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ABSTRACT

Existing steganographic file systems enable a user to hide the
existence of his secret data by claiming that they are (static)
dummy data created during disk initialization. Such a claim
is plausible if the adversary only sees the disk content at the
point of attack. In a multi-user computing environment that
employs untrusted shared storage, however, the adversary
could have taken multiple snapshots of the disk content over
time. Since the dummy data are static, the differences across
snapshots thus disclose the locations of user data, and could
even reveal the user passwords.

In this paper, we introduce a Dummy-Relocatable Stegano-
graphic (DRSteg) file system to provide deniability in multi-
user environments where the adversary may have multi-
ple snapshots of the disk content. With its novel tech-
niques for sharing and relocating dummy data during run-
time, DRSteg allows a data owner to surrender only some
data and attribute the unexplained changes across snapshots
to the dummy operations. The level of deniability offered
by DRSteg is configurable by the users, to balance against
the resulting performance overhead. Additionally, DRSteg
guarantees the integrity of the protected data, except where
users voluntarily overwrite data under duress.

1. INTRODUCTION

Steganographic File Systems (stegfs) are intended to pro-
vide plausible deniability to data owners in the event that
they are forced to disclose their secret data [4]. A stegfs
hides encrypted user data among dummy data that contain
only pseudo-random bits. Without the correct password, it
is not possible to differentiate user data from dummy (based
on the assumption that the output of the block cipher is in-
distinguishable from random bits [3, 4]), even for an adver-
sary who understands the mechanisms of the file system and
is able to gain access to the storage devices. This feature al-
lows a data owner to selectively reveal some directories/files,
but disclaim the existence of his sensitive data.

To be believable, the disclaimer of the data owner must be
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consistent with the information that the adversary is able to
gather about the file system. This is much more challenging
to achieve in modern computing environments when the user
data are encrypted and stored in shared network storage.
Compared to portable and local storage, network storage
dramatically increases the availability and accessibility of
user data. However, it also brings new challenges in securing
user data. With shared network storage, the adversary is no
longer limited to a single snapshot of the disk content at the
point of attack. Instead, the adversary could now locate the
physical server machines being used [17] and quietly amass
multiple snapshots of the file system over a period of time
before launching his attack. The additional knowledge that
the adversary gleams from the multiple snapshots must be
factored into the stegfs design.

In earlier stegfs designs [4, 15, 12, 16], dummy data are
created when the disk is formatted and remain static there-
after. These schemes are effective against adversaries who
only see the final state of the storage, but cannot defend
against adversaries who possess multiple snapshots of the
storage. Indeed, changes among different snapshots not only
reveal the location of secret data, but could even be uti-
lized to recover the access keys (for example, when the first
scheme by Anderson et al. [4] is utilized). Recent stegfs
schemes, which are proposed to defend against multiple-
snapshots attacks, either cannot guarantee the integrity of
user data even under legitimate data operations [8, 9], or re-
quire a trusted agent to manage all the user passwords and
dummy data [20], which effectively presents a single point
of disclosure for user passwords.

In this paper, we propose a multi-user stegfs for shared
storage systems, which is named as DRSteg — Dummy Re-
locatable Steganographic file system. DRSteg is designed to
meet the following requirements:

e Security: To provide plausible deniability of secret
data in a multi-user environment in which the adver-
sary could obtain multiple snapshots of the storage
content. This protection should extend to any user
even when the storage server and all the other users
are completely compromised, i.e., they have surren-
dered all the information in their possession.

e Usability: To guarantee data integrity, and at the same
time enable individual users to trade off between deni-
ability and system performance.

To the best of our knowledge, DRSteg is the first stegfs
that allows I/O operations observed on shared storage to



be plausibly attributed to dummy data without requiring a
trusted agent as used by Zhou et al. [20]. In addition, our
work also manages to increase the deniability provided to in-
dividual users by sharing dummies among multiple users in
the system. It is technically challenging to satisfy both the
security and usability requirements, especially when dum-
mies are shared. DRSteg incorporates a special dummy
relocation mechanism that enables individual users to dis-
tinguish dummies from other users’ data (in order to free
dummies without destroying data), and to prevent adver-
saries from discerning the difference between dummy and
user data even after obtaining multiple snapshots.

This is also the first work that formalizes the deniability
achieved by a multi-user stegfs. The formalization enables
us to develop a tunable mechanism for users to balance be-
tween deniability and system responsiveness. In DRSteg,
the deniability enjoyed by individual users could be main-
tained beyond a specified threshold, whether or not all the
other users are fully compromised. The amount of dummy
operations is controlled individually; a user who specifies
a more aggressive amount enjoys higher deniability at the
expense of slower file operations.

To substantiate the usability of DRSteg, we present re-
sults of an empirical evaluation using file operation logs col-
lected from 12 graduate students in our school. The results
confirm that DRSteg is capable of achieving a wide range of
user-specified deniability levels. We also implemented a pro-
totype of DRSteg as a file system module in Linux kernel.
Performance experiments on the prototype show that secu-
rity and performance can be traded off against each other.

2. RELATED WORK

Cryptographic file systems (e.g., [5, 7, 11, 19]) and their
implementations (e.g., [1, 2]) have been studied extensively
in the last two decades . A cryptographic file system comple-
ments the access control mechanism of the operating system
(OS). Even if the OS is compromised or the data storage is
removed from the OS, data in the file system remain pro-
tected by the user’s password. A weakness of cryptographic
file systems is that they leave evidence of the existence of
encrypted data, so a determined attacker may compel the
users to reveal their decryption passwords.

