
On the Effectiveness of Software Diversity: A

Systematic Study on Real-World Vulnerabilities

Jin Han, Debin Gao, and Robert H. Deng

School of Information Systems, Singapore Management University
{jin.han.2007,dbgao,robertdeng}@smu.edu.sg

Abstract. Many systems have been introduced to detect software in-
trusions by comparing the outputs and behavior of diverse replicas when
they are processing the same, potentially malicious, input. When these
replicas are constructed using off-the-shelf software products, it is as-
sumed that they are diverse and not compromised simultaneously under
the same attack. In this paper, we analyze vulnerabilities published in
2007 to evaluate the extent to which this assumption is valid. We focus
on vulnerabilities in application software, and show that the majority
of these software products – including those providing the same service
(and therefore multiple software substitutes can be used in a replicated
system to detect intrusions) and those that run on multiple operating
systems (and therefore the same software can be used in a replicated
system with different operating systems to detect intrusions) – either
do not have the same vulnerability or cannot be compromised with the
same exploit. We also find evidence that indicates the use of diversity in
increasing attack tolerance for other software. These results show that
systems utilizing off-the-shelf software products to introduce diversity
are effective in detecting intrusions.

1 Introduction

Software diversity has many advantages over mono-culture in improving sys-
tem security [12, 21]. Linger [16] proposed methods that systematically generate
stochastic diversification in program source to increase system resistance and
survivability. Obfuscation techniques (e.g., instruction-set randomization [2, 15]
and address space randomization [3]) were proposed to safeguard systems against
code-injection attacks and other memory error exploits. N-variant systems [4] ex-
ecute a set of automatically diversified variants on the same inputs, and monitor
their behavior to detect divergence that signals anticipated types of exploits,
against which the variants are diversified.

Instead of artificially introducing diversity, some recent work focused on uti-
lizing existing diverse software for network protection [17] and intrusion de-
tection [8]. Some of these systems (e.g., the HACQIT system [14, 18] and its
successor [22]) employed output voting to monitor outputs from diverse replicas,
while others (e.g., Behavioral Distance [8–10]) monitor the low-level behavior of
the diverse replicas.

An interesting and important assumption made by many of these systems
utilizing off-the-shelf diverse software is that the diverse software is vulnerable
only to different exploits. With this assumption, replicas constructed using di-
verse off-the-shelf software will not be compromised by the same attack. This
is a reasonable assumption because most of the off-the-shelf diverse software
is developed independently by different groups of developers, and so the same
mistake/vulnerability is unlikely to be introduced. However, to the best of our
knowledge, there has not been a systematic analysis to evaluate the extent to
which this assumption is correct. Such analysis also guides users in choosing be-
tween artificially introducing diversity (e.g., instruction-set randomization, ad-
dress space randomization, and N-variant systems) and utilizing off-the-shelf
software products to introduce diversity.

In this paper, we present a systematic analysis on the effectiveness of utilizing
off-the-shelf diverse software for improving system security. In particular, we
evaluate the extent to which different off-the-shelf software suffers from the same
vulnerability and exploit. This is achieved by carefully analyzing over 6,000
vulnerabilities published in the year of 2007.

To get a better idea of what is to be analyzed and how this analysis benefits
systems that utilize off-the-shelf diverse software, consider an example in which
a system uses behavioral distance [8–10] for intrusion detection (see Fig 1). In
this example, a web service is provided by two diverse web servers running on
two diverse operating systems. The same input, which may potentially be an
attack input, is processed by both servers. Similar architectures, e.g., diverse
servers on the same operating system, have also been introduced [14, 18, 22].

IIS Server

on Windows

Apache Server

on Linux

User inputs

(potentially malicious)

Fig. 1. An example (Behavioral Distance) of utilizing off-the-shelf diverse software

This system detects an intrusion when deviations are found in the two replicas
when they are processing the same input. Such deviations may be detected
in server outputs [14, 18, 22] or in the low-level behavior, e.g., system calls [8–
10]. A very important observation is that such deviations occur only if the two
replicas behave differently when processing the same malicious input. The system
assumes that either the two replicas do not have the same vulnerability, or they
cannot be exploited simultaneously with a single attack.

In order to evaluate the extent to which this assumption is valid, several
questions need to be answered:

– Among the large number of vulnerable software products, how many of them
have potential substitutes that provide similar functionality? For those that
are software substitutes of one another, do they have the same vulnerability?
If they do have the same vulnerability, can they be exploited with the same
attack?

– Among the large number of vulnerable software products, how many of them
can run on multiple operating systems? For those that run on multiple op-
erating systems, do vulnerabilities of the software on one operating system
propagate to the same software on a different operating system? If so, can
they be exploited by the same attack when running on different operating
systems?

To the best of our knowledge, there is no closely related work which could
answer these questions. We systematically analyzed more than 6, 000 vulnera-
bilities published in the year of 2007. In summary, our results show that more
than 98.5% of the vulnerable application software products have software sub-
stitutes (and therefore can be used in a replicated system to detect intrusion),
and the majority of them either do not have the same vulnerability, or cannot
be compromised with the same exploit code. In addition, among the application
software products, nearly half are officially supported to run on multiple operat-
ing systems. Although the different operating system distributions of the same
product are likely (more than 80%) to suffer from the same vulnerability, the
attack code is different in most cases. We also found evidence that indicates the
use of diversity in increasing attack tolerance in other categories of vulnerable
software.

