
https://doi.org/10.1007/s10664-020-09897-6

Scalable online vetting of Android apps for measuring
declaredSDKversions and their consistencywithAPI calls

DaoyuanWu1 ·Debin Gao2 ·David Lo2

Accepted: 11 September 2020
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021

Abstract
Android has been the most popular smartphone system with multiple platform versions
active in the market. To manage the application’s compatibility with one or more platform
versions, Android allows apps to declare the supported platform SDK versions in their man-
ifest files. In this paper, we conduct a systematic study of this modern software mechanism.
Our objective is to measure the current practice of declared SDK versions (which we term
as DSDK versions afterwards) in real apps, and the (in)consistency between DSDK versions
and their host apps’ API calls. To successfully analyze a modern dataset of 22,687 popu-
lar apps (with an average app size of 25MB), we design a scalable approach that operates
on the Android bytecode level and employs a lightweight bytecode search for app analy-
sis. This approach achieves a good performance suitable for online vetting in app markets,
requiring only around 5 seconds to process an app on average. Besides shedding light on the
characteristics of DSDK in the wild, our study quantitatively measures two side effects of
inappropriate DSDK versions: (i) around 35% apps under-set the minimum DSDK versions
and could incur runtime crashes, but fortunately, only 11.3% apps could crash on Android
6.0 and above; (ii) around 2% apps, due to under-claiming the targeted DSDK versions, are
potentially exploitable by remote code execution, and half of them invoke the vulnerable
API via embedded third-party libraries. These results indicate the importance and difficulty
of declaring correct DSDK, and our work can help developers fulfill this goal.

Keywords SDK version · API call · Android fragmentation · App analysis

Communicated by: Paolo Tonella

� Daoyuan Wu
dywu@ie.cuhk.edu.hk

Debin Gao
dbgao@smu.edu.sg

David Lo
davidlo@smu.edu.sg

1 Department of Information Engineering, The Chinese University of Hong Kong,
Hong Kong, Hong Kong

2 School of Information Systems, Singapore Management University, Singapore, Singapore

Empirical Software Engineering (2021) 26: 7

/ Published online: 12 January 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-020-09897-6&domain=pdf
http://orcid.org/0000-0002-3752-0718
mailto: dywu@ie.cuhk.edu.hk
mailto: dbgao@smu.edu.sg
mailto: davidlo@smu.edu.sg


1 Introduction

In recent years, we have witnessed the extraordinary success of Android, a smartphone oper-
ating system owned by Google. At the end of 2013, Android became the best-selling phone
and tablet OS. As of 2015, Android evolved into the largest installed base of all operating
systems. Over these years, Android keeps leading the global smartphone market share at
over 80% (2020). Along with the fast-evolving Android, its fragmentation problem becomes
more and more serious. Although new devices ship with the recent Android versions, there
are still huge amounts of existing devices running old versions of Android (2020).

To better manage the application’s compatibility across multiple platform versions,
Android allows apps to declare the supported platform SDK versions in their so-called
“manifest” app configuration files (manifest afterwards). We term these declared SDK ver-
sions as DSDK versions. The DSDK mechanism is a modern software mechanism with
which, to the best of our knowledge, few systems are equipped until Android. Nevertheless,
it receives little attention so far, and few understandings are known about the effectiveness
of the DSDK mechanism.

In this paper, we aim to conduct a systematic study on the Android DSDK mechanism.
Specifically, our objective is to measure the current practice of DSDK versions in real apps,
and the (in)consistency between DSDK versions and their host apps’ API calls. To make our
measurement results representative, we select popular apps with at least one million installs
each on Google Play as the dataset. More specifically, we have collected a large-scale
dataset with 22,687 popular apps (570.8GB in total, with an average app size of 25MB),
which covers 90.2% of all such apps (both free and paid ones) available on Google Play.
Furthermore, our study utilizes the latest Android API evolution and covers all 28 versions
of Android SDKs or API levels.1

After collecting the dataset and building the API-SDK mapping, we perform a system-
atic DSDK and API call analysis of each individual app. We design our approach scalable
and robust so that it can be readily deployed by online app markets (e.g., Google Play)
to timely notify developers of the DSDK inconsistency in their apps. Given this objective,
dataflow-based analysis is not suitable because existing Android dataflow analyses (notably
FlowDroid (Arzt et al. 2014) and Amandroid (Wei et al. 2014)) are expensive even when
analyzing medium-sized apps, e.g., requiring ∼4 minutes for the 8MB Nextcloud app2 (He
et al. 2018). Moreover, they need to first transform or decompile Android app bytecode into
an intermediate representation (e.g., Soot Jimple or Java bytecode), the process of which is
not fully accurate (Octeau et al. 2012) and often leaves some apps unanalyzable in many
previous studies (Yang et al. 2015; Avdiienko et al. 2015; Mariconti et al. 2017; Pan et al.
2017).

In our approach, we thus operate on the original Android bytecode level and employ a
lightweight bytecode search for app analysis. Specifically, we retrieve DSDK versions and
API calls directly from each app without decoding the manifest file and without transform-
ing app bytecode, which enables robust processing of all 22,687 popular apps. We also
handle multidex (2020), a special Android bytecode mechanism that is often skipped by
prior works but common in modern apps — 5,008 apps in our dataset split their bytecodes
into multiple files. With the correctly extracted app bytecodes, we then search these byte-
code texts to obtain valid API calls that are not guarded by VERSION.SDK INT checking

1The latest Android version at the time of our writing is Android 9 (API level 28).
2https://f-droid.org/en/packages/com.nextcloud.client/

(2021) 26: 7Empir Software EngPage 2 of 327

https://f-droid.org/en/packages/com.nextcloud.client/


(developers can use such if statements to invoke an API only in certain Android platforms)
and are also not in uninvoked third-party libraries. In this way, our approach preserves the
scalability and makes itself suitable for online vetting: the median and average time for
analyzing an app in our dataset is only 4.75s and 5.39s, respectively.

Theoretically, our lightweight approach is less accurate than dataflow-based approaches.
This is because we did not perform (the expensive) flow tracking, and false positives cer-
tainly appear. Fortunately, this limitation would not affect the real usage of our approach,
since in our objective, the approach is used by online app markets for checking apps
uploaded by developers. In other words, we can ask developers to manually check the incon-
sistency warnings in their apps. Moreover, the manual effort required in such checking is
also limited — around 80% apps have fewer than ten potentially inconsistent API calls each.
This indicates that the number of inconsistency warnings per app reported by our bytecode
search is well manageable for developers to perform a one-time manual check. It is worth
noting that this paper is not for bug detection; instead, we aim for a comprehensive study on
the current DSDK practice and its potential impacts. By employing a lightweight yet con-
servative approach, we can maximize the coverage of valid code and thus minimize false
negatives (the dataflow tracking is sometimes too tight and could fail to process complex
implicit flows, e.g., as high as 13 different kinds of implicit flows missed in FlowDroid
according to a systematic assessment recently (Bonett et al. 2018)).

In a nutshell, our study sheds light on the current DSDK practice of app developers and
quantitatively measures two side effects caused by the inconsistency between DSDK ver-
sions (configured by the app developers in the manifest file) and API calls (made by the app
during its execution). Specifically, the compatibility effect occurs when a minimum DSDK
version is set too low so that certain APIs do not even exist in the corresponding lower ver-
sions of Android platforms. The consequence of such compatibility effect can cause runtime
crashes. Additionally, the security effect could also happen when a target DSDK version is
outdated (i.e., a lower version of APIs will be used even when a device runs on later ver-
sions of Android), causing that a vulnerable API is still rendered by the underlying system
when the app runs on higher versions of Android. Next, we present our three sets of mea-
surement results on DSDK versions and their inconsistency with API calls. Note that due to
the conservative nature of our approach, the measurement results reported in this paper rep-
resent an upper bound of all potential DSDK problems (under the condition that common
analysis difficulties, such as native code, are not considered).

Firstly, our measurement reveals some interesting characteristics of declared SDK ver-
sions in the wild. Specifically, nearly all apps define the minSdkVersion attribute, but
4.76% apps still do not claim the targetSdkVersion attribute (in our dataset collected
in late 2018). Fortunately, this percentage has significantly dropped from 16.54% in 2015,
which indicates that DSDK attributes nowadays are more widely adopted in modern apps.
We further find that the minimal platform version most apps support nowadays is Android
4.1, whereas the most popular targeted platform version is Android 8.0. The median version
difference between targetSdkVersion and minSdkVersion also increases from 8
(in our last analysis in 2015) to 9 (currently in the 2018 dataset).

Secondly, in terms of compatibility inconsistency, we find that around 35% apps under-
set the minSdkVersion value, causing them to crash when running on lower versions of
Android platforms. Fortunately, only 11.3% apps could crash on Android 6.0 and above.
We also show that by employing bytecode search for SDK INT checking, our approach
can reduce 17.3% false positives of compatibility inconsistency results. A detailed analysis

(2021) 26: 7Empir Software Eng Page 3 of 32 7



of the Android APIs incurring compatibility inconsistency further reveals that some API
classes, such as view, webkit, and system manager related classes, are commonly misused.