In order to provide plausible deniability of the existence
of secret data, Anderson et al. proposed two steganographic
file system (stegfs) schemes [4]. In the first scheme, the disk
is initialized with several cover files that have equal length
and contain random data. A secret object is stored through
an exclusive-or operation on a subset of the cover files, iden-
tified by the corresponding bits in the access key. To protect
against brute force attacks, the number of cover files must
be sufficiently large; this imposes heavy I/O overheads as
each read/write request for an object translates into opera-
tions on multiple cover files. The scheme is effective against
single-snapshot attacks but not multiple-snapshot attacks.
In particular, the differences between just two snapshots of
the storage can expose the access key used?.

In Anderson’s second scheme [4], the disk is first filled with

!This is because only cover files whose indexes correspond
to bits with value “1” in the access key will be modified for
any data modification. Those files which do not change will
correspond to bits with value “0” in the access key. Thus, the
access key can be reconstructed by observing the changes of
the cover-file matrix in the storage.
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random bits. Subsequently, secret data blocks are written to
pseudorandom addresses. An implementation of this scheme
on Linux is reported by McDonald et al. [15], a peer-to-
peer version by Hand et al. [12] and a distributed version by
Giefer et al. [10]. The disadvantage of the scheme is that the
probability of collision in the locations where data are stored
increases as more data are added to the disk. Although
replicating each data block in different locations reduces the
likelihood of data loss, the risk cannot be eliminated; hence
data integrity is not guaranteed.

Pang et al. [16] utilized a bitmap to track block alloca-
tion to avoid overwriting data and to improve system perfor-
mance. To defend against single-snapshot attacks, dummy
data are added when the disk is initialized. The dummy data
cannot be changed or relocated at runtime, so the scheme
is susceptible to multiple-snapshot attacks. Zhou et al. [20]
provided for the relocation of dummy blocks. Their solution
requires a trusted agent to manage all the user passwords
and dummy data, which effectively transfers the risk of pass-
word disclosure to the agent.

Diaz et al. [8] proposed to defend against traffic analy-
sis [18] through a mix-based stegfs that employs a local mix
to relocate files in the remote storage. They show that the
security of the scheme depends on the file-size patterns in
the system. Another work by Domingo-Ferrer et al. [9] ad-
dressed the problem of data loss in a stegfs with multiple
users. It is not designed to defend against multiple-snapshot
attacks though. Furthermore, neither of the two schemes
guarantees data integrity under legitimate data operations.

TrueCrypt?, an open-source disk-encryption software pack-
age, enables a user to create a deniable file system within a
regular encrypted file or partition. The file system is deni-
able if the adversary only sees the final content of the disk.
However, it cannot defend against an adversary who pos-
sesses multiple snapshots of the encrypted partition. The
same weakness exists in similar products that provide deni-
ability for secret files, e.g., Phonebook® and Rubberhose®.

Note that deniability in stegfs is different from deniable
encryption [6] which allows an encrypted message to be
decrypted into different sensible plaintexts with different
keys. Stegfs is also different from private information re-
trieval (PIR) [13] which allows a user to retrieve an item
from a server without revealing which item is retrieved. A
stegfs allows the untrusted server to be cognizant of which
disk blocks are retrieved, yet provides deniability that they
stemmed from operations on secret data. A stegfs is not de-
signed to prove non-existence of secret data but to provide
plausible deniability of the existence of secret data.

3. PROBLEM DEFINITION
3.1 Threat Model

Figure 1 depicts our model of a multi-user file system. In
the model, user data are stored on a shared storage. The
stegfs functionalities are implemented in the client module
that runs on the user computers. This client module is se-
cured so that sensitive data that are operated on as well as
any passwords used for encrypting and decrypting the data
are protected. The storage server manages the shared stor-

2TrueCrypt, http://www.truecrypt.org/
3Phonebook, http://www.freenet.org.nz/phonebook
“Rubberhose, http://iq.org/ proff/rubberhose.org
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Figure 1: A multi-user stegfs with untrusted shared
storage

age devices which provide block-level operations, including
DAS (direct attached storage) and SAN (storage area net-
work). Different from the model where the server manages
all the user passwords [20], the storage server and shared
storage in our model are not stegfs specific.

The server and the storage devices are not trusted. This
means that an adversary may infiltrate the server or the
storage devices directly (or the backup of these devices) to
copy and analyze the stored content. Although our scheme
provides better protection when the communication between
users and the server is anonymized, it is not a necessary
condition for DRSteg to provide deniability to users. We will
analyze the deniability of DRSteg under different scenarios
in Section 5.

In this paper, we focus on adversaries who are after the
user data, and we explicitly rule out considerations of sab-
otage like overwriting/deleting data and denial of service.
The threat posed by the adversary thus hinges on two fac-
tors: (a) his knowledge of the file system state, and (b) his
access to the users of the system. These two factors together
determine the adversary’s ability to make deductions about
the hidden data on the storage, and to verify any claims
elicited from the users.

The first factor, knowledge of the storage state, is char-
acterized by the number of observations of the storage con-
tent. An adversary who is able to access the storage only
once (i.e., at the point of attack) only gains a single snap-
shot of the storage. An example is someone who is cap-
tured by criminals and forced to reveal all the contents in
his portable drive. However, when the adversary has more
than one chance to access the storage, he can record mul-
tiple snapshots. The information in those snapshots is then
utilized to deduce the existence of secret data.

