chance to go through a Q&A worksheet using Google to find the an-
swers. This is so that they get more opportunities in using Google search. The
collected keystrokes are anonymised and post processed to retain only English
alphabets and the SPACE char. Queries with BACKSPACE are broken up. The
resulting logs are consolidated on a single machine running Ubuntu 11.10 (AMD
Athlon(tm) 64 X2 Dual Core Processor 4000+ 2110 MHz with 3 GB RAM). The
keystrokes in each query are injected programmatically using the uinput [19] in-
terface and the corresponding query packets are collected.
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Table 2. Statistics of user study. Q: total num-
ber of queries by user. KS: total keystrokes
typed. KP: total keypairs typed. TP: total 3
char sequence. KPobs: sum of No for all keypairs.
TPobs: sum of No for all triplets. Nsig : total
number of keypair/triplets for which No ≥ 10.
This is also the number of recovered p.d.f.

S/N Q KS KP TP KPobs TPobs Nsig

1 502 3114 2612 2110 642 487 6

2 421 2666 2245 1824 682 506 7

3 1206 6607 5401 4195 2447 1715 93

4 688 4243 3555 2867 601 403 6

5 593 3604 3011 2418 1368 993 34

6 774 4592 3818 3044 1752 1284 58

7 405 2517 2112 1707 733 561 8

8 696 4610 3914 3218 1181 893 29

9 327 2163 1836 1509 270 185 1

10 1041 6042 5001 3960 2359 1697 96

11 700 3964 3264 2564 1233 853 29

The outcome of the user study
is shown in Table 2. There is a
positive correlation between the
number of queries submitted and
the number of p.d.f. (last column)
recovered in DTMkey for each par-
ticipant. This suggests that long
term collection of queries would
recover far more p.d.f. than our
user study. The outcome of the
methods for type 1 to type 2
are shown in Figure 6. Relatively
fewer samples were collected for
type 3 and type 4 due to the
low probability of finding observa-
tions at the tail and finding both
triplet and keypair accounts. The
outcome for these methods are
omitted due to brevity of space.
Generally, the mean can be recov-

ered accurately although larger observations tend to result in more accuracy. The
variance, on the other hand, is less accurate, particularly for fewer observations.
Like the mean, however, the accuracy improves as the observations increases.
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(a) Type 1 recovery
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(b) Type 2 recovery

Fig. 6. Recovery of p.d.f. from various types of packet observations.

4.1 The optimal timeout

Given that the current timeout value of 100ms allows the derivation of DTMkey
(from TMpkt), we also investigated the possible countermeasures. These counter-
measures are equally applicable to any JS application with rich interactivity that
wishes to deny potential adversary the opportunity for UI events harvesting. We
conducted a Monte Carlo simulation using the set of keystroke data collected
from the user study. We varied the GS timeout and computed the simulated
packet timing based on the noise model and the findings of Section 2.
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Fig. 7. Variation of the total recovered keypair or
triplets for all users given a particular timeout set-
ting.

Figure 7 shows the vari-
ation of the count of recov-
ered keypairs and triplets vs
the timeout. Choosing a time-
out figure of 200-250 ms elim-
inates most observations, but
the responsiveness is more
than halved. Given that in
Listing 1, xhrm exits timeout
mode whenever there is no
keystroke activity in the pre-
vious timeout cycle, an alter-
native is to increase the num-

ber of timeout cycles to 3 while keeping the timeout unchanged at 100 ms. This
eliminates all observable intervals without affecting the responsiveness.

5 Limitations

In our study, the keypair timing model is based on keydown-keydown intervals.
Many biometric authentication techniques use such intervals [10, 11, 5]. Our work
therefore affects such systems. However, biometric authentication is not limited
to just keydown-keydown metrics. Keydown-keyup, keyup-keydown and even
keypress pressure are examples of alternatives. For the first 2, active attacks
injecting malicious Javascript code can capture both keydown and keyup, but
this is not investigated in this paper. Keypress pressure however, cannot be
measured by Javascript applications and are therefore unaffected.

The keystroke injection part of the user study was done on a dedicated ma-
chine. We therefore did not model the additional execution delay that may result
if the machine is also running multiple compute intensive processes concurrently.

The description of GS [2] indicated that it may behave differently in different
geographical locations. We did not manage to isolate any geographically specific
code during our investigations. This is either due to our limitations or different
source code was delivered to different locations. Our findings therefore apply only
to geographical locations with similar settings as our evaluation environment.

6 Conclusions

In this paper, we investigated the recovery of personalized keystroke timing in-
formation using GS. We found that it is possible to construct a user’s typing
pattern from the timing of the queries sent over the network. This is of con-
cern because the availability of typing pattern is a prerequisite for (a) achieving
the best outcome in timing side channel attacks and (b) imitation attacks on
keystroke biometrics. It can also be used to identify users. This suggests that logs
recording network traffic of interactive Javascript applications should be consid-
ered confidential and handled accordingly. Otherwise, the operators of search
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engines as well as proxy server administrators can mine the typing pattern of
their users from the traffic logs. We suggest that designers consider alternative
options such as multiple timeout cycles to shut down the leak effectively.
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