Thirdly, our analysis of security inconsistency shows that around 2% apps set an
outdated targetSdkVersion attribute and also invoke a dangerous WebView API,
making themselves exploitable by remote code execution. In particular, around half of
these vulnerable apps invoke the vulnerable addJavascriptInterface() API only
because of their embedded third-party libraries. Additionally, our bytecode search of the
addJavascriptInterface() invocation also helps reduce 12.2% false positives.

To summarize, we highlight the contributions of this paper as follows:

– (New problem) To the best of our knowledge, we are the first to conduct a systematic
study on DSDK, a modern software mechanism that allows apps to declare the supported
platform SDK versions. We also give the first demystification of the DSDK mechanism
and its two side effects on compatibility and security. In particular, our preliminary
conference version of this work (Wu et al. 2017) has motivated several recent follow-up
works (Li et al. 2018; He et al. 2018) on bug detection.

– (Novel approach) We propose a robust and scalable approach that operates directly on
the original bytecode level and leverages lightweight bytecode search to timely notify
developers of the DSDK inconsistency in their apps. The evaluation using 22,687 popu-
lar apps (with an average app size as large as 25MB) shows that our approach achieves
a good performance suitable for online app vetting, requiring only around 5 seconds to
process an app on average.

– (New findings) Our measurement study obtains three major new findings, including
(i) 4.76% apps still do not claim the targetSdkVersion attribute, although this
percentage has significantly dropped from 2015 to 2018, (ii) around 35% apps under-
set the minimum DSDK versions and could incur runtime crashes, but fortunately, only
11.3% apps could crash on Android 6.0 and above, and (iii) around 2% apps, due to
under-claiming the targeted DSDK versions, are potentially exploitable by remote code
execution, and half of them actually invoke the vulnerable API via embedded third-
party libraries.

In this journal article, we extend our preliminary conference version (Wu et al. 2017)
from the following perspectives: (1) We integrate a lightweight bytecode search into our
approach so that it can be deployed by online app markets to timely notify developers of
the DSDK inconsistency in their apps. We also add support for multidex-based apps and
enhance the detection of uninvoked third-party libraries. (2) We evolve our dataset from an
old set of 23,125 random apps in 2015 to a recent set of 22,687 popular apps in November
2018. We also find a lightweight way to build the latest API-SDK mapping. (3) By running
experiments using the improved approach and dataset, we obtain more representative results
and compare some of our new findings with the previous ones.

2 Demystifying Declared SDK Versions and Their Two Side Effects

In this section, we first demystify declared platform SDK versions in Android apps, and
then explain their two side effects if inappropriate DSDK versions are used. Note that DSDK
is different from the typical compilation SDK, which is only for compiling apps while DSDK
is mainly for interpreting run-time API behaviors.

(2021) 26: 7Empir Software EngPage 4 of 327



2.1 Declared SDK Versions in Android Apps

Listing 1 illustrates how to declare supported platform SDK versions in Android
apps by defining the <uses-sdk> element (2020) in apps’ manifest files (i.e.,
AndroidManifest.xml 2020). These DSDK versions are for the runtime Android sys-
tem to check apps’ compatibility, which is different from the compiling-time SDK for
compiling source codes. The value of each DSDK version is an integer, which represents the
API level of the corresponding SDK. For example, if a developer wants to declare Android
SDK version 5.0, she can set its value to 21. Since each API level has a precise mapping of
the corresponding SDK version (2020), we do not use another term, declared API level, to
represent the same meaning of DSDK throughout this paper.

We explain the three DSDK attributes as follows:

– The minSdkVersion integer specifies the minimum platform API level required for
an app to run. The Android system refuses to install an app if its minSdkVersion
value is greater than the system’s API level. Note that if an app does not declare this
attribute, the system by default assigns the value of “1”, which means that the app can
be installed in all versions of Android.

– The targetSdkVersion integer designates the platform API level that an app
targets at. An important implication of this attribute is that Android adopts backward-
compatible API behaviors of the declared target SDK version, even when an app is
running on a higher version of the Android platform. Android makes such compromised
design because it aims to guarantee the same app behaviors as expected by developers,
even when apps run on newer platforms. It is worth noting that if this attribute is not
set, the minSdkVersion is used.

– The maxSdkVersion integer specifies the maximum platform API level on which
an app can run. However, this attribute is not recommended and already deprecated
since Android 2.1 (API level 7). Modern Android no longer checks or enforces this
attribute during the app installation or re-validation. The only effect is that Google Play
continues to use this attribute as a filter when it presents users a list of applications
available for downloading. Note that if this attribute is not set, it implies no restriction
on the maximum platform API level.

2.2 Two Side Effects of Inappropriate DSDK Versions

Figure 1 illustrates two side effects of inappropriate DSDK versions. We first explain the
used symbols, and then describe the two side effects. As shown in Fig. 1, we can obtain
minSDK , targetSDK , and maxSDK from an app manifest file. Based on the API calls of
an app, we can calculate the minimum and maximum API levels it requires, i.e., minLevel

and maxLevel. Eventually, the app will be deployed to a range of Android platforms
between minSDK and maxSDK .

Listing 1 The syntax for declaring platform SDK versions in Android apps

(2021) 26: 7Empir Software Eng Page 5 of 32 7



Fig. 1 Illustrating the two side effects of inappropriate DSDK versions

2.2.1 Side Effect I: Causing Runtime Crashes

The blue part of Fig. 1 shows two scenarios in which inappropriate DSDK versions could
cause compatibility-related inconsistency. The first scenario is minLevel > minSDK ,
which means a new API is introduced after the minSDK . Consequently, when an app (i)
runs on Android platforms between minSDK and minLevel (marked as block 1 in Fig. 1)
and (ii) executes that new API, it will crash.

We verified this case using theVpnService class’saddDisallowedApplication()
API, which was introduced on Android 5.0 at API level 21. We invoked this API in the
MopEye app (Wu et al. 2017) and ran it on an Android 4.4 device. When the app exe-
cuted the addDisallowedApplication() API, it crashed with the java.lang.
NoSuchMethodError exception.

The second scenario is maxSDK > maxLevel, which suggests that an old API is
removed at the maxLevel. Although it looks like the app would crash when it runs on
Android platforms between maxLevel and maxSDK , it turns out that Google intention-
ally keeps the forward compatibility (by keeping those removed APIs in the framework as
hidden APIs) so that developers have no concern in over-setting maxSdkVersion. As
a result, this scenario would not cause runtime method availability errors. Therefore, in
this paper, we measure only the first scenario of compatibility inconsistency that can cause
runtime crashes.

2.2.2 Side Effect II: Making Apps Vulnerable

The red part of Fig. 1 shows the scenario where inappropriate DSDK versions cause failure
for the app that should be patched. Supposing an app calls an API whose implementation is
vulnerable at targetSDK , even when the app runs on an updated Android system (with API
level > targetSDK), Android still exhibits the compatibility behaviors, i.e., the vulnerable
implementation of the API at targetSDK in this case.

Table 1 summarizes the previously reported vulnerable APIs or components on Android
and their patched versions. They were all wide-spread API-level vulnerabilities on Android,
causing significant security impacts. Although by-default fixes were subsequently provided
at the API level, as shown in Table 1, they often require developers’ cooperation at the
app level (e.g., updating app configuration). Otherwise, vulnerabilities could still appear

(2021) 26: 7Empir Software EngPage 6 of 327



Table 1 Vulnerable APIs or components on Android and their patched versions

Vulnerable APIs/Components Patched SDKs (Android) Changed Behavior

file:// scheme in WebView targetSDK ≥ 16 (4.1+) Fix flawed same-origin policy (Wu
and Chang 2014)

Content Provider component targetSDK ≥ 17 (4.2+) Disable the default exposure (Zhou
and Jiang 2013)

addJavascriptInterface() targetSDK ≥ 17 (4.2+) Stop Java reflection for RCE (Wei
et al. 2014)

PreferenceActivity class targetSDK ≥ 19 (4.4+) Add isValidFragment() for
apps to prevent Fragment Hijacking
(Mutchler et al. 2016)

javascript: in WebView targetSDK ≥ 19 (4.4+) JavaScript URLs are executed in

a separate WebView context (Wu
and Chang 2015)

Context.bindService() targetSDK ≥ 21 (5.0+) Do not accept Implicit Intents (Lei
et al. 2017)

even on patched versions of Android (Lei et al. 2017; Wu et al. 2018). In our context, an
app could be exploited if they invoke the vulnerable APIs without declaring the updated
targetSdkVersion. As a result, analyzing these “old” vulnerabilities is still worthwhile
and could demonstrate the security impact of our study.