The second factor that defines the adversary’s ability con-

cerns his access to the users. Here, we make the following
assumption:
Victim isolation assumption. In coercing information from
the users, it would be effective for the adversary to in-
terrogate them separately and cross-check the information
elicited. Placed in isolation, a victim knows neither which
other users have been compromised nor what information
they have surrendered. Consequently, each victim has to
assume the worst, i.e., that all the other users are compro-
mised and all their secrets are revealed. He thus has to
independently decide what data he can hide without being
contradicted by other users’ disclosure.

Multi-user encrypting file systems [2, 5, 7] are inadequate
under the victim isolation assumption, as it is not safe for a
user to claim his data to belong to someone else. A solution
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is to use dummy blocks, which should be operated on in
similar ways as encrypted data blocks in order to defend
against multiple snapshot attacks.

3.2 Definition of Deniability

To formalize the threat, an adversary has access to a se-
quence of snapshots S = {s1,s2,...,s7} of the stegfs parti-
tion on the disk, where st is the snapshot at the time of
coercion. Following the victim isolation assumption, the ad-
versary extracts all the passwords from other users (P’) at
the time of attack, and also coerces the victim to reveal his
passwords Py = {p1,p2,...,pt}. The adversary then utilizes
the passwords obtained to decode the information in each
snapshot.

Let H™™™ and H®® denote the hypotheses that an al-
located block blk; is a dummy block and a data block, re-
spectively. Let e denote the evidence on blk; observed from
S, and E = {e} the aggregate evidence across all the disk
blocks. We define the plausible deniability of blk; as follows.

DEFINITION 1. Given the evidence E = {e;} = SUP’UPy,
where S = {s1,s2,...,sT} is a sequence of snapshots taken
by the adversary and P’ UP; is the set of passwords revealed
to the adversary (along with the blocks decrypted with these
passwords), the deniability of an allocated block blk; is the
posterior probability that e was generated by operations on
dummy block blk;:

deny; = Pr(H™™™|e;) (1)

A steganographic file system is said to be a-deniable if
denyi > «

for all blk; that cannot be decrypted with P’ U Py, for any
t > 1 of the user’s choice.

An a-deniable stegfs guarantees that any evidence gath-
ered by an adversary (e.g., disk images across multiple snap-
shots) is caused by dummy data operations with at least a
probability of . This means that a user of the system can
attribute the evidence to dummy operations without reveal-
ing his secret data.

4. DESIGN OF DRSteg

DRSteg is designed to enable a user to selectively disclose
some of his data, while enjoying a-deniability for the rest
of the data that he is withholding from the adversary. We
begin this section with an overview of the DRSteg design,
before presenting the detailed data structures and imple-
mentation considerations.

4.1 Overview of DRSteg

In DRSteg, each user must be able to protect his data
with different passwords, so that he can surrender some data
but not others. To achieve a-deniability for the data blocks
that he is withholding, our approach is to (a) enforce a joint
ownership for allocated disk blocks to prevent the adversary
from associating with certainty a withheld block with any
particular user, and (b) introduce dummy blocks that are
operated on at runtime, so that changes to the withheld
blocks can be plausibly explained by dummy operations.

We realize the joint ownership through a voting protocol.
For every allocated block, m ownership shares are created
and distributed to m users, including the user who requested



for the block (also known as the creator). A block can sub-
sequently be altered or freed only after all the m shares
have been garnered from consenting owners. By following
this policy, we ensure that the block is never deallocated
without the creator’s share, yet the creator of the block is
obfuscated among the share owners. The creator may use
an allocated block either for his data or as a dummy.

For each user, the disk blocks that hold his data are pro-
tected by one of his passwords pi,p2,...,pn. The number
of passwords n is expected to vary from user to user, though
we use the same symbol n across users for brevity. More-
over, the passwords are generated as a hash chain [14], i.e.,
pr = h(pi+1) for a hash function h and 1 < [ < n (as il-
lustrated in the upper part of Figure 2). By supplying any
password p;, 1 < I < n, the user can access all the secret
data at and below level [.

As for those disk blocks that are allocated as dummies,
no bookkeeping information is maintained to track them
directly; otherwise, the adversary can simply demand the
bookkeeping information from the users, and with it discover
the dummy blocks in the file system. Instead, a dummy
block can only be identified through the cooperation of its
owners: Each shareholder of the block checks whether it is
protected with one of his passwords; if not, the block is a
potential dummy — it may indeed be a dummy, or it may
hold the data of some other user. It is freed in the same way
as data blocks, i.e., after gathering m shares.

In the event of an attack, our DRSteg design allows a
coerced user to supply some password p;, 1 <t < n, to the
adversary and deny the existence of the passwords p; for
t < j < n. The data blocks that are protected by p; then
appear to be potential dummies, thus enabling the user to
hide the existence of the data.

4.2 Detailed Design of DRSteg

Drawing on the approaches introduced above, we now put
together the concrete DRSteg design. Each user u keeps
track of a set of blocks A, on which he currently holds a
share. Moreover, each password p; protects a set of data
blocks D, ;. The set difference A, —U;D,,; gives the blocks
that exclude u’s data, and dummy blocks are the allocated
blocks that contain nobody’s data, i.e., Nu(Ay — UiDuy,1).
Figure 2 depicts our detailed design for DRSteg (the en-
cryption is done at the granularity of individual blocks).