It is not the objective of this paper to build systems utilizing software di-
versity or to evaluate how difficult it is to manage such systems. Instead, we
measure the extent to which software diversity could be utilized to increase sys-
tem security in using off-the-shelf software products.

In the rest of this paper, we first present the data source we utilized and
some preliminary analysis (see Section 2). We then focus our analysis on the ap-
plication software vulnerabilities in which we analyzed whether diverse software
products providing the same services could suffer from the same vulnerability
(see Section 3), and whether the same software product running on different
operating systems will suffer from the same vulnerability and exploit (see Sec-
tion 4). In Section 5, we present analysis on other vulnerable software products.
Finally, we conclude in Section 6.

2 Source of Information and Preliminary Analysis

The main source of information we used for our analysis was the NVD/CVE
(National Vulnerability Database/Common Vulnerabilities and Exposures) vul-
nerability database. We analyzed all the vulnerabilities recorded in CVE in the

year of 2007, which consist of 6,427 vulnerability entries1. To obtain detailed
information on the vulnerabilities and the corresponding software products, we
also consulted other sources including SecurityFocus, FrSIRT, CERT, Milw0rm,
Secunia, OSVDB, IBM X-Force, as well as vulnerability advisories, security an-
nouncements, and bug lists from software vendors. After removing 87 entries
that were rejected by CVE, the total number of vulnerabilities that we focused
on was 6,340.

Note that the limited information introduced errors in our analysis. First,
not all vulnerabilities are published. We only analyzed vulnerabilities found and
published in 2007. Second, we may not have found all information on some
published vulnerabilities. This is due to the limited resources we have, although
we did our best in searching various public resources; it might also be the fact
that some information about the vulnerabilities is not publicly available.

Our first step in the analysis was to find whether the vulnerable software
has any substitutes (software products that offer similar functionality). We also
categorized the vulnerabilities into five different types for further analysis.

2.1 Software without substitutes

To implement a replicated system with diverse replicas (e.g., the one shown in
Fig 1), we need to find (at least) two software products that provide the same
service (software substitutes) and/or software products that run on multiple op-
erating systems. If the software product does not have any substitutes and runs
only on a single operating system, then diversity using off-the-shelf software
cannot work and one has to introduce diversity via other artificial means (e.g.,
address space randomization). Therefore, we first analyze all the vulnerable soft-
ware products in the CVE database to see if they have any substitutes.

We find that most software products do have substitutes and those that do
not have mostly fall into one of the following three categories:

– Hardware specific software: This includes hardware drivers and firmware
only provided by corresponding hardware vendors.

– OS specific software: This includes utilities that are specific to an op-
erating system, e.g., Mac Installer, Windows Login window. They are only
provided by the OS vendor.

– Domain specific and customized software: This includes that used in
medical, biological, nuclear and other specific domains. The customized soft-
ware refers to that developed for a specific company, e.g., management soft-
ware that is used in a specific company, ActiveX controls developed and used
for online transactions on a specific web site.

Table 1 shows some examples of software products that do not have substi-
tutes. An interesting observation is that we did not find many vulnerable soft-
ware products from the CVE database that are domain specific or customized.

1 The CVE 2007 database published on April 25, 2008 was used (http://nvd.nist.
gov/download/nvdcve-2007.xml).

Table 1. Examples of software products without substitutes

Vendor Product CVE entry

ATI Display driver CVE-2007-4315
NVIDIA Video driver CVE-2007-3532

Intel 2200BG Wireless driver CVE-2007-0686
HP Help and Support Center CVE-2007-3180
HP Quick Launch Button CVE-2007-6331

Alibaba Alipay ActiveX control CVE-2007-0827
Microgaming Download Helper ActiveX CVE-2007-2177

This does not necessarily mean that these software products do not have vul-
nerabilities. Domain specific and customized software products are used in a
more controlled environment and it is less likely that they are reported in public
vulnerability resources.

2.2 Vulnerable software categorization

Some vulnerabilities exist in application software that runs as user-space pro-
grams on an operating system. Others may exist in scripts that run on top of
another software program. The analysis we performed varies according to the
type of vulnerable software products. Therefore, we first put the vulnerable soft-
ware into different categories.

– Application software: Application software is the most interesting because
it is relatively easy to find the software substitutes. It is usually compiled into
binary format and run as a process of its own in the user space. Word pro-
cessors, web browsers, web servers and computer games are some examples
of application software. It also includes plug-ins, extensions, and add-on’s to
application software, except those for a web server (see the next category).

– Web script modules2: These are light-weighted software modules which
only run on web servers. We put them into a separate category instead of a
sub-category of application software because of the large number of vulner-
abilities in them. Examples include Content Management Systems (CMS),
forums, bulletin boards, and other script modules.

– Operating systems: This category includes the operating system kernel
and utilities that are closely related to the operating system, e.g., Apple
Installer and the login window of Microsoft Windows.

– Languages and libraries: These include programming languages and li-
braries for general programming use, e.g., PNGlib (for decoding the PNG
image) and SMTPlib (for implementing the SMTP protocol).

2 They may be called web applications (e.g., in SANS [5]). We call this category web
script modules, instead, to avoid the misunderstanding that it also contains web
servers and browsers.

– Others: For example, firmware (including Routers, IP phones, hardware
firewalls, etc.), software that runs on mobile phone, video game consoles
(e.g., XBox) and so on.

Fig 2 shows the number of vulnerabilities in each software category and the
corresponding percentage.