In this paper, we specifically measure the vulnerable addJavascriptInterface()
API for two reasons.

First, it has a clear API pattern for inconsistency measurement, while other cases in
Table 1 involve multiple component-level factors that could cause a vulnerability. Sec-
ond, the addJavascriptInterface() API gives rise to the most serious security
issue (Tiwari et al. 2020). By exploiting this API, attackers are able to inject malicious code,
which can cause remote code execution (e.g., stealing sensitive information from a victim
app or SD card). Google later fixed this weakness on Android 4.2 and above. However, if
an app sets the targetSdkVersion lower than 17 and also calls this API, the system
will still render the vulnerable API behavior even when running on Android 4.2+. Such
vulnerable app examples are available at https://sites.google.com/site/androidrce/.

3 Methodology

To understand how DSDK versions are used in the wild and the pervasiveness of the two side
effects in real apps, we propose an automatic approach for a systematic measurement. In
this section, we first present an overview of our methodology, and then its two main analysis
phases.

3.1 Overview

Our main design goal is to help the app markets timely notify developers the DSDK incon-
sistency in their apps. Figure 2 illustrates its overall design, where the app analysis part is
conducted in the online phase. Since our app analysis requires the API-SDK mapping as an
input (for calculating API levels of all valid API calls in an app), we further conduct Android

(2021) 26: 7Empir Software Eng Page 7 of 32 7

https://sites.google.com/site/androidrce/


Fig. 2 The overview of our methodology

API document analysis to build a mapping between each Android API and their correspond-
ing SDK versions (or API levels). As this step is performed only once, we include it in the
offline phase.

The majority of our approach is designated for the online vetting of apps. Specifically,
whenever developers upload a new or updated app to app markets, we first unzip this app
to obtain its bytecode DEX file(s). We then launch manifest analysis to robustly retrieve
an app’s declared SDK versions. For bytecode analysis, the novelty is that we propose a
lightweight bytecode search, instead of heavyweight dataflow analysis, to extract valid API
calls. Finally, we leverage the API-SDK mapping to calculate the range of the corresponding
API levels from API calls, and compare them with the declared SDK versions. The output
is the (in)consistency results between declared SDK versions and API calls.

It is worth noting that multiple-apk analysis (Wu et al. 2017) is no longer needed in
our online analysis, because app markets control all versions of APKs and multiple-apk
mechanism is largely used for different hardware configuration (2020 ).

3.2 Offline Phase: API Document Analysis

In this subsection, we present our offline phase in detail, including both the methodology
and results of API document analysis.

Building the API-SDK mapping There are two potential approaches for building the API-
SDK mapping. One is to analyze Android API documents by parsing a SDK document
called api-versions.xml. A previous API study (McDonnell et al. 2013) and our pre-
liminary study (Wu et al. 2017) leveraged this approach to obtain initial and added APIs,
but they did not cover removed and deprecated APIs because of no such information in
the api-versions.xml file. Hence, they also needed to analyze the HTML files in
the api diff directory, which is unfortunately error-prone (Wu et al. 2017). The other
approach is to directly retrieve the API-SDK mapping from each SDK jar file. However,
different SDK releases under the same API level may have some API differences, and there

(2021) 26: 7Empir Software EngPage 8 of 327



Fig. 3 The distribution of added Android APIs across different SDK versions

are over 600 releases3 for the 28 API levels at the time of our writing. As a result, conflicted
API mappings could be recorded, e.g., marking the Gravity.getAbsoluteGravity
API removed in SDK version 16 and then added back in version 17 (Li et al. 2018).

Fortunately, we find that the first approach now covers all kinds of Android APIs. Specif-
ically, the latest api-versions.xml file released in Android 9 SDK records all added,
removed, and deprecated APIs. Therefore, we can simply parse this file to obtain a complete
API-SDK mapping.

Document analysis results With the accurate API-SDK mapping, we are able to present a
comprehensive evolution of Android APIs across different SDK versions. Figures 3, 4, and 5
plot the distribution of added, removed, and deprecated Android APIs from API level 2
to the very recent API level 29, respectively. Overall, we find that 26,466 (67.8%) out of
the total 39,034 Android APIs are changed. This result indicates that Android APIs evolve
dramatically during the whole evolution.

The biggest change in the Android API evolution is to add 23,542 APIs since level 2,
as shown in Fig. 3. Specifically, Android 7.0 (API level 24) changed most, with 3,627 new
APIs introduced. Android 8.0 (API level 26) and Android 5.0 (API level 21) also introduced
a significant number of new APIs, with 3,218 and 2,581 APIs added, respectively. Other
versions of platforms with a large number of added APIs are Android 3.0 (API level 11),
Android 6.0 (API level 23), and Android 9.0 (API level 28). These new Android APIs
bring a huge risk of compatibility inconsistency, causing runtime crashes on lower versions
of Android. In particular, we notice that over half (13,306, 56.5%) of all the added APIs
are introduced since Android 5.0, giving them a higher chance of causing compatibility
inconsistency than the rest of added APIs.

In contrast, only 4,830 (18.2%) APIs involve the removal change (i.e., removed or dep-
recated; some of them are also introduced after API level 2), with 3,671 APIs deprecated
and 2,902 APIs finally removed. According to Figs. 4 and 5, the biggest removal happens
in Android 5.1 and 6.0 (API level 22 and 23), with 1,359 APIs deprecated and 1,307 APIs
removed afterwards. Moreover, Android 9.0 (API level 28) deprecates 507 APIs and its next

3See tags in https://android.googlesource.com/platform/frameworks/base.git/+refs.

(2021) 26: 7Empir Software Eng Page 9 of 32 7

https://android.googlesource.com/platform/frameworks/base.git/+refs


Fig. 4 The distribution of removed Android APIs across different SDK versions

version (API level 29) removes 504 of them, which suggests that Google plans to remove a
large number of APIs in the release of Android 9.0. Additionally, although Android 4.1 (API
level 16) deprecated 559 APIs, only 222 APIs were removed in the subsequent Android 4.2
and 4.3.

To sum up, 23,542 (60.3%) out of all the 39,034 Android APIs are introduced at a SDK
version other than the initial Android SDK version (i.e., API level 1), which brings a high
risk for developers to under-set the minSdkVersion attribute. On the other hand, much
fewer Android APIs, 7.4% of all APIs, are mapped to a range of SDK versions that have an
upper limit (i.e., deleted in recent SDK versions).

3.3 Online Phase: Android App Analysis

In this subsection, we present three major modules in the online analysis phase, namely
manifest analysis, bytecode search, and consistency comparison in Fig. 2.

Fig. 5 The distribution of deprecated Android APIs across different SDK versions

(2021) 26: 7Empir Software EngPage 10 of 327



3.3.1 Retrieving DSDK Versions via Manifest Analysis

To robustly retrieve DSDK versions from all apps, we propose a new manifest analysis
method that leverages aapt (Android Asset Packaging Tool) (2020) to retrieve DSDK
directly from each app without extracting and decoding the manifest file. This method is
more robust than the traditional apktool-based manifest extraction (2020), which requires
to extract and decode the manifest into a plaintext file. Indeed, our aapt-based approach
can successfully analyze all 22,687 apps, whereas a previous work (Wu et al. 2014) showed
that apktool failed six times in the analysis of just 1K apps. Specifically, we utilize
the dump baging command in aapt to extract the DSDK versions. In this way, we can
directly retrieve the correct DSDK versions without analyzing raw manifest files. There-
fore, even when an app contains old or unreferenced manifest files, it would not affect our
analysis.

In the course of implementation and evaluation, we observed and handled two kinds
of special cases. First, some apps define minSdkVersion multiple times, for which
we only extract the first value. Second, we apply the default rules (see Section 2.1) for
apps without minSdkVersion and targetSdkVersion defined. More specifically,
we set the value of minSdkVersion to 1 if it is not defined, and set the value of
targetSdkVersion (if it is not defined) using the minSdkVersion value.

Besides retrieving DSDK, our manifest analysis also parses all components registered
in the manifest to generate a list of valid components and their root (Java) class names.
This information will be used in the app analysis module to exclude uninvoked third-party
libraries. Specifically, we execute the dump xmltree command in aapt to output all
component information. In the process of parsing these components, we also generate their
root class names according to this rule: if the component class does not overlap with the app
package or <application> name (i.e., this class could be from a third-party library), we
record the entire class name as the root class; otherwise, only the leading two or three name
portions are treated as the root class.

3.3.2 Extracting Valid API Calls via Bytecode Search

The main module in our app analysis is to extract valid API calls. A valid API call is a
call not guarded by the VERSION.SDK INT checking (a mechanism developers can use
to invoke an API only in certain Android platforms). It should also not appear in uninvoked
third-party libraries that are essentially dead code. To guarantee the scalability for online
vetting, we propose a lightweight bytecode search, instead of dataflow-based approaches,
for app analysis, because existing Android dataflow analyses, notably FlowDroid (Arzt et al.
2014) and Amandroid (Wei et al. 2014), are expensive even when analyzing medium-sized
apps, e.g., requiring ∼4 minutes for just an app of size 8MB (He et al. 2018).