High Encrypted Data Ej,  (Dyn)
securiy || Fnepied Data Fy Do) pun = Hash G
level
Low Encrypted Data E, |(Dy,1) Pu, 1 =Hash (py,2)

Other users'
data

User u's view

of the storage: Free Blocks

User u's data | Dummy

~
Appear to u as random bits, and
are part of A, if u holds a share

Always
part of A,

Figure 2: Key management and user view of the
storage
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Whenever a user u requires a disk block blk from the file
system to write data or dummy patterns, a free disk block
is allocated and shares of the block are also created. One
share is given to u, while the remaining shares of blk are
distributed to other users u’, i.e., A, « A, U {blk} and
Ay — Ay U{blk}. If user u encrypts data with his password
pi and stores it in blk, then D, ; < D,; U {blk}.

Any user u may propose the deletion of a block in his A,.
The deletion is effected only after all the users who hold
shares of the block have acquiesced. Obviously, if the block
holds the data of user u’, he would relocate the data before
supporting the deletion. This is to avoid leaving clues for
differentiating between dummy and data blocks.

With DRSteg, user v can surrender any password p, 1 <
t < n and claim that data blocks in A, — Ui<;j<;Dy,; are
not his data. Claiming that data blocks in D, ; for t < j <
n are dummy blocks is plausible since they also appear in
A, —UD,,s; of other users v’ who hold shares of the blocks.

4.2.1 Joint ownership of blocks

We implement the joint ownership of disk blocks through a
voting protocol and two data structures — a set of encrypted
user share boxes (USB) and a global voting table (GVT) in
clear text. A USB is used to track the A, of each user, and
a GVT records the votes surrendered by users. Two other
structures are additionally maintained in clear text in the
storage: a list of the users’ public keys, and a bitmap to
track the allocation status of the disk blocks.

When a user allocates a disk block blkj, he 1) sets the
bit of this block to “1” in the bitmap; 2) creates m shares
and writes them to the corresponding USBs; 3) writes the
encrypted /random data content to the block. The format of
each encrypted share is given as E(Kpub,u, ), an encryption
of ¢ with a user’s public key. The encrypted shares denote
the ownership of this block. A block blk € A, if the share
E(Kpub,u, i) exists in the USB of user u. The m owners of
a block include the creator and m — 1 other users randomly
selected from the public-key list.

Any of the m owners can subsequently initiate the dele-
tion of the block blk by writing ¢ to the global voting table
(GVT) and removing his share from his USB. To support
the deletion, other owners also contribute their shares into
GVT. When the number of accumulated shares of a block
reaches m, this block can be removed from GVT and its
bit in the bitmap is set to “0” (indicating that this block is
free). The share constitution ensures that the block can be
deallocated only when block creator signals his agreement
by surrendering his share to the GVT.

4.2.2  Management of data blocks

In order to provide plausible deniability against multiple-
snapshot attacks, disk blocks that contain data must be
managed carefully so that they leave the same evidence as
operations on dummy blocks.

First, consider the modification of secret data. By com-
paring snapshots, the adversary may discover that the con-
tent of a block changes before all the m shares are added
into GVT. This would never happen to a dummy block ac-
cording to our voting protocol. Therefore, instead of over-
writing data blocks, each user always migrates his updated
content to new blocks, and initiates the deletion of the out-
dated blocks in GVT so that they will be freed in due course.
However, the initiation of the deletion operation is delayed,



in order to break the temporal correlation between the allo-
cation of new blocks and the deallocation of outdated blocks.

Next, consider the case where some user’s data block is
registered for deallocation in GVT by other users. If the
user never concurs, the adversary will suspect that the block
contains data, since deallocation of dummy blocks are sup-
ported readily. To avoid suspicion, the user has to migrate
the content to a fresh disk block, before relinquishing his
share to the old data block.

In real implementations, the block creating operations are
carried out immediately, but the voting (including removing
shares from USB and writing block numbers into GVT) are
delayed. We pass the voting operations to a background user
process that survives beyond user log-off. The background
process repeatedly initiates the deletion of a block in its
pool after sleeping for a random duration. This makes the
operations for data blocks plausible since the creation and
voting could be caused by either creating and freeing dummy
blocks or creating, modifying and freeing data blocks.

4.3 Discussions

4.3.1 Comparing to naive designs

There also exist alternatives in designing a multi-user stegano-

graphic file system. A naive one could simply let each user
manage his own blocks (including data and dummy). Since
dummy blocks are no longer shared, one has to create many
more dummy blocks in order to achieve the same deniabil-
ity compared to our design, when anonymous channels are
used between the users and the storage server. When this
channel is not anonymized, our design still provides similar
security and disk utilization compared to the naive design.
The deniability provided by DRSteg under both scenarios is
analyzed in the next section.

4.3.2  Encryption of the block shares

Another security issue relates to the encryption of the
shares in USB. If the shares are stored in clear text, it will be
straightforward for an adversary to identify who the owners
of any particular block are. By encrypting the shares, the
owners of any block are obfuscated so long as multiple blocks
have been allocated between snapshots. In this way, our
approach safeguards shareholders from being earmarked to
be the next target of coercion.