Web Script Module
Vulnerabilities

45.6%Application Software
Vulnerabilities

41.4%

Operating System 6.9%

Language & Library 2.7%

Other Vulnerabilities 3.3%

Web Script Module

Application Software

Operating System

Language & Library

Other

2,627

438

173

209

2,893

Fig. 2. Vulnerabilities in different software categories

2.3 Vulnerabilities in application software

As shown in Fig 2, 41.4% of the vulnerabilities found in 2007 are in application
software. We focus our analysis on this category because it contains most of the
commonly used and critical software, and it is usually what an intrusion detection
system tries to protect. Not only that, it is also easy to find substitutes for an
application software product, which makes it a natural candidate for introducing
diversity. This is also the category for which information is best available and
therefore the results of our analysis are most accurate.

The first analysis we did was to find the number of vulnerable application
software products that do not have substitutes. As discussed in Section 2.1,
this is important because one of the two ways of utilizing off-the-shelf software
products to introduce diversity is to use software substitutes (the other is to run
the same software on multiple operating systems). If many vulnerable application
software products do not have any substitutes, then we will have to rely on the
other way of introducing diversity.

We found 1,825 distinct application software products in all the 2,627 appli-
cation software vulnerabilities3, out of which only 25 (1.4%) do not have software

3 A total number of 4,120 different names of software products were found in the
descriptions of these vulnerabilities. Many of them were duplicates with different
naming conventions or different product versions. After eliminating these duplicates,
we found 1,825 distinct software products.

substitutes. Some of the examples were shown in Table 1. This result coincides
with our expectation in view of the highly competitive software industry market.

We have found that most software products in this category have software
substitutes. The next question is whether these software products and their
corresponding substitutes have the same vulnerability or not. In order to do
this analysis, we further classify the application software vulnerabilities (Box 1
in Fig 3) into two sub-categories: vulnerabilities that exist in multiple software
products (Box 2) and vulnerabilities that exist in a single software product
(Box 3).

The results of the classification are obtained by examining the vulnera-
ble product information and the description of each vulnerability in the CVE
database. Fig 3 shows that majority of the vulnerabilities (2037 out of 2627)
exist in only a single software product, which is an evidence in favor of introduc-
ing diversity since the replicas constructed in a replicated system are unlikely to
suffer from the same vulnerability. We look into each of the two categories for
further analysis.

Application Software

Vulnerabilities

Multiple Products

Multiple OS Same Service Different Services

2.

Single Product
3.

5.4.7.

2627 CVE entries

5902037

Single OS

6.

Vulnerabilities that exist in

Vulnerable software

1.

Vulnerable software

runs on providing

Fig. 3. Analysis on application software vulnerabilities

Among the vulnerabilities that exist in multiple software products (Box 2 in
Fig 3), we want to find out whether software products suffering from the same
vulnerability are substitutes of one another (i.e. whether they provide the same
service). This analysis is important because only software products providing
the same service can be used in an intrusion detection system using software
diversity (such as the behavioral distance system shown in Fig 1). If software
programs and their substitutes suffer from the same vulnerability (Box 4), then
such intrusion detection systems will not be effective in detecting intrusions. We
present our detailed analysis for this in Section 3. If multiple software products

– which suffer from the same vulnerability – are not providing the same service
(Box 5), then they are not used simultaneously for constructing the intrusion
detection system and therefore will not affect the effectiveness of diversity using
off-the-shelf software products.

Among those vulnerabilities that exist in a single product (Box 3 in Fig 3),
we want to find out how many of these software products can execute on multiple
operating systems. For those that run on multiple operating systems (Box 7),
it is also important to find out whether their vulnerabilities can be exploited in
the same way when they are running on multiple operating systems. We present
our analysis of these problems in Section 4. If a software product can only run
on a single operating system (Box 6), then it cannot be used in a replicated
system in which replicas are constructed using the different distributions of a
single software product on multiple operating systems.

3 Vulnerabilities in Software Substitutes

As shown in Fig 3, there are 590 entries of vulnerabilities in multiple software
products. Each of these vulnerabilities exists in more than one software prod-
uct, which may or may not provide the same service. In this section, we first
briefly show our method for finding vulnerabilities in software substitutes and
our findings using this method (Section 3.1), and then discuss the attack code
for exploiting the same vulnerability in these software substitutes (Section 3.2).

3.1 Finding vulnerabilities in software substitutes

An interesting observation is that the same vulnerability may be represented
in multiple entries in the CVE database. For example, entries CVE-2007-2761
and CVE-2007-2888 correspond to the same vulnerability (see Table 2). For this
reason, we cannot simply rely on different CVE entries to distinguish different
vulnerabilities.

Different CVE entries that refer to the same vulnerability usually have sim-
ilar descriptions. We use Vector Space Model [19], one of the classical models
in information retrieval, to compare the descriptions for all CVE entries. The
similarity between two vulnerability descriptions is calculated using

sim(d1, d2) =

−→
d1 ·

−→
d2

|
−→
d1| × |

−→
d2|

=

∑t

i=1
wi,1 × wi,2

√

∑t

i=1
w2

i,1 ×
√

∑t

i=1
w2

i,2

where
−→
d1 and

−→
d2 are the descriptions of two vulnerability entries, wi,j is the

weighting for the ith term in description dj which is assigned with the frequency
of the term. The threshold for the similarity score is set to 0.65 by manual
tuning to obtain a good trade-off between the number of false positives and false
negatives.