Moreover, we operate on the original Android bytecode level without decompiling app
bytecodes, which helps reduce false negatives. This is because the process of transform-
ing or decompiling Android app bytecode into an intermediate representation (usually Java
bytecode) is not fully accurate (Octeau et al. 2012). As a result, many previous studies (Yang
et al. 2015; Avdiienko et al. 2015; Mariconti et al. 2017; Pan et al. 2017) often failed to han-
dle some apps, causing false negatives in their analysis. In contrast, by directly analyzing
app bytecodes, we robustly process all 22,687 popular apps in our dataset. Specifically, we
leverage the dexdump tool (Wu et al. 2019) to translate compressed bytecodes into plain
bytecode texts (similar to using objdump to generate assembly code texts), upon which

(2021) 26: 7Empir Software Eng Page 11 of 32 7



we can then launch bytecode search to extract valid API calls. Note that dexdump, as an
official Android SDK tool, is very robust, and it does not generate intermediate representa-
tion. We also dump (multiple) app bytecodes into a (combined) plaintext (Wu et al. 2019) to
handle multidex (2020), a special bytecode format often skipped by prior works but indeed
common in modern apps — 5,008 apps in our dataset split their bytecodes into multiple
files. Hence, we avoid another common source of false negatives.

In the rest of this subsection, we first introduce the basic bytecode search mechanism
before describing our bytecode search of VERSION.SDK INT checking and vulnerable
API calls in details. We then explain how we exclude uninvoked third-party libraries during
the search process.

The basic bytecode searchmechanism Figure 6 shows a high-level overview of our byte-
code search mechanism. The bytecode text outputted by dexdump is a sequence of code
statements, hierarchically organized by different class and method bodies. In Fig. 6, we
show six method bodies (from method A to method F), where their corresponding class
bodies are omitted for simplicity. As illustrated in the figure, our bytecode search scans

Fig. 6 A high-level overview of
our bytecode search mechanism

(2021) 26: 7Empir Software EngPage 12 of 327



these methods to locate inconsistent API calls (e.g., call site i1 and i2 in method A and C,
respectively) and vulnerable API calls (e.g., call site v1 in method F). We can perform fur-
ther search to determine in which class an interested method is invoked, e.g., Fig. 6 shows
that method F (containing vulnerable API call v1) is called by another method D. Besides
the method search, we can also launch if statement search to locate conditional checking,
e.g., statement c1 that surrounds call site i2 in method C.

Searching VERSION.SDK INT checking As mentioned earlier in this subsection,
developers can use if statements with VERSION.SDK INT checking to invoke an
API only in certain Android platforms, thus avoiding the inconsistency problem.
Listing 2 shows an example of VERSION.SDK INT checking, which invokes the
addDisallowedApplication() API (introduced since API level 21) only on
Android 5.0 and above. To avoid such false positives, our approach must handle the
VERSION.SDK INT checking.

Our strategy is to perform both API call and VERSION.SDK INT checking search and
see whether the two search results overlap in the same method. For example, in Fig. 6,
our bytecode search locates both checking statement c1 and API call i2 in method C.
Since these two search results overlap and API call i2 is invoked below checking state-
ment c1, we are thus confident that this API call has been guarded with a corresponding
VERSION.SDK INT checking. Moreover, according to a recent study (He et al. 2018),
88.65% of the DSDK checking usages directly compare the VERSION.SDK INT vari-
able with a constant Android version number, which makes our bytecode search strategy
appropriate.

Searching vulnerable API calls For a vulnerable API call, we further employ byte-
code search to determine whether it is initialized by app’s own code or library code.
This is particularly important for the vulnerable API studied in this paper, namely
addJavascriptInterface(), because a previous study has shown that over 47% of
top 40 ad libraries create their Javascript Interfaces (Wei et al. 2014). Specifically, after
locating vulnerable API call v1 in method F, we further search the invocation(s) of method
F to check its origin class.

Excluding uninvoked third-party libraries An important issue during our bytecode search
is to exclude uninvoked third-party libraries. To tackle this problem, we cannot simply
employ library detection (e.g., LibScout (Backes et al. 2016) and LibD (Li et al. 2017)) to
exclude all libraries, because this approach also ignores those invoked and thus valid library
code. To keep valid libraries as much as possible while minimizing the false positives raised
by uninvoked libraries, we propose a lightweight yet practical approach that combines both
heuristics-based component analysis and API-based bytecode search. Specifically, we first
conservatively exclude all the code that has no relationship with app component informa-
tion even though some of them might be functionality-supporting code. We achieve this by

Listing 2 An example of VERSION.SDK INT checking

(2021) 26: 7Empir Software Eng Page 13 of 32 7



performing manifest analysis and generating root classes for all registered components, as
mentioned in Section 3.3.1. A class whose code does not appear in any root class is thus rec-
ognized as an uninvoked library or dead code. Note that even for a valid third-party library,
only its registered components will be analyzed because not all code in a library will be
invoked by the main app. Furthermore, when a candidate API call is going to be reported
during the detection phase, we launch one more bytecode search to double check its invo-
cations. Eventually, the identified inconsistency cases will be confirmed by developers, and
as we will discuss in Section 6, the effort of performing such checking is minimal. In this
way, we consider valid third-party libraries but also minimize their potential false positives,
without relying on the expensive dataflow-based analysis that does not meet the objective
of online vetting in app markets.

3.3.3 Calculating API Levels and Comparing Their Consistency with DSDKs

With the extracted API calls, we use the API-SDK mapping to compute the range of corre-
sponding API levels (i.e., from minLevel to maxLevel, as explained in Section 2.2). The
minLevel of an app is the maximum of all its valid API calls’ corresponding minLevel
values (i.e., all correspondingly added SDK versions), while the maxLevel of an app is
the minimum of all valid API calls’ corresponding maxLevel values (i.e., all correspond-
ingly removed SDK versions). If an API is never removed, we set a large flag value (e.g.,
100,000) to represent its maxLevel value.

We then compare the extracted DSDK values with the calculated API levels to obtain the
following two kinds of inconsistency (as previously mentioned in Section 2.2):

– minSdkVersion < minLevel: the minSdkVersion is set too low and the
app would crash when it runs on platform versions between minSdkVersion and
minLevel.

– targetSdkVersion < maxLevel: the targetSdkVersion is set too low and
the app could be updated to the version of maxLevel. If the maxLevel is infinite,
the targetSdkVersion could be adjusted to the latest Android version.

4 Evaluation

Our evaluation aims to answer the following five research questions:

RQ1 What are the current DSDK characteristics in popular real-world apps?
RQ2 How pervasive is the compatibility-related inconsistency in real-world apps?
RQ3 How pervasive is the security-related inconsistency is in real-world apps?
RQ4 How scalable is our inconsistency detection approach?
RQ5 What is the updatablity of the buggy apps? Are they still being maintained?

We choose popular real-world apps, instead of randomly selected apps or open-source
apps, for evaluation, because they are most likely installed by regular users (according
to Google Play installs). Hence, the obtained measurement results can reflect the DSDK
practice in the wild. In this section, we first describe how we collect such a large dataset
in Section 4.1. Based on this dataset, we then answer the five research questions from
Sections 4.2 to 4.6.

(2021) 26: 7Empir Software EngPage 14 of 327



Fig. 7 Bar charts of the distribution of popular apps across different categories

4.1 Dataset

We collect popular apps on Google Play via the AndroZoo repository (Allix et al. 2016),
which contains a total of 3,699,731 unique4 Google Play apps at the time of our crawling on
11 November 2018. However, AndroZoo does not provide the app install information, which
is needed to determine the popularity of each app. To quickly locate popular apps, we lever-
age the top app lists available at https://www.androidrank.org. Specifically, we crawled top
1,000 app in each Google Play category (49 categories in total, including 17 different game
sub-categories), and recorded the package names of apps with over one million installs. This
allows us to obtain a list of 25,144 popular apps, 22,687 (the rest are either paid apps or
not indexed by AndroZoo) of which are available on AndroZoo. We then downloaded these
22,687 apps as our dataset.

To understand the distribution of these popular apps across different app categories, we
plot bar charts in Fig. 7 that cover both 32 non-game app categories and 17 game sub-
categories. In particular, 17 game sub-categories contribute to a total of 10,695 popular
apps, which indicates that game apps are commonly installed by real-world Android users.

4An app is unique if its package name, instead of SHA1/256, is different from other apps.