4.3.3 Organization of the user passwords

The last design issue concerns the organization of the user
passwords. One option is to have only one password in each
account and to give every user multiple accounts. Under
coercion, a user reveals some of his accounts and tries to hide
the remaining ones. However, this simple option fails when
the adversary captures all the users of the system. When
that happens, the adversary can check whether there are m
shares among the surrendered accounts for every allocated
block; if not, there must exist more user accounts. This
is why we choose to allow multiple passwords (for different
security levels) in each user account.

Organizing multiple passwords in a hash chain has been
proposed in other stegfs [4, 10, 16], and its one-way prop-
erty meets our requirements well. Under coercion attack,
the disclosure from surrendering ¢ independent passwords is
the same as giving up the t lowest-level passwords in a hash
chain. Thus, in our system design, the hash chain mecha-
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nism is chosen due to the performance and usability benefits
gained compared to independent passwords.

S. PLAUSIBLE DENIABILITY OF DRSteg

Having introduced the design of DRSteg, we now quantify
the deniability it provides under a spectrum of progressively
challenging attack scenarios. Based on the last and most
demanding scenario, we then show how to operationalize the
DRSteg design so as to sustain the system security above
user-specified deniability thresholds. Table 1 summarizes
the terms and notations which are used in the analysis.

5.1 Analysis of Deniability
We first expand Equation 1.

Pr(ei\H?umzz(;)Pr(H?“mmy) @)

According to our problem formulation in Section 3, the ad-
versary is capable of taking multiple snapshots of the storage
content. He may also augment the snapshots with secrets
that he coerced from one or more users. The following attack
scenarios differ on the amount of secrets thus extracted, and
deserve particular attention in deploying DRSteg. These
scenarios will be further evaluated in Section 6. In the fol-
lowing analysis, we consider the case where the evidence
contains two snapshots. The analysis extends easily to mul-
tiple snapshots. Note that Equation 2 implicitly takes the
frequency of these snapshots into consideration by evaluat-
ing ej, i.e., the more frequently snapshots are taken, the more
information e; would include.

deny; = Pr(H"™™|e;) =

5.1.1 Passive-adversary scenario

In this scenario, the adversary may be curious and has not
resorted to force, or he may not be ready to expose himself
just yet. Thus he only relies on the snapshots collected,
i.e., the evidence E = S. By comparing any two recorded
snapshots (s1, s2), the adversary could observe a lot of user
activities, e.g., new blocks being created, deleted, and etc.

Let us first consider the creation of new blocks. A block
blk; is created between s; and s, if flagi changes from 0 in s;
to1lins,. Let crtdet represent the net number of data blocks
created between s; and sy, and crt™™™ the net number of
dummy blocks created in the same period. ttls,, ttlfz‘”""‘y7
and t’cl‘szata denote, respectively, the total number of allocated
blocks, the total number of dummy blocks, and the total
number of data blocks in s;. Given an evidence that blk; is
newly allocated, the probability that blk; is a dummy block
in s; is calculated with Equation (2) as

tdummy

d
Crtdummy ttls;mmy Crtdata 4 Crtdummy cr

e = g e, W,

This derivation extends to block deletion and other evi-
dence listed in Table 2. Denoting the number of data/dummy
block operations between s; and sy by op®® and op®™™ | the
deniability can be calculated as op®™™™ /(op®? + op?™™),

For an individual user u in DRSteg, let op®* denote the
number of data blocks operated on in U;D,; between s;
and sz, and op®™™ denote the number of dummy blocks
operated on in the system. The deniability that DRSteg
provides for u under this scenario is expressed as

0pdummy
o data +o dummy
Py p

deny,; = (3)

Crtdata + Crtdummy



Notation Explanation

S= {517527...751-}

Snapshots (of the stegfs partitions) taken by the adversary.

Pt = {p17p27"'7pt}

Passwords revealed to the adversary under coercion.

E={a}=SUP UP

Evidence possessed by the adversary.

BLK = {blki}:
sc = {BLK, USB, GVT}

Blocks in the stegfs partition (blk; is the i-th block).
USB = {USB.}: User share boxes (USB, is the USB of user u).
GVT: Global voting table.

blki = <text;, flag;)

texti:  If blkj is dummy, text; contains random bits;
If blk; holds user data, text; = E(p,plaintext;)
flagi: A flag indicating whether blk; has been allocated.

dummy data
Hi ) Hi

Hypothesis that blk; is a dummy/data block in st.

Table 1: Summary of notations used

Evidence

DRSteg operation

flagi changes from 0 to 1 and new shares appear in some USBs

Create blk; as a new dummy or data block

A share of blk; is moved from USB, to GVT

User u votes to delete blk;

flagi changes from 1 to 0, and blk;’s entry is removed from GVT | Delete blk; as enough votes are present in GVT

Some combination of the above

Some combination of the above

Table 2: Evidences and the corresponding DRSteg operations

5.1.2  Anonymous-channel scenario

Once the adversary starts to coerce users, by the victim
isolation assumption in Section 3, one has to assume that all
of the users have been captured and be wary about offering
conflicting information to the adversary. In this scenario, we
consider a victim u who discloses the passwords for up to
level t of his files and attempts to hide his remaining data,
when all the other users are compromised (E =SUP’UPy).
We assume that all the user requests where sent through
an anonymous channel to the storage server, so that the
adversary is not able to trace each request to a specific user.

With all the passwords of every user except u, the adver-
sary not only sees all the data of the other users, he also
uncovers the dummy blocks for which the ownership is lim-
ited to those users. The only outstanding blocks are those
on which u holds a share (A,). Figure 3 illustrates the dis-
tinction between various groups of blocks in the system, and
also the ones used in the calculation of deny, ;.