After the automatic comparison process using Vector Space Model and ad-
ditional manual verification and correction, 410 distinct vulnerabilities are ob-
tained from the 590 vulnerability entries that exist in multiple software products.
We then performed a detailed analysis for each vulnerability and found that 29
of them (which involve 69 CVE entries) fall into the category in which the same
vulnerability exists in multiple software products providing the same services
(software substitutes). Some examples are shown in Table 2.

Table 2. Two examples of the same vulnerability in software substitutes

CVE Entry Description

CVE-2007-2761 Stack-based buffer overflow in MagicISO 5.4 build 239 and earlier
allows remote attackers to execute arbitrary code via a long filename
in a .cue file.

CVE-2007-2888 Stack-based buffer overflow in UltraISO 8.6.2.2011 and earlier allows
user-assisted remote attackers to execute arbitrary code via a long
FILE string (filename) in a .cue file.

CVE-2007-0548 KarjaSoft Sami HTTP Server 2.0.1 allows remote attackers to cause
a denial of service (daemon hang) via a large number of requests
for nonexistent objects.

CVE-2007-3340 BugHunter HTTP SERVER (httpsv.exe) 1.6.2 allows remote at-
tackers to cause a denial of service (application crash) via a large
number of requests for nonexistent pages.

CVE-2007-3398 LiteWEB 2.7 allows remote attackers to cause a denial of service
(hang) via a large number of requests for nonexistent pages.

The result shows that although many vulnerabilities (410) exist in multiple
software products, only a small portion of them (29) exist in multiple software
products that provide the same service. Note that although the Vector Space
Model helped a lot in finding similar descriptions in different vulnerability en-
tries, some manual analysis was needed to obtain the results shown above.

3.2 Exploit Code

In this step of the analysis, we further examine the 29 vulnerabilities that exist in
software products providing the same services. If it happens that these software
products are used to construct replicas in a replicated system (e.g., a behavioral
distance system in Fig 1), then both replicas suffer from the same vulnerability.
We want to find out whether the exploit codes on them are the same. If they
are the same, then both replicas will be compromised by a single attack, and the
intrusion detection system will fail to detect the intrusion.

We manage to find all the exploit codes (on multiple products) for 20 out
of the 29 vulnerabilities. Exploit codes for the rest do not seem to be readily
available to the public. By comparing the exploit codes for each of the 20 vulner-
abilities for all the corresponding software substitutes, we found that the exploit
code is the same across multiple software products for 14 of the 20 vulnerabilities.

It is not surprising that the same vulnerability will be exploited in the same
way, even on different software products. A couple of notes are worth mentioning
though. First, some of these vulnerabilities are about denial of service (DoS)
attacks, which are usually not the type of intrusions a replicated system utilizing
software diversity tries to detect [8, 9]. For example, the same exploit code for
sending a large number of requests for non-existent pages will cause a denial of
service in the three software products in the second group in Table 2. Therefore,
this result is not necessarily a strong evidence against the effectiveness of using
off-the-shelf software to introduce diversity. Second, we have not studied the
effect of using multiple operating systems at this point. In some cases, the exploit
codes may be dependent on the operating system, especially in code injection
attacks (see the next section).

3.3 Summary

To summarize, our analysis of the application software products shows that
22.5% (590 out of 2627) of the vulnerability entries are vulnerabilities in multi-
ple software products, among which 7.1% (29 out of 410) are vulnerabilities in
multiple software products that provide the same service. For those vulnerabili-
ties in multiple software products providing the same service, there are roughly
70% (14 out of 20) chances that the same exploit code can be used to compromise
these software products. Although strictly speaking these three numbers cannot
be multiplied together directly4, they are very good indications that diverse off-
the-shelf application software products can be utilized effectively in replicated
systems to detect intrusion and increase system resilience against software at-
tacks.

4 Software Products running on Multiple Operating

Systems

Having analyzed the branch of vulnerabilities that exist in multiple software
products in Fig 3 in Section 3, we now focus on the branch of vulnerabilities that
exist in a single software product. As shown in Fig 3, this category consists of
the majority of vulnerabilities in application software. Therefore, understanding
how software products in this category can be utilized to introduce diversity is
important. Here we focus on diversity via running software on multiple operating
systems, since the vulnerability exists only on a single product and diversity via
running software substitutes will definitely work. Running the same software on
multiple operating systems is also a cheaper way of introducing diversity due to
its lower cost in managing the replicated system.

In this section, we first briefly show the different operating systems we con-
sidered (Section 4.1), and then examine whether the software products in this

4 Due to the lack of knowledge about the number of vulnerabilities each software has,
the commonality of each software product in terms of the number of requests per
unit time, the consequence of a compromise, and etc.

category run on multiple operating systems (Section 4.2). Finally, similar to our
analysis in Section 3.2, we analyzed the corresponding exploit code in Section 4.3.

4.1 Different operating systems

Fig. 4. Different operating systems

Fig 4 shows the different operating systems that we consider in our analysis.
We classify operating systems into four families: Microsoft Windows, Unix/Unix-
like, Mac and others (see Fig 4). This is mainly due to their different kernels and
binary executable formats (Portable Executable for Windows systems, ELF for
Unix and Unix-like systems, and Mach-O for Mac). Note that it is an important
requirement that these operating systems are diverse so that the same exploit
is unlikely to compromise the same program running on different operating sys-
tems. Although Mac OS X shares part of the kernel code with BSD operating
systems, we show in Section 5.2 that they rarely share common vulnerabilities.