(2021) 26: 7Empir Software Eng Page 15 of 32 7

https://www.androidrank.org


According to Fig. 7, app categories like “Personalization”, “Tools”, “Photography”, “Enter-
tainment”, and “Music” also produce a large number of popular apps, almost 1K popular
apps per category. We notice that daily-used categories, such as “Communication” and
“Social”, however, do not generate an equivalent number of popular apps, with only 600
to 700 popular apps. This is because in these categories, several very popular apps, e.g.,
WeChat and Facebook, dominate a large portion of the market share. Lastly, it is also rea-
sonable for some unpopular categories, such as “Medical” and “Libraries & Demo”, to have
a limited number of popular apps.

It is also important to measure the distribution of app size in our dataset. Figure 8 plots
the CDF (cumulative distribution function) of the APK file size of each app in our dataset.
We can see that over 40% apps have a size larger than 20MB, and over 20% apps are even
larger than 40MB each. This indicates that a significant portion of modern apps are no
longer small. Indeed, the average app size in our dataset is 25MB, much larger than the
size of apps used in several prior dataflow analysis studies (e.g., apps below 5MB were
evaluated in AppContext (Yang et al. 2015), and the maximum app size in IctApiFinder (He
et al. 2018) is 8MB). Therefore, scalability is a key design objective for our approach, and
we will evaluate it extensively in Section 4.5.

4.2 RQ1: Characteristics of Declared SDK Versions in theWild

In this section, we report a total of four findings regarding RQ1. We also compare these new
findings with our previous results in (Wu et al. 2017), which measured a dataset of 22.7K
apps crawled in 2015.

Finding 1-1 Nearly all apps define the minSdkVersion attribute, but 4.76% apps still
do not claim the targetSdkVersion attribute, although this percentage has signifi-
cantly dropped compared to our prior analysis in 2015. Table 2 shows the number and
percentage of non-defined DSDK attributes in our dataset. We can see that nearly all
apps have defined the minSdkVersion attribute while almost zero app defines the
maxSdkVersion attribute. This result is good because, as we described in Section 2.1,
defining minSdkVersion is necessary while maxSdkVersion is not.

Fig. 8 CDF plot of the APK file
size of each app in our dataset

(2021) 26: 7Empir Software EngPage 16 of 327



Table 2 The number and
percentage of non-defined DSDK
attributes in our dataset

# Non-defined % Non-defined

minSdkVersion 5 0.02%

targetSdkVersion 1,079 4.76%

maxSdkVersion 22,623 99.72%

However, we also notice that 1,079 (4.76%) apps still do not claim the
targetSdkVersion attribute, which causes their targetSdkVersion values be set
to the corresponding minSdkVersion values by default.

Fortunately, the percentage of non-defined targetSdkVersion has dropped signif-
icantly as compared to our prior analysis in 2015, from 16.54% to 4.76%. One important
factor is the popularity of Android Studio in recent years, which has become the de-facto
IDE (integrated development environment) for Android app development. Since Android
Studio by default sets and enforces the minSdkVersion and targetSdkVersion
attributes, the percentage of non-defined targetSdkVersion naturally drops and we
expect that this percentage will further decrease with more apps getting updated.

Finding 1-2 Some targetSdkVersion attributes are set to outlier values. We find that
a total of 45 apps in our dataset declare their targetSdkVersion attributes as outlier
values, which is close to our prior analysis result in 2015 when we encountered 55 such
cases. There are two types of outlier values. The first is that targetSdkVersion is set
to an API level not in the range of released SDKs. At the time of our analysis, the valid API
levels are from 1 to 28 (Android 9.0). However, 12 apps set their targetSdkVersion to
larger than 28, namely 29, 30, and 31. In our prior analysis (Wu et al. 2017), one app even
set its targetSdkVersion value to 10000. This is probably because their developers
want to always target at the latest Android SDK.

The other type of outliers is that the targetSdkVersion value is set to a value lower
than the minSdkVersion value. Normally, targetSdkVersion should be greater
than or equal to minSdkVersion, but 33 apps have negative targetSdkVersion −
minSdkVersion values. This number is almost the same as that in our prior analysis in
2015 (34 apps at that time). In particular, one app (com.leftover.CoinDozer) defines
its targetSdkVersion as 0, although its minSdkVersion value is 8. We believe that
this class of outliers is due to developers’ mistakes in declaring the DSDK attributes.

Finding 1-3 The minimal platform version most apps support is Android 4.1, whereas the
most targeted platform version is Android 8.0. This has dramatically evolved since our
last analysis in 2015. We first study the distribution of minSdkVersion. According to
Fig. 9, the majority (89%) of apps have minSdkVersion lower than or equal to level
16 (Android 4.1), which means that they can run on nearly all (99.5%) Android devices
in the market nowadays (Android: Distribution dashboard 2020). Specifically, the minimal
platform version most apps support is Android 4.1 (level 16), while that in our last analysis
in 2015 was only Android 2.3 (level 9). However, Android 2.3 still ranks in the second
place, with 3,614 apps’ minSdkVersion targeted at. Besides Android 4.1 and 2.3, two
Android 4.0.x (level 14 and 15) platform versions are also commonly defined as apps’
minSdkVersion.

On the other hand, Fig. 10 plots the distribution of targetSdkVersion. We can see
that 80% apps set their targetSdkVersion values to larger than or equal to level 19
(Android 4.4). In particular, the two most targeted platform versions are the most recent

(2021) 26: 7Empir Software Eng Page 17 of 32 7



Fig. 9 Distribution of minSdkVersion

Android 8.0 (level 26) and 8.1 (level 27), while those in our last analysis in 2015 were
Android 4.4 and 5.0. This suggests that modern apps keep pace with the evolution of the
Android operating system. Besides Android 8, Android 6.0 (level 23) and 4.4 (level 19) still
hold a significant portion of apps with the corresponding targetSdkVersion setting.
Moreover, Android 7.0.x (level 24 and 25) and Android 5.0.x (level 21 and 22) also attract
considerable apps being targeted at.

Finding 1-4 The median version difference between targetSdkVersion and
minSdkVersion is 9, while that in our last analysis was 8. This 11% increase indi-
cates that Android apps nowadays need to support more Android platforms. We define
a new metric called lagSdkVersion to measure the version difference between
targetSdkVersion and minSdkVersion, as shown in Eq. 1.

lagSdkVersion = targetSdkVersion − minSdkVersion (1)

Fig. 10 Distribution of targetSdkVersion

(2021) 26: 7Empir Software EngPage 18 of 327



After removing the negative lagSdkVersion values (i.e., outliers mentioned in Finding
1-2), we draw the CDF plot of lagSdkVersion in Fig. 11. We first find that the median
value of lagSdkVersion in our dataset is 9, while that in our last analysis in 2015 was
8. It indicates that Android apps nowadays need to support more Android platforms. This
conclusion is further supported by the percentage of apps that have a lagSdkVersion
value greater than 12. Compared to our prior analysis, this percentage has increased from
5% to 20%, which clearly shows that more and more apps nowadays support a wide range
of Android platforms. On the other hand, the percentage of apps that have the same value
for targetSdkVersion and minSdkVersion has also dropped from 20% in 2015 to
6.4% in 2018.

4.3 RQ2: Inconsistency Results with Compatibility Effect

In this section, we report three important findings regarding RQ2. Besides presenting com-
patibility results as the major finding, we summarize the reduced false positives by our
bytecode search as compared to the prior conference version, and show that the newly added
API classes are common sources of compatibility inconsistency.

Finding 2-1: Around 35% apps under-set the minSdkVersion value, causing them
potentially crash when running on lower versions of Android platforms. Fortunately, only
11.3% apps could crash on Android 6.0 and above. As explained in Section 3.3.3, the
compatibility inconsistency happens if minSdkVersion is less than minLevel. In our
experiments, we thus count the number of API calls that have higher API level than
minSdkVersion in each app, and denote it by minOverNum. The higher value an app’s
minOverNum is, the more likely that this app has the compatibility inconsistency.

Figure 12 shows the CDF plot of minOverNum in each app. We find that 14,363
(63.3%) apps have at least one API call that has higher API level than the correspond-
ing minSdkVersion. To further increase the confidence of our analysis, we count the
8,019 (35.4%) apps that invoke over five different API calls with higher API levels than
corresponding minSdkVersion. Therefore, we estimate that around 35% apps could
crash when running on lower versions of Android platforms because they under-set the
minSdkVersion value.

Fig. 11 CDF plot of
lagSdkVersion

(2021) 26: 7Empir Software Eng Page 19 of 32 7



Fig. 12 CDF plot of
minOverNum in each app

Fortunately, we find that the number of inconsistency warnings per app reported by our
bytecode search is well manageable for developers — 77.8% of the 14,363 apps have fewer
than 10 different inconsistent API calls. It is thus not difficult for developers to perform a
one-time manual check.