System view of the storage

15 )
Data belonging to «

Data blocks <=level ¢

belonging to-others

Data > level ¢

s M
Dummy shared with|u

Dummy blocks but/created by others

not shared with

Dummy created by u

! blocks used for calculating denyy i (Ay)

disclosed when other users are compromised

—
|:| disclosed when u reveals pt
[T 1]

disclosed when the server is compromised
and the user-server channel is not anonymized

Figure 3: System view of allocated blocks

Taking into account the organization of the user data into
different password levels n and Py, operations on data blocks
in level ¢t and below are disclosed to the adversary. Let
op‘ff’tla denote the number of data blocks in D, ;, and opd™™
denote the number of dummy blocks recorded in USB,,. The
deniability of a user u (who has revealed p;) is a function of
the undisclosed blocks held by him:

dummy
op;,

data dummy
21 OPLT 4 op

deny,; = (4)

The disclosed passwords do not affect op®™™ in the above
equation. Therefore, a bigger ¢ improves the deniability for
the data of user u being withheld from the adversary. This
is intuitive, since a bigger t means that there is less user
data to be hidden among the fixed pool of dummy blocks.

5.1.3 Worst-case scenario

When the user-server channel is not anonymized and the
storage server is compromised by the adversary, the adver-
sary is able to distinguish the creator from other share hold-
ers by monitoring the requests sent to the server. Under
such a scenario, a user cannot utilize the dummy blocks
that are not created by himself to provide deniability for his
secret data (even if he is one of the owners of these dummy
blocks). This leads to the worst-case deniability deny,; for
DRSteg since op®™™ in Equation 4 only contains dummy

blocks created by user u himself.

5.2 a-deniable DRSteg

‘We now show how to operationalize the dummy manipula-
tion mechanism to secure DRSteg under the worst-case sce-
nario described above. Specifically, we demonstrate how to
manipulate dummy data to maintain the deniability above
a given threshold ar, thus making DRSteg ar-deniable.

5.2.1 Number of Dummy Blocks to Manipulate

dummy

Let 0w,y = op, /op

2. The number of dummy blocks

d
operated on by u, op™™ = 3", opl'T"™ = 3", 0pP X 7y .
) ;



Substituting into Equation (4), we have

>y (op X 1)

zl>t Opia,ﬁa + Zl(c’piaja
In order to ensure that every blk; € A, meets the denia-

bility threshold of a7 no matter which password level user
u chooses to surrender, we need

>0y X o)
D Opia,ga + Zl(OP?an X Ou,l)

Simplifying the above equation, we get

deny,; =

()

X Uu,l)

deny,; = > ar

ar
Ou,l > 6
ey (6)
Since oy, = opi"?my/opiﬁa, Equation (6) implies that to

achieve the target deniability threshold ap, the number of

dummy blocks manipulated must be at least 1f£T times

data

op,’ ;> the number of data operations.

5.2.2  Controlling dummy operations

Having determined the number of dummy blocks to ma-
nipulate, we give the procedures for controlling the dummy
manipulation in DRSteg in order to achieve the deniability
configured by users.

There are three types of operations on the dummy blocks
— creating, deleting and voting — among which dummy cre-
ation is the easiest to control. When a user logs in at security
level I, he configures o; (which is bigger than 1f‘£T ). If z
free blocks are allocated for creating or modifying a secret
file, then after a random delay, the DRSteg client creates
x - 07 dummy blocks to maintain the deniability.

Deletion is more complex because a user does not know
which blocks are really dummy blocks (he can only identify
blocks that are not his data, as illustrated in Figure 2). To
conceal the deletion of x data blocks, the DRSteg client has
to delete x - 0; dummy blocks. This is done by moving the
shares of x - 0; randomly selected blocks in A, — U;Dy,
from USB, to GVT after a random delay. Although some
of these x - 0, blocks may be data blocks of other users,
the respective data owners will turn these (data) blocks into
dummy anyway as explained next.

Now suppose that user u’ logs in, and discovers that a
block blk € A,/ has been put up in GVT for deletion. If blk
does not contain his data, i.e., if blk € (A, — UDyr ), o
will support the deletion by adding his votes on blk in GVT.
If blk is a data block of u’ (i.e., blk € U;D,, ), then v’ has
to migrate the content to a new block before voting for the
deletion. As discussed in Section 4.2, this is to avoid leaving
clues that blk contains user data.

5.2.3  Security Discussions

There are several security concerns relating to dummy ma-
nipulation. First, in our current design, every block opera-
tion is either a direct data operation or the effect of a data
operation. Besides introducing random delays, their associ-
ation could be masked by breaking each of the dummy cre-
ations and block deletions into smaller steps and interleav-
ing them with data block operations. In addition, DRSteg
could initiate dummy operations independently of data op-
erations. These enhancements will be incorporated in future
work.
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Second, the parameter o, is of special interest to the
adversary, who might force the victims to reveal their choices
of oy,. With the o, values, the adversary may estimate
the actual number of data block operations, thus limiting the
victims’ flexibility to attribute as dummy those data blocks
that they are trying to hide. To substantiate his denial in the
event of an attack, DRSteg furnishes each user u with a fake
Uff}‘f at log-out, where ¢ is the password level that the user is
willing to disclose. U';a}f is calculated as the ratio between the
number of blocks claimed to be dummy (including dummy
blocks and hidden data blocks), and the number of revealed
data blocks: ol = (El>t0pff§a + opi“mmy)/Elgtopia’tla.