4.2 Software products running on multiple operating systems

Next, we want to find out whether software products in this category (in which
vulnerabilities exist only in one software product) can run on multiple operating
systems. Since a lot of manual work is required in this analysis, we randomly
picked 300 out of the 2, 037 vulnerability entries for analysis. Results are shown
in Fig 5.

Fig 5 shows that more than 54% (163 out of 300) of the software products
we analyzed officially supports only one operating system. However, note that
it is still possible to construct diverse replicas using software substitutes that
provide the same service for them.

Among the rest of the 45.7% software products that are supported to run
on multiple operating systems, 15.3% (21 out of 137) do not share the same
vulnerability among different operating system versions (e.g., the first entry in
Fig 6, in which the vulnerability exists only on the Windows version of Mozilla
Firefox, but not on the Unix and Mac versions). From our analysis, this is mainly

Fig. 5. Vulnerable software on multiple operating systems

due to the fact that many of these vulnerabilities are design errors, which easily
propagate across versions that run on multiple operating systems. One typical
example is the vulnerability entry CVE-2007-5264, in which the client’s infor-
mation is sent unencrypted to the game server (second entry in Fig 6).

CVE Entry Description

CVE-2007-3285 Mozilla Firefox before 2.0.0.5, when run on Windows, allows re-
mote attackers to bypass file type checks and possibly execute
programs via a (1) file:/// or (2) resource:URI with a dan-
gerous extension, followed by a NULL byte (%00) and a safer
extension. (Vulnerability in only one of the OS versions of the
software product)

CVE-2007-5264 Battlefront Dropteam 1.3.3 and earlier sends the client’s online
account name and password unencrypted to the game server.
A remote attacker with administrative privileges could exploit
this vulnerability to obtain user account, product key and other
sensitive information. (Vulnerability in multiple OS versions of
the software product)

Fig. 6. Vulnerabilities in software products that run on multiple OSes

4.3 Exploit Code

Similar to Section 3.2, in this subsection we look into the 116 vulnerabilities
(each of which exists on multiple OS versions of the single software product), to
see whether the same exploit code can be used to compromise the corresponding
software program that executes on multiple operating systems.

We first consider a naive attacker, who is not aware that a replicated system
where the vulnerable software is being executed on multiple operating systems.
We assume that the attacker is trying to exploit a known vulnerability to execute
some attack code, e.g., to overflow a buffer and overwrite a return address in
order to execute a shellcode. There are at least two reasons why such an exploit
is unlikely to succeed.

First, the source of the same software product on different OSes may be
different. This could cause many differences in, e.g., memory layout which is
critical for a successful buffer overflow. For example, calculating time intervals
on Windows usually requires two variables (SYSTEMTIME and FILETIME) and a
conversion between the two, whereas it usually takes only one variable (timeval)
on Linux.

Second, even when the source is exactly the same for different OS distribu-
tions of the same product, the attack code to be executed may be different due
to the different APIs and system calls across different operating systems. It is
highly unlikely that the same machine code can be used on different operat-
ing systems, e.g., to open a shell. The system interface could be different even
across OSes in the same family, e.g., different versions of Microsoft Windows.
Table 3 shows some of the typical system calls and their corresponding system
call numbers on different versions of the Windows operating system.

Table 3. System calls on Windows

System Call NT 2000 XP 2003 Server Vista

NtClose() 0x000f 0x0018 0x0019 0x001b 0x002f

NtOpenFile() 0x004f 0x0064 0x0074 0x007a 0x00b8

NtReadVirtualMemory() 0x0089 0x00a4 0x00ba 0x00c2 0x0102

NtTerminateProcess() 0x00bb 0x00e0 0x0101 0x010a 0x014f

Next, we consider a more sophisticated attack in which the attacker is aware
that a replicated system running the vulnerable software on multiple operating
systems is in use. If the attacker wants to evade the intrusion detection system,
he/she will most likely have to design and implement an exploit code that first
figures out which operating system is running and subsequently execute the
corresponding exploit code (see Algorithm 1).

Note that Algorithm 1 is very different from one in which the attacker knows
the operating system (and its version) to be exploited before sending the at-
tack code. Many attack tools first interact with the vulnerable server to find
out which operating system is running by using operating system fingerprint-
ing techniques [7, 23]. After that, the attack packets specifically designed for the
corresponding operating system are sent to the vulnerable server. This type of
attacks will not work here because 1) the replicated system (e.g., Fig 1) usu-
ally removes any non-determinism in the system, which makes operating system
fingerprinting impossible or inaccurate; 2) the same operating-system-specific

Algorithm 1 Exploiting the same software running on multiple OSes

os ret ← os test();
if is win(os ret) then

win attack code();
else if is unix(os ret) then

unix attack code();
else if is mac(os ret) then

mac attack code();
end if

attack will be duplicated and sent to all replicas, and the attack only compro-
mises the vulnerable replica (the difference of the behaviors of the compromised
and uncompromised replicas makes such operating-system-specific attacks easily
detectable).

There are at least two difficulties in implementing Algorithm 1. One is to
implement os_test() which not only executes on all different operating systems
but returns different outputs when executing on different operating systems. The
other is that such an exploit code, which is at least several times that of the
exploit code for any specific operating system, is usually too long to fit in the
limited buffer available in the vulnerable program. We have not found a real
attack that employs the technique shown in Algorithm 1.

Another observation is that only three cross-OS viruses have been reported in
Kaspersky Lab’s viruslist according to the statement issued by Kaspersky Lab5.
According to Kaspersky Lab, all the three viruses are proof-of-concept malicious
programs written purely with the intention of demonstrating that such viruses
are possible. None of these viruses actually had any practical applications so far.