Fortunately, apps with compatibility inconsistency issues could crash only on certain
Android platforms. More specifically, they could crash only on versions of platforms
between minSdkVersion and minLevel, as illustrated earlier in Section 2.2. There-
fore, it is necessary to study on which Android platforms those buggy apps could crash,
because nowadays some lower versions of Android hold a limited market share, e.g., only
10.7% for Android lower than 5.0 as of July 2020 (2020). As a result, even if some apps
are buggy with compatibility inconsistency, they cannot trigger the crash on user phones
equipped with recent versions of Android.

Since minLevel is the indicator for maximum versions of Android platforms a buggy
app could crash on, we plot a bar chart of minLevel in Fig. 13 for the 14,363 app detected
with potential compatibility inconsistency. We can see that only 2,566 (11.3% of 22,687)
apps could crash on Android 6.0 and above (via counting apps with minLevel larger than
23), and similarly 1,786 (7.9%) for Android 7.0 and above. In other words, most (11,797 out

Fig. 13 Bar chart of the number of apps in each minLevel

(2021) 26: 7Empir Software EngPage 20 of 327



of 14,363) of potentially buggy apps cannot exhibit their incompatibility bugs on the major-
ity of Android phones that are with 74.8% market share in July 2020 (Android: Distribution
dashboard 2020). Furthermore, 8,990 out of 14,363 apps could crash only on Android lower
than 5.0, which significantly limits the consequences of their incompatibility issues.

Finding 2-2 We find that by employing bytecode search for SDK INT checking, our
approach can reduce 17.3% false positives of compatibility inconsistency results. As men-
tioned in Section 3.3.2, a false positive of compatibility inconsistency could appear if an
API call guarded with SDK INT checking is not detected. Here we measure the number of
such false positives that could be excluded by the bytecode search. We find that our search
of SDK INT checking avoids 3,003 apps from being mistakenly marked with compatibility
inconsistency. Since there are at most 14,363 apps (i.e., true positives) that could crash when
running on lower versions of Android platforms, the percentage of reduced false positives
due to bytecode search is at least 17.3%.

Finding 2-3 A detailed analysis of Android APIs that incur compatibility inconsistency
reveals that some API classes, such as view, webkit, and system manager related classes,
are commonly misused. We further try to understand the common sources of compatibility
inconsistency by analyzing the newly added Android APIs that incur compatibility incon-
sistency in our dataset. We find that 6,454 (27.4% of all 23,542) newly added APIs from
1,138 unique classes cause compatibility inconsistency in at least one app in our dataset. In
particular, 232 (20.4%) API classes affect more than 100 different apps each, making them
the common sources of compatibility inconsistency. Fortunately, half of API classes only
affect fewer than 10 apps each, which suggests that only some portions of API classes are
prone to misuses.

We thus take a closer look at the top 20 Android API classes that cause compatibil-
ity inconsistency. As shown in Fig. 14, all of these classes affect over 1K apps each.
In particular, the JobService class (introduced in Android 5.0, level 21) alone could
cause compatibility inconsistency in around 5K apps. Other commonly misused API classes
include those related to view (e.g., the View, Activity, Context, and Fragment

Fig. 14 Bar chart of the top 20 Android API classes (with “android.” prefix omitted) that incur compati-
bility inconsistency in our dataset

(2021) 26: 7Empir Software Eng Page 21 of 32 7



classes), webkit (e.g., the WebSettings and WebView classes), and system manager
(e.g., the AppOpsManager and UserManager classes). These classes nearly occupy all
the top 20 misused ones.

Case study: Solo VPN To demonstrate the impact of incompatibility DSDK issues, we iden-
tify a problematic app in our dataset and try to make it crash at the runtime. However, it
is non-trivial to dynamically achieve this because a crash point may hide deep in certain
paths or under certain conditions, which is why the previous work, CiD (Li et al. 2018),
requested developers themselves to help validate their detection results (API compatibility
issues in the emdete/tabulae project 2020). To simplify our testing, we intentionally targeted
at the VPN apps based on the observation that some VpnService APIs require Android
5.0 at the API level 21. After testing a few VPN apps in our dataset, we quickly identified
a buggy app, Solo VPN (co.solovpn, version: 1.32), which crashed immediately after
we clicked the “Connect” VPN button on an Android 4.1 device. Figure 15 shows the alert
dialog popped up, stating that “Unfortunately, SoloVPN has stopped”.

4.4 RQ3: Inconsistency Results with Security Effect

In this subsection, we present a total of three findings regarding RQ3.

Finding 3-1 Around 2% apps set an outdated targetSdkVersion attribute and also
invoke a dangerous WebView API, making themselves exploitable by remote code exe-
cution. As explained in Section 2.2.2, we measure inconsistency results with the secu-
rity effect by analyzing each app’s addJavascriptInterface() API call and
the declared targetSdkVersion attribute. In our dataset, 2,791 apps invoke the
addJavascriptInterface() API, which suggests that calling this WebView API is
necessary in many apps. However, 484 of them, i.e., 2.1% of the entire dataset of 22,687

Fig. 15 A case study of the
DSDK issue with incompatibility
effect: Solo VPN

(2021) 26: 7Empir Software EngPage 22 of 327



apps, still set an outdated targetSdkVersion attribute below level 17, making them-
selves not only exploitable on Android lower than 4.2 but also vulnerable on higher versions
of Android platforms. This could be avoided if their targetSdkVersion values are
updated.

Finding 3-2 Our bytecode search of addJavascriptInterface() invocation helps
reduce 12.2% false positives. Recall from Section 3.3.2 that we perform bytecode search to
check whether an addJavascriptInterface() API call is invoked by a valid class.
We find that without such checking, 551 apps can be detected with vulnerable combination
of addJavascriptInterface() and targetSdkVersion. In other words, our
search of addJavascriptInterface() invocation avoids 67 (551 - 484) apps from
being mistakenly marked with security inconsistency. Hence, we conclude that our bytecode
search reduces 12.2% false positives in the context of addJavascriptInterface().

Finding 3-3: Around half of the vulnerable apps invoke the addJavascript
Interface() API only because of their embedded third-party libraries. Our approach
can also determine whether the addJavascriptInterface() API is invoked by app’s
own code or embedded by a third-party library. It turns out that 214 (44.2%) of 484 vul-
nerable apps invoke addJavascriptInterface() only because of their embedded
third-party libraries. In particular, five libraries affect at least 10 vulnerable apps each.
Table 3 lists their class names and the number of apps affected. We can see that the pop-
ular Yahoo Flurry SDK (Integrate Flurry SDK for Android 2020) and OpenFeint Game
SDK (Openfeint is the largest mobile social gaming network in the world 2020) cause some
apps with outdated targetSdkVersion vulnerable.

This finding gives two implications. First, developers must check whether a third-
party library invokes some vulnerable APIs before embedding it into apps. Second, library
producers also need to ensure that certain dangerous APIs are invoked only in safe ver-
sions of Android platforms, because a library can be used in any app with all kinds of
targetSdkVersion values.

Case study: Exsoul Browser To demonstrate the impact of insecure DSDK issues, we try
to exploit a problematic app in our dataset. To exploit addJavascript Interface
vulnerabilities, an adversary needs to inject a piece of malicious Javascript code into a
vulnerable WebView-based interface in the victim app. He or she could achieve this by
either intercepting the HTTP traffic via a Man-In-The-Middle proxy or tricking victim
users to directly browse a malicious website. We chose the second more convenient way
and directly targeted at the browser apps in our dataset for tests. There was only one
browser app, Exsoul Browser (com.exsoul), reported with DSDK security problems.

Table 3 The top five library classes that introduce addJavascriptInterface() API call in vulnerable
apps and the number of apps affected

Library Class # Vulnerable Apps

Lcom/flurry/android/CatalogActivity; 41

Lcom/openfeint/internal/ui/NativeBrowser; 30

Lcom/doodlemobile/gamecenter/moregames/MoreGamesActivity; 19

Lcom/gau/go/launcherex/theme/classic/FullScreenAdWebPage; 17

Lcom/amazon/ags/html5/overlay/GameCircleUserInterface; 13

(2021) 26: 7Empir Software Eng Page 23 of 32 7



We used it to browse a demonstration exploit website that we prepared before, http://
www4.comp.polyu.edu.hk/∼appsec/about/rceNew.html, which would output “Has RCE
Vulnerability” if the tested browsing interface is vulnerable. As shown in Fig. 16, we
successfully validate the addJavascriptInterface vulnerability in Exsoul Browser
on an Android 4.1 device. We also find that Exsoul Browser exposed a Javascript interface
named “android”, which allows a malicious website to execute arbitrary commands by
simply invoking this Javascript code: android.getClass().forName("java.
lang.Runtime").getMethod("getRuntime",null).invoke(null,
null).exec(cmdArgs).

4.5 RQ4: PerformanceMetrics of Our Approach

In this section, we evaluate performance metrics of our approach to answer RQ4.