Another potential security threat is, if the adversary is
able to take snapshots of the storage content with infinitesi-
mal delay, he may be able to distinguish dummy blocks from
data blocks. Troncoso et al. [18] showed that this distinc-
tion is possible because data blocks belonging to the same
file are often accessed one after another, whereas dummy
blocks are accessed individually and are not likely to ex-
hibit the same access pattern. To mitigate against such a
threat, one possible solution is to introduce dummy files into
DRSteg. A dummy file would span several dummy blocks,
which are then accessed sequentially like data blocks. In or-
der to present similar access pattern as data files, dummy
files should also be accessed frequently. Such an improve-
ment in dummy file operations is left for future work.

6. EVALUATION

6.1 Empirical Evaluation on Deniability

To investigate DRSteg’s ability to maintain user-specified
deniability thresholds under multiple-snapshot attacks, we
perform an empirical evaluation by re-playing file operations
logged in a typical office environment. We deployed a logger
to record the file operations (operation type and time) on
the computers of 12 graduate students in our lab. Over 9
days, we recorded more than 50,000 user file operations®.

We begin by mirroring the user files of all 12 computers
in DRSteg, which add up to about 1 Tbyte of data. We
also initialize the same number of dummy blocks, making
the original utilization of data blocks 0.5. The shares for
data and dummy blocks are distributed randomly among
the 12 users. We assume that users are automatically logged
out from the stegfs system after some period of inactivity
(10 minutes in our experiments), and they login again right
before their next observed data operations. For each session,
the user enters the password to one of his security levels [
(randomly chosen by our simulator) and picks a o, value
(chosen to follow a power-law distribution p(c) o L(o)o~¢
assuming that more users will tend to choose lower o values
to minimize overhead). We set ar = 0.4, 0min = 0.7 and
& = 3.0 for all users. The parameters and statistics are
summarized in Table 3.

We use the first two days of logs to warm up DRSteg.
As the remaining seven days of traces are executed, we take
a snapshot of the disk image every 10 minutes. Figure 4
shows the deniability for one of the (randomly chosen) users
by comparing each successive snapshot with the first one.

Figure 4(a) shows the deniability under the passive-adversary

scenario, calculated with Equation 3. The upper graph gives

5We assume that the operating system and software pro-
grams are not installed in the stegfs partition.



[ Parameter | Value || User-log Statistics | Value [[ Simulated DRSteg Statistics | Value |
# of users 12 Total logging time 9 days Initial amt. of data blocks 1011.34 GB
ar 0.4 # of file operations 50,113 Initial amt. of allocated blocks 2022.68 GB
# of security levels 5 Data blocks created 26.613 GB # of user sessions 294
Interval before auto logout | 10 mins || Data blocks deleted 80.069 GB Final amt. of data blocks 970.60 GB
Avg. # of shares per block | 3 Data blocks modified | 160.317 GB || Final amt. of allocated blocks 1995.89 GB

Table 3: Simulation parameters and statistics
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Figure 4: Deniability of DRSteg under different scenarios

the deniability with respect to block creation evidence, while
the lower is for delete operations. As seen from the graphs,
sharing dummy blocks among users enables individual users
to enjoy high deniability.

Next, we examine Figure 4(b) for the anonymous-channel
scenario, which is calculated with Equation 4. Here, the
selected user has revealed up to level ¢ of his passwords
(the lines in the graphs represent different settings of t),
whereas the other users have revealed all their passwords.
Since the selected user can only rely on the operations on
dummy blocks which are recorded in his UMB, the deniabil-
ity is lower than that in the previous scenario. Nevertheless,
DRSteg still manages to achieve high deniability.

Turning to the worst-case scenario where the adversary is
aware of the creator of every block, Figure 4(c) shows the
deniability levels achieved. In this scenario, deniability is
derived solely from operations on the dummy data created
by the user himself, which explains the much reduced deni-
ability. Even so, DRSteg manages to keep the deniability
above the configured threshold of ar = 0.4.

The deniability for the other 11 users are similar to the
results in Figure 4 quantitatively and qualitatively. In par-
ticular, the lowest deniability observed for the worst-case
attack scenario is 0.46. These results affirm the security
property of our proposed DRSteg.

6.2 Implementation and Performance Evalu-
ation

We have implemented DRSteg as a file system module
in parallel with ext3 in Linux kernel 2.6, on the client ma-
chines which communicate with the shared storage through a
server (see Figure 1). The client module manages the blocks
in the shared storage automatically according to the pass-
word entered by the user. This includes creating new data
and dummy blocks (and allocating shares to other owners),
voting blocks for deallocation, etc. We explain below how
the storage is organized by the system and benchmark the
performance of DRSteg.

6.2.1 File system construction

In our DRSteg file system, the (remote) disk storage is
partitioned into blocks of 1 Kbyte in size by default. A
bitmap tracks the allocation status of the blocks: 1 corre-
sponds to an allocated block and 0 a free block. An allocated
block is either a dummy or a data block, both of which ap-
pear to contain random patterns.