4.4 Summary

In this section, we analyze the vulnerabilities that exist in a single application
software product. Our analysis shows that:

– 45.7% (137 out of 300) of the vulnerable software products involved in this
category are officially supported on multiple operating systems;

– Among those that are officially supported on multiple operating systems,
84.7% have the vulnerability propagated across multiple OS versions;

– At least two factors (different memory layout and different machine instruc-
tions) make it difficult to construct an exploit that can compromise software
running on multiple operating systems simultaneously. No such practical
attacks have been reported.

These findings show that roughly 50% of the software products are candi-
dates for a replicated system running the same software on multiple operating
systems. Even if the same vulnerability exists on multiple replicas, compromis-
ing them simultaneously remains difficult. However, due to the fact that most of

5 http://www.kaspersky.com/news?id=184875287

these vulnerabilities are shared among the different OS versions of the same soft-
ware, utilizing diverse operating systems is not as effective as utilizing software
substitutes.

5 Vulnerabilities in Other Software Products

In this section, we present our analysis on the other three categories, namely
web script modules, operating systems, language and libraries.

5.1 Web script modules

Software in this category consists of light-weighted products that run on web
servers to provide web-based applications. Examples include forums, bulletin
boards, shopping carts and other script modules. We analyzed the CVE vul-
nerability database and found close to 3, 000 entries that fall into this category.
Some common and well-known types are shown in Table 4.

Table 4. Vulnerabilities in web script modules

Vulnerability Types Number of entries Percentage

Cross-site scripting 714 24.7%
SQL injection 669 23.1%
PHP remote file inclusion 634 21.9%
Directory/Path traversal 267 9.2%
Cross-site request forgery 50 1.7%
Others 559 19.3%

Total 2893 100%

An interesting finding is that most of the vulnerable software in this category
is operating system independent. For example, most PHP modules are deployed
on Apache web servers, which can run on all common operating systems. This
means that we could use diverse operating systems to introduce software di-
versity. However, it is different from the application software we analyzed in
Section 4, since many of the web script modules operate on top of a web server,
and seldom interact with the operating system. If the vulnerable software does
not interact with the operating system, then constructing replicas using diverse
operating systems is not an effective way of introducing diversity because the
exploit code is likely to be the same on different replicas. Therefore, we shift our
focus of analysis to using software substitutes for introducing diversity.

Cross-site scripting (XSS) vulnerabilities Cross-site scripting (XSS) is one
of the most common web script module vulnerabilities in the CVE database.
Attackers exploit this vulnerability by injecting malicious scripts into the output
of an application (usually a web page) which is sent to the client’s web browser.

This script is then executed on the client’s web browser and used to transfer
sensitive data to a third party (i.e., the attacker) [24]. Unlike other types of web
vulnerabilities, XSS vulnerabilities exist and are exploited on the server side but
take effects on the client side. Thus, the protection and prevention mechanisms
are carried out both on the server side [25] and the client side [24].

In most cases, the server-side scripts are vulnerable no matter what operating
systems or web servers on which the scripts run (see an example in Fig 7, the
attack payload is usually some malicious HTML/JavaScript, which is first posted
to the server and then downloaded and run at the client side), thus introducing
diversity on the server side is not effective. However, introducing diversity on the
client side by utilizing diverse browsers is possible. Fig 8 shows two examples of
XSS attack payload in the exploit code as shown in Fig 7.

Description Cross-site scripting vulnerability in picture.php in Advanced Guest-
book 2.4.2 allows remote attackers to inject arbitrary web script or
HTML via the picture parameter.

Exploit code http://www.site.com/picture.php?picture=[attack payload]

Fig. 7. CVE entry CVE-2007-0605 and the corresponding exploit code

[Payload 1] Works for Internet Explorer 6.0 but not Opera 9.0 or Firefox 2.0

<IMG SRC=javascript:location.replace(’http://

evil.com/steal/index.asp?cookies=’+encodeURI(document.cookie))>

[Payload 2] Works for Opera 9.0 but not Internet Explorer 6.0 or Firefox 2.0

<IMG SRC=javascript:document.createElement(’IMG’).setAttribute(’src’,

’http://evil.com/steal/index.asp?cookies=’+encodeURI(document.cookie))>

Fig. 8. XSS attacks that have different impact on browsers

Both XSS attack payloads shown in Fig 8 utilize the HTML tag and
are used for stealing cookies from client machines that access the vulnerable web
site. The exploit codes do not have the same effect on the contemporary browsers
because of the implementation difference. The evidences that XSS attack codes
have different effects on different browsers can also be found from other re-
sources. For example, 68 out of the 110 XSS attack vectors on the XSS Cheat
Sheet (http://ha.ckers.org/xss.html) have different impacts on diverse web
browsers. Note that the application scenario here is slightly different from the
example shown in Fig 1: utilizing diverse browsers to construct the replicated
system is a client-side solution instead of the server-side example shown in Fig 1.
Our results show that by comparing the different impacts on different browsers
when given the same input, many XSS attacks could be detected. Analyzing the
detection rate of such a system is out of the scope of this paper.

SQL injection SQL injection arises when a user input is not correctly or
sufficiently filtered. SQL injection attacks are usually launched through spe-
cially crafted user inputs on web applications that use strings to construct SQL
queries [1]. Although simple SQL statements are constructed exactly the same for
different databases, they are different in constructing sophisticated SQL Injec-
tion exploits. Consider Blind SQL Injection in CVE-2007-1166, CVE-2007-3051,
and many other vulnerable products. The exploit code utilizes the following SQL
statements (simplified version).