Finding 4-1 Our approach achieves good scalability with an average time of 5.39s and the
analysis time of 90% apps in less than 10 seconds. This makes our approach suitable for
online vetting. In Fig. 17, we present CDF plot of the amount of time required for our
approach to analyze each app. We can see that more than 50% apps can be analyzed in less
than five seconds each, with the median time of 4.75s. The average analysis time of all the
22,687 apps is only 5.39s.

These results indicate that our approach achieves good scalability, therefore suitable for
online vetting. App markets can deploy our approach to timely notify developers the DSDK
inconsistency in their apps.

In contrast, dataflow-based approaches (Li et al. 2018) (He et al. 2018) suffer from the
scalability problem. Specifically, CiD (Li et al. 2018) failed to analyze 387 apps (out of a
dataset of 2,000 apps) due to timeouts and bugs. This 19.4% timeout or failure rate makes
it infeasible for online vetting, let alone performance statistics were also not clear for those
successfully analyzed. On the other hand, IctApiFinder (He et al. 2018) takes 3 minutes and
45 seconds to analyze only an app of 8MB (the app is available via historical versions on
https://f-droid.org/en/packages/com.nextcloud.client/), a size much smaller than the average
size (25MB) of our dataset. This suggests that IctApiFinder is impractical to perform online
vetting of a modern app dataset from Google Play (all apps evaluated by IctApiFinder were
open-source apps from the F-Droid website).

Finding 4-2 A further correlation analysis between analysis time and app size shows that
the performance of our approach is approximately in a linear relationship with DEX file size

Fig. 16 A case study of the DSDK
issue with security
effect: Exsoul Browser

(2021) 26: 7Empir Software EngPage 24 of 327

http://www4.comp.polyu.edu.hk/~appsec/about/rceNew.html
http://www4.comp.polyu.edu.hk/~appsec/about/rceNew.html
https://f-droid.org/en/packages/com.nextcloud.client/


Fig. 17 CDF plot of the amount
of time required for our approach
to analyze each app

of the app. We find that the performance of our approach is always under control regardless
of app size. This can be evaluated by performing a correlation analysis between analysis
time and app size. In Fig. 18, we draw a scatter plot of the relationship between analysis
time and the size of DEX file of the app (APK file contains both bytecode and resource files
while DEX file is only for bytecode). According to this figure, the analysis time and DEX
file size are approximately in a linear relationship, at the rate of around 30 seconds for a
40MB DEX file (note that we count the file size of multiple DEX files if any). There are
some outliers of small apps with more analysis time (e.g., five apps under 20MB exceeding
30s), which is largely because these apps involve much more vulnerable API calls to search.
On the other hand, the outliers of large apps with less analysis time is due to unused third-
party libraries embedded. Overall, the linear relationship between analysis time and app size
indicates that our approach can achieve good performance even with large apps.

4.6 RQ5: The Updatability of The Buggy Apps

In this subsection, we continue to understand the updatability of apps that were measured
with DSDK issues in our dataset, i.e., whether they are still maintained by their developers.
This is important because compared with the updatable apps that could eventually address
their DSDK issues via the app updates, outdated apps have no maintainers to periodically
update and fix their DSDK problems. To study to what extent this problem is, we use 8,359
unique apps (8,019 incompatible apps and 484 vulnerable apps) that were reported with
potential DSDK problems in Sections 4.3 and 4.4 for the analysis. Since our dataset was
crawled in November 2018, we collected the latest release date of those buggy apps on
Google Play in early December 2019. We believe that this one-year time frame allows us to
test the app updatability by analyzing whether apps have been updated in 2019 or not. We
show our finding in the next paragraph.

Finding 5 Around 20% of the 8,359 buggy apps were never updated in 2019, and 13.7%
have been deprecated from Google Play, causing a total of 33.7% apps outdated. Figure 19
shows a bar chart of the distribution of apps that were measured with DSDK issues in our
dataset and their latest release years on Google Play. According to this figure, 5,539 (66.3%)
apps have been updated at least once in 2019, which allows their developers to upgrade

(2021) 26: 7Empir Software Eng Page 25 of 32 7



Fig. 18 Scatter plot of the
relationship between analysis
time and DEX size

DSDK versions to fix their DSDK problems. However, there are still one third of the mea-
sured apps not updatable. Specifically, the latest release years of 1,674 (20%) apps have
been 2018, 2017, 2016, and even before 2015. Besides these “old” apps, we find that 1,146
(13.7%) apps are even deprecated from Google Play for various reasons (e.g., being taken
down by developer themselves or violating the advertisement policy on Google Play). No
matter for what reasons, they are no longer on Google Play due to no further maintenance,
whereas their previously downloaded versions could still be in user phones. Both old and
deprecated apps incur a large number of outdated apps in the wild, with a total of 33.7%
in our dataset. Therefore, it is worthwhile for researchers to further develop techniques for
automatically fixing DSDK issues in those outdated apps.

5 Implications

In this section, we further present two implications on the qualitative analysis of identified
DSDK problems and actionable countermeasures for developers.

Implication 1 Android’s original design of the DSDK mechanism, despite the good inten-
tion, does not satisfy the expectation of developers’ real usage. One major problem is that

Fig. 19 Bar chart of the
distribution of apps that were
measured with DSDK issues in
our dataset and their latest
release years on Google Play

(2021) 26: 7Empir Software EngPage 26 of 327



it is difficult to evolve the DSDK versions correctly when apps are updated with new or
deprecated APIs. The original DSDK design is a static mechanism, and there was no auto-
matic mechanism to dynamically update the outdated DSDK versions. However, quite a
number of apps are updated frequently, e.g., 1,448 of the top 10,713 apps studied in 2014
were updated on a bi-weekly basis or even more frequently (McIlroy et al. 2016). In this
way, it is challenging for developers to maintain the DSDK versions while they are already
busy with the functionality update. Moreover, the addJavascriptInterface() vul-
nerabilities reported in Section 4.4 indicate that there is a semantic gap between the
targetSdkVersion design and developers’ understanding. Indeed, it is somehow con-
fusing that lower versions of API behaviors would be used even when an app is running
on a higher version of the Android platform (see Section 2). To our knowledge, this is not
the first case where a misunderstanding between Android’s design and developers’ knowl-
edge happens. Another notable example is that Android once by default exported all content
provider components that have no android:exported attribute defined, which caused
a large number of vulnerable apps (Zhou and Jiang 2013) since developers did not expect
their content provider components to be exported.

It is worth noting that this implication is only our plausible conjecture. Based on the fac-
tual analysis results reported in Section 4, other conjectures could also be possible. However,
no matter what the causes are from the developers’ perspective, the consequences remain
the same and significant.

Implication 2 To mitigate the DSDK problems, the Android community could take counter-
measures from different levels. We list the following three actionable countermeasures that
can be adopted by different stakeholders:

– Google Android could provide better IDE (integrated development environment) to
help developers check DSDK versions before uploading their apps to the markets. Such
checking is ideally automatic and should launch whenever there are new changes in
apps. We have seen a good trend in the recent Android Studio IDE, which performs
more user-friendly DSDK checking than its predecessor, i.e., the Android Lint plugin in
Eclipse.

– The app markets can deploy our approach to perform a quick and mandatory checking
of each uploaded app. The suspicious DSDK conflicts and recommendations need to be
either approved or dismissed. In this way, we can guarantee that developers are at least
aware of potential DSDK problems in their apps.

– As the last line of defense, end-user Android devices can dynamically upgrade DSDK
versions in victim apps or enforce mandatory access control (Wu et al. 2018) so that
they are no longer incompatible or vulnerable at the operating system level. This is
especially important for the apps no longer maintained (see Section 4.6).

6 Threats To Validity

In this section, we summarize some major threats to the validity of our study.
Firstly, same as typical Android static analysis, our approach does not handle Java reflec-

tion, dynamic code loading, native code, and complicated code obfuscation. However, some
apps may employ these mechanisms to access certain Android APIs. If one such API
call has inconsistency issues, a false negative would appear. Since these code protection

(2021) 26: 7Empir Software Eng Page 27 of 32 7



mechanisms are usually used in malware, our statistical results of popular apps will be less
affected and we will consider these mechanisms in our future work.

Secondly, although our bytecode search in Section 3.3.2 has minimized false positives
caused by VERSION.SDK INT checking and uninvoked third-party libraries, it is theoret-
ically less accurate than dataflow-based approaches. Fortunately, in our deployment model,
we can rely on developers to manually check and correct inconsistency reported by our
approach. Moreover, as evidenced in Section 4.3, the manual effort required in such check-
ing is also limited — around 80% apps are reported with fewer than ten inconsistent API
calls each, which is manageable for developers to perform a one-time manual check. Due
to this limitation, the measurement results reported in this paper represent an upper bound
of all potential DSDK problems (under the condition that the common analysis difficulties
above are not considered). This satisfies our objective of conducting a comprehensive DSDK
study, whereas it is not suitable for bug detection.