To accelerate access to directories and files, DRSteg uses
a designated storage area, called the super block (see Fig-
ure 5), to store inode structures so that they can be located
efficiently. The super block is essentially a mini-DRSteg
system for the addresses of inode roots, and is calved into
fixed-size slots that are capable of holding one address each.
A slot may be a free slot, a dummy slot, or may contain
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Figure 5: Block organization in DRSteg

the encrypted address of an inode root (with redundancy
so that it is distinguishable from random bits upon decryp-
tion). Each password level of a user is allocated one slot.
Since the super block is expected to be only a few Kbytes
in size, it can be scanned quickly to find the inode roots for
each user. The super block has its own bitmap to track slot
allocation, while it shares the same set of user share boxes
and the global voting table with the main file system.

6.2.2 Performance Evaluation

The key parameters of the computing hardware for our
experiments are listed in Table 4, while Table 5 summarizes
the workload parameters and their default settings.

The first experiment is designed to study how well DRSteg

performs. For comparison, we include StegCover, StegRand [4]

and NSteg [16] as baselines. StegCover is configured with 20
cover files (the authors recommended 16 to 100 [4]). For Ste-
gRand, we use a replication factor of 4 to reduce the prob-
ability of data loss [15]. NSteg is set to populate 30% of
the disk with dummy blocks during initialization. We also
include two settings of the native Linux file system (ext3) in
our tests. In the CleanDisk setting, data files are loaded into
a freshly formatted native Linux partition, so that the files
occupy contiguous disk blocks; with file operations translat-
ing to sequential I/Os, CleanDisk gives the best-case tim-
ings. In contrast, results of FragDisk are obtained with
a well-used ext3 partition in which the free space is frag-
mented.

In the first experiment, we configure DRSteg with o, =
0.25, which produces a worst-case deniability of 0.2. For a
given concurrency level, we generate file creation requests
one after another for each user and measure the elapse time.
Figure 6(a) shows the average write time for various file
systems, with the number of concurrent users ranging from
1 to 32. Every performance result is averaged over 1000
observations.

The results show that StegCover is the worst performer;
this is because each file operation translates into disk I/Os
on several cover files. StegRand is also slow because it has
to modify all the replicas. DRSteg and NSteg use a bitmap
to track the status of disk blocks, so they can ensure data
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[ Parameter [ Value |

CPU Intel Duo Core 2.53GHz
RAM 2GB (1GB DDR2-667 x 2)

Hard Disk SATA 7200rpm, 250 GB with 8MB cache
Table 4: Hardware Parameters

Parameter Default Value
Capacity of the test partition | 40 Gbytes
Size of each disk block 1 Kbytes
Number of blocks for each file | 1024
File access pattern Interleaved

Table 5: Workload Parameters

integrity with just one copy of each data file. Consequently,
they are substantially faster than StegCover and StegRand.
They are slower than FragDisk though, because they encrypt
the protected files block by block and spread them across the
disk, resulting in higher fragmentation.

Recall that DRSteg needs to write additional messages
into the UMB’s during block creation and generate dummy
operations dynamically. As the file creation requests in our
experiment are issued one after another with no delay, the
file system is fully loaded, leaving no idle period for DRSteg
to schedule its dummy operations. Thus, the dummy opera-
tions add directly to the write times, and the observed tim-
ings represent the worst-case performance of DRSteg. For
example, with o,; = 0.25 it is roughly 30% slower than
NSteg. This is the cost paid by DRSteg to achieve better
security protection, compared to NSteg which is not able to
relocate its dummy blocks.

In the second experiment, we investigate the performance
of DRSteg under different load conditions. The load con-
dition is determined by various factors, including the o pa-
rameter that controls the amount of dummy operations, the
concurrency level, and the activity level of each user. We
model the activity level after a Poisson process with mean
arrival rate of A block operations per minute. The results
are summarized in Figure 6(b), which plots the average write
time against A for several o-concurrency combinations.

We first consider the impact of A\. For every o-concurrency
combination, DRSteg’s write time is short initially because
there are ample lull periods during which dummy opera-
tions can be scheduled so as to reduce contention with data
operations. Such opportunities diminish with increasing A,
leading to longer write times observed in the figure. Next,
we compare the three o-concurrency combinations with o =
0.25. With the same o and A settings, raising the concur-
rency level introduces more contention between the data and
dummy operations and lengthens the write time. Similarly,
a bigger o generates more dummy operations to cover the
data operations, again resulting in longer write times.

In summary, our experiment demonstrates that DRSteg
is capable of striking a wide range of trade-offs between
deniability and system performance. If high deniability is
required, the file system should be configured with enough
resources to prevent it from becoming overloaded. On the
other hand, to support a heavy workload, we could configure
DRSteg for a lower deniability assurance.

7. CONCLUSION

In this paper, we address the threat to steganographic
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Figure 6: Performance evaluation results

file systems (stegfs) that arises when the underlying stor-
age is untrusted and shared by multiple users. In such sys-
tems, an adversary could obtain and analyze multiple snap-
shots of the storage content to deduce the existence of secret
user data. To counter the threat, we introduce a Dummy-
Relocatable Steganographic (DRSteg) file system that em-
ploys novel techniques to share and relocate dummy data
at runtime. This enables users to surrender only some of
their data, and attribute any unexplained changes across
snapshots to dummy operations. The deniability enjoyed by
users is configurable individually. DRSteg guarantees the
integrity of the protected data, except where users voluntar-
ily overwrite data under duress. A trace-driven simulation
confirms the security of our scheme. Further experiments
on a Linux prototype demonstrate that DRSteg is able to
effectively trade off deniability with system performance.
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