IF ((SELECT user) = ′Alice′) SELECT 1 ELSE SELECT 1/0

After receiving this request, the SQL Server will throw a divide-by-zero error
if the current user is not Alice, while the MySQL server will report a parsing

error.6 There has also been research on utilizing diverse off-the-shelf databases
to obtain fault tolerance [11].

Directory traversal Directory traversal (or path traversal) vulnerabilities ap-
pear when web applications do not sufficiently validate or sanitize the user-
supplied file names. It may allow attackers to gain access to directories and files
that reside outside of the directory of web documents.

A notable difference in traversing directories on diverse operating systems is
that Unix and Unix-like systems use “../”, while Windows systems use “..\”.
Not only that, the root directory on Windows uses the “<drive letter>:\”
format, which limits directory traversal to a single partition (e.g., C:\). There
are other differences, e.g., the file organization also varies a lot on different
operating systems.

Remote File Inclusion (RFI) RFI vulnerabilities allow an attacker to in-
clude his own malicious PHP code on a vulnerable web application. RFI attacks
are possible because of several PHP configuration flags that are not carefully
set. This vulnerability could be avoided easily by disabling two global flags in
PHP [6]. Thus, RFI vulnerabilities are not the focus of our study in this paper.

Cross-site Request Forgery (CSRF) By launching a successful CSRF attack
to a user, an adversary is able to initiate arbitrary HTTP requests from that user
to the vulnerable web application [13]. CSRF attacks are usually executed by
causing the victim’s web browsers to create hidden HTTP requests to restricted
resources. Therefore, similar to XSS vulnerabilities, using diverse browsers is a
possible way of detecting CSRF vulnerabilities.

6 Example statement here was tested on SQL Server 2005 and MySQL 5.0. More
resources on different syntax for constructing SQL Injection attacks to different
databases can be found on SQL Injection Cheat Sheet at http://ferruh.mavituna.
com/sql-injection-cheatsheet-oku/

5.2 Operating systems, languages and libraries

For operating system vulnerabilities, we try to find out if diverse operating sys-
tems have the same vulnerability. We find that Mac OS X has some common
vulnerabilities with BSD (e.g., CVE-2007-0229), mainly because the implemen-
tation of Mac OS X kernel shares part of the code of BSD kernel [20]. However,
these common vulnerabilities only constitute 2% (2 out of 98) of all the vulner-
abilities on Mac OS, which indicates that utilizing Unix/Unix-like OS and Mac
OS to construct replicas is effective.

Another observation we have is that different Linux operating systems have
many common vulnerabilities, since they share the same kernel (e.g. CVE-2007-
3104, CVE-2007-6206 and others). These vulnerabilities contribute 64% (71 out
of 111) of all the Linux OS vulnerabilities, which shows that different Linux OS
are not diverse enough. Finally, by examining all the 438 OS vulnerabilities, no
evidence has been found that the same OS vulnerability exists in both Windows
and Unix/Unix-like or in both Windows and Mac operating systems.

Many programming languages and libraries (e.g., Java, PHP, Perl, and etc.)
support multiple operating systems. However, our analysis in the CVE vulner-
ability database shows that many of the vulnerabilities in these products are
platform dependent. For example, CVE-2007-5862 (a Java vulnerability that ex-
ists only in Mac OS X) and CVE-2007-1411 (a PHP buffer overflow vulnerability
that allows local, and possibly remote, attackers to execute arbitrary code via
several vulnerable PHP functions that exists only in Windows7).

5.3 Summary

Although in general, software diversity is not very effective in web applications,
it is successful in detecting exploits of some web script module vulnerabilities by,
for example, utilizing diverse browsers to defend against XSS and CSRF attacks
and utilizing diverse databases to detect SQL Injection attacks.

Most OS vulnerabilities only exist in one OS family, which indicates that di-
versity is useful when utilizing diverse operating systems of different OS families.
Although most language and library vulnerabilities are platform independent,
there are cases in which they exist in only one particular OS version.

6 Conclusion

In this paper, we analyzed the vulnerabilities published in 2007 to evaluate the
effectiveness of two ways of introducing software diversity utilizing off-the-shelf

7 This result is obtained by analyzing NVD/CVE, SecurityFocus and the PHP
Buglists. SecurityFocus gives misleading information which indicates that this vul-
nerability exists on Unix/Unix-like systems (see http://www.securityfocus.com/

bid/22893/info). However, the PHP Bug Info (Bug #40746) shows that it is a prob-
lem with the function dbopen() in the Microsoft ntdblib library, and does not exist
when compiled with FreeTDS version of the dblib library that is used by Unix/Unix-
like systems.

software: one is by utilizing different software products that provide the same
service, and the other is by utilizing the same software product on different
operating systems.

The results show that more than 98.5% of the vulnerable application soft-
ware products have substitutes and the chance that these software substitutes
be compromised by the same attack is very low. Nearly half of the application
software products are officially supported to run on multiple operating systems.
Although the different OS distributions of the same product have more than 80%
of a chance to suffer from the same vulnerability, their attack code is quite differ-
ent. For the web script modules and other types of software, although software
diversity is less effective than that in the application software, some evidence
has been found that there are possible ways to benefit from software diversity
in these categories.

The limitation of our work mainly includes two parts. The first is that a large
amount of manual work has been spent in order to get the accurate statistical
results, which is too costly and time consuming. Other information retrieval and
artificial intelligence techniques could be applied in our future work to speed up
the analysis process. The other limitation is that we have not yet obtained the
statistics for some categories due to the large information search space and the
lack of closely related resources, which is a challenging task that remains to be
done in the future.

References

1. Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan.
Candid: preventing sql injection attacks using dynamic candidate evaluations. In
CCS ’07: Proceedings of the 14th ACM conference on Computer and communica-
tions security, pages 12–24, New York, NY, USA, 2007. ACM.

2. Elena Gabriela Barrantes, David H. Ackley, Trek S. Palmer, Darko Stefanovic, and
Dino Dai Zovi. Randomized instruction set emulation to disrupt binary code in-
jection attacks. In CCS ’03: Proceedings of the 10th ACM conference on Computer
and communications security, pages 281–289, New York, NY, USA, 2003. ACM.

3. Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation: an
efficient approach to combat a board range of memory error exploits. In SSYM’03:
Proceedings of the 12th conference on USENIX Security Symposium, page 8, Berke-
ley, CA, USA, 2003. USENIX Association.

4. B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-variant systems – A secretless framework for se-
curity through diversity. In Proceedings of the 15th USENIX Security Symposium,
August 2006.

5. Rohit Dhamankar. SANS Top-20 Security Risks, 2007. http://www.sans.org/

top20/2007/.

6. Jake Edge. Remote file inclusion vulnerabilities. Octobor 2006. http://lwn.net/
Articles/203904/.

7. Gordon Lyon Fyodor. Remote os detection via tcp/ip stack fingerprinting. Tech-
nical report, INSECURE.ORG, October 1998.

8. Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance for intrusion
detection. In Proceedings of the 8th International Symposium on Recent Advances
in Intrusion Detection (RAID 2005), pages 63–81, 2005.

9. Debin Gao, Michael K. Reiter, and Dawn Song. Behavioral distance measurement
using hidden markov models. In Proceedings of the 9th International Symposium
on Recent Advances in Intrusion Detection (RAID 2006), pages 19–40, 2006.

10. Debin Gao, Michael K. Reiter, and Dawn Song. Beyond output voting: Detecting
compromised replicas using HMM-based behavioral distance. IEEE Transactions
on Dependable and Secure Computing (TDSC), July 2008.

11. Ilir Gashi and Peter Popov. Fault tolerance via diversity for off-the-shelf prod-
ucts: A study with sql database servers. IEEE Transactions on Dependable Secure
Computing, 4(4):280–294, 2007. Member-Lorenzo Strigini.

12. D. Geer, R. Bace, P. Gutmann, P. Metzger, C. P. Pfleeger, J. S. Quarterman, and
B. Schneier. Cyberinsecurity: The cost of monopoly. Technical report, CCIA, 2003.

13. Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing Cross Site
Request Forgery Attacks. In IEEE International Conference on Security and Pri-
vacy for Emerging Areas in Communication Networks (Securecomm), 2006.

14. J. Just, J. Reynolds, L. Clough, M. Danforth, K. Levitt, R. Maglich, and J. Rowe.
Learning unknown attacks - A start. In Proceedings of the 5th International Sym-
posium on Recent Advances in Intrusion Detection (RAID 2002), 2002.

15. Gaurav S. Kc, Angelos D. Keromytis, and Vassilis Prevelakis. Countering code-
injection attacks with instruction-set randomization. In CCS ’03: Proceedings of
the 10th ACM conference on Computer and communications security, pages 272–
280, New York, NY, USA, 2003. ACM.

16. Richard C. Linger. Systematic generation of stochastic diversity as an intrusion
barrier in survivable systems software. In HICSS ’99: Proceedings of the Thirty-
Second Annual Hawaii International Conference on System Sciences-Volume 3,
page 3062, Washington, DC, USA, 1999. IEEE Computer Society.

17. Adam J. O’Donnell and Harish Sethu. On achieving software diversity for improved
network security using distributed coloring algorithms. In CCS ’04: Proceedings
of the 11th ACM conference on Computer and communications security, pages
121–131, New York, NY, USA, 2004. ACM.

18. J. Reynolds, J. Just, E. Lawson, L. Clough, and R. Maglich. The design and imple-
mentation of an intrusion tolerant system. In Proceedings of the 2002 International
Conference on Dependable Systems and Networks (DSN02), 2002.

19. G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Communications of the ACM, 18(11):613–620, 1975.

20. Amit Singh. Mac OS X Internals: A Systems Approach. Addison-Wesley, 2006.
21. Mark Stamp. Risks of monoculture. Communications of the ACM, 47(3):120, 2004.
22. E. Totel, F. Majorczyk, and L. Me. COTS diversity based intrusion detection and

application to web servers. In Proceedings of the 8th International Symposium on
Recent Advances in Intrusion Detection (RAID 2005), 2005.

23. Chris Trowbridge. An overview of remote operating system fingerprinting. Tech-
nical report, The SANS Institute, July 2003.

24. Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Engin Kirda, Christopher
Kruegel, and Giovanni Vigna. Cross-site scripting prevention with dynamic data
tainting and static analysis. In Proceeding of the Network and Distributed System
Security Symposium (NDSS), February 2007.

25. Gary Wassermann and Zhendong Su. Static detection of cross-site scripting vulner-
abilities. In ICSE ’08: Proceedings of the 30th international conference on Software
engineering, pages 171–180, New York, NY, USA, 2008. ACM.