Thirdly, the consistency detection in this paper focuses on changed APIs, but there are
also added and removed Java/Android fields during the SDK evolution. To build the map-
ping between fields and SDK versions, we found that we can leverage the same document
analysis method in Section 3.2, because the api-versions.xml file also records added,
removed, and deprecated fields in all Android classes. By inputting this mapping to our app
analysis, we can extend our consistency detection to evolved Android fields as well in our
future work.

Lastly, although we have updated the original 2015 dataset with a recent dataset crawled
in November 2018 and further checked its updatability in December 2019, we are not able to
keep updating it. As a result, the findings reported in this paper may not represent the latest
scenarios. We invite other researchers to replicate our findings on more recent datasets.

7 RelatedWork

In this section, we summarize some related research on declared SDK versions, Android
APIs, and Android app static analysis.

7.1 Research on Declared SDK Versions

To the best of our knowledge, there were no systematic studies on declared SDK ver-
sions previously, except for some specific studies on the targetSdkVersion or
minSdkVersion attributes in different scenarios. Notably, Wu and Chang (2014) showed
that due to using outdated targetSdkVersion attributes, many Android browser apps
were vulnerable to file:// vulnerabilities. They further demonstrated more security con-
sequences caused by outdated targetSdkVersion attributes (Wu and Chang 2015).
Following this line of research, Mutchler et al. (2016) conducted a large-scale measure-
ment of multiple vulnerabilities that are affected by the fragmented targetSdkVersion
attributes. Wei et al. (2016) also studied Android fragmentation with the focus on com-
patibility issues. In particular, our preliminary conference version of this work (Wu et al.
2017) has motivated three recent follow-up works (Li et al. 2018; He et al. 2018; Scalabrino
et al. 2019) on detecting compatibility issues caused by inappropriate minSdkVersion
attributes. Compared to all these works, our study is the first systematic work on measuring
all kinds of DSDK versions and their (in)consistency with API calls.

(2021) 26: 7Empir Software EngPage 28 of 327



7.2 Android API Studies

Besides DSDK and fragmentation, our paper is also related to prior studies on Android
APIs or SDKs. Among these studies, the work performed by McDonnell et al. (2013) is
the closest to our paper. They also studied the Android API evolution but focused on how
client apps follow Android API changes. In contrast, our focus is the consistency between
apps’ DSDK and API calls. Other related works have studied the correlation between apps’
API change and their success (Linares-Vásquez et al. 2013), the deprecated API usage in
Java-based systems (Brito et al. 2016), the inaccessible APIs in Android framework and
their usage in third-party apps (Li et al. 2016), and the Android Alarm API usage and their
impacts to network latency (Almeida et al. 2016). In particular, the work conducted by
Almeida et al. (2016) analyzed targetSdkVersion in the apps that invoke Alarm APIs.
Additionally, several security papers analyzed the mappings between Android APIs and
their permissions (Felt et al. 2011; Au et al. 2012; Backes et al. 2016).

7.3 Android App Static Analysis

A large number of Android studies have leveraged static analysis in many applications
over past years. The major methodology can be roughly classified into control-flow
based reachability analysis and dataflow-based taint analysis. For the reachability analy-
sis, RiskRanker (Grace et al. 2012) and Woodpecker (Grace et al. 2012) are two pioneer
representative works in the domains of malware detection and vulnerability discovery,
respectively. They tested the reachability from entry points to sink APIs. In contrast, more
prior works employed dataflow analysis to taint the propagation flows of an interested data
variable. FlowDroid (Arzt et al. 2014), Amandroid (Wei et al. 2014), DroidSafe (Gordon
et al. 2015), and HornDroid (Calzavara et al. 2016) are representative works in this research
direction. In particular, FlowDroid and Amandroid have been used or customized in many
follow-up static analysis tools (e.g., Yang et al. 2015; Avdiienko et al. 2015; Shao et al.
2016; Jia et al. 2017; He et al. 2018). One common thing between reachability analysis and
dataflow analysis is that they both require to generate an app call graph, the precision of
which affects the entire analysis accuracy. However, generating a high-precision call graph
requires expensive pointer analysis (Wei et al. 2014), and the scalability concern is why we
proposed lightweight bytecode search for our online vetting of API-SDK inconsistency in
this paper.

8 Conclusion and FutureWork

In this paper, we conducted a systematic study of declared SDK versions in Android apps, a
modern software mechanism that received little attention. We measured the current practice
of declared SDK versions or DSDK versions in a large set of 22,687 modern apps and the
inconsistency between DSDK versions and their host apps’ API calls. To facilitate the analy-
sis that can be readily deployed by app markets for online vetting, we proposed a robust and
scalable approach that operates on the Android bytecode level and employs a lightweight
bytecode search for app analysis. We have obtained some interesting new findings, includ-
ing (i) 4.76% apps do not claim the targeted DSDK versions, although this percentage has
significantly dropped over recent three years, (ii) around 35% apps under-set the minimum
DSDK versions and could incur runtime crashes, but fortunately, only 11.3% apps could

(2021) 26: 7Empir Software Eng Page 29 of 32 7



crash on Android 6.0 and above, and (iii) around 2% apps, due to under-claiming the tar-
geted DSDK versions, are potentially exploitable by remote code execution, and half of them
invoke the vulnerable API via embedded third-party libraries. In the future, we plan to con-
duct more DSDK case studies and report buggy cases to app developers and markets for
fixes, and further improve our approach to mitigate some threats to validity.

Acknowledgements We thank editors and all the reviewers for their valuable comments and helpful
suggestions. This research/project is supported by the Singapore National Research Foundation under the
National Satellite of Excellence in Mobile Systems Security and Cloud Security (NRF2018NCRNSOE004-
0001) and partially supported by a direct grant (ref. no. 4055127) from The Chinese University of Hong
Kong.

References

aapt: Android Asset Packaging Tool (2020) http://elinux.org/Android aapt
The AndroidManifest.xml file (2020) http://developer.android.com/guide/topics/manifest/manifest-intro.

html
API compatibility issues in the emdete/tabulae project (2020) https://github.com/emdete/tabulae/issues/12
apktool (2020) https://ibotpeaches.github.io/Apktool/
Enable multidex for apps with over 64K methods (2020) https://developer.android.com/studio/build/multidex
IDC: Smartphone Market Share (2020) https://www.idc.com/promo/smartphone-market-share/os
Integrate Flurry SDK for Android (2020) https://developer.yahoo.com/flurry/docs/integrateflurry/android/
Multiple APK support - Android Developers (2020 ) https://developer.android.com/google/play/publishing/

multiple-apks
Openfeint is the largest mobile social gaming network in the world (2020) http://www.openfeint.com/
The uses-sdk manifest element (2020) http://developer.android.com/guide/topics/manifest/uses-sdk-element.

html
Allix K, Bissyandė T. F., Klein J, Traon Y (2016) AndroZoo: Collecting millions of Android apps for the

research community. In: Proceedings of the MSR
Almeida M, Bilal M, Blackburn J, Papagiannaki K (2016) An empirical study of Android alarm usage for

application scheduling. In: Proceedings of the Springer PAM
Android: Distribution dashboard (2020) https://developer.android.com/about/dashboards/
Android: Platform codenames versions, and API levels (2020) https://source.android.com/source/

build-numbers.html
Arzt S, Rasthofer S, Fritz C, Bodden E, Bartel A, Klein J, Traon Y, Octeau D, McDaniel P (2014) Flowdroid:

Precise context, flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In: ACM
PLDI

Au K, Zhou Y, Huang Z, Lie D (2012) PScout: Analyzing the Android permission specification. In:
Proceedings of the ACM CCS

Avdiienko V, Kuznetsov K, Gorla A, Zeller A, Arzt S, Rasthofer S, Bodden E (2015) Mining apps for
abnormal usage of sensitive data. In: Proceedings of the ACM ICSE

Backes M, Bugiel S, Derr E (2016) Reliable third-party library detection in Android and its security
applications. In: Proceedings of the ACM CCS

Backes M, Bugiel S, Derr E, McDaniel P, Octeau D (2016) Weisgerber, S.: On Demystifying the Android
Application Framework: Re-Visiting Android Permission Specification Analysis. In: Proceedings of the
USENIX Security

Bonett R, Kafle K, Moran K, Nadkarni A, Poshyvanyk D (2018) Discovering flaws in security-focused static
analysis tools for Android using systematic mutation. In: Proceedings of the USENIX Security

Brito G, Hora A, Valente MT, Robbes R (2016) Do developers deprecate APIs with replacement messages?
a large-scale analysis on Java systems. In: Proceedings of the IEEE SANER

Calzavara S, Grishchenko I, Maffei M (2016) HornDroid: Practical and sound static analysis of Android
applications by SMT solving. In: Proceedings of the IEEE EuroS&P

Felt A, Chin E, Hanna S, Song D, Wagner D (2011) Android permissions demystified. In: Proceedings of the
ACM CCS

(2021) 26: 7Empir Software EngPage 30 of 327

http://elinux.org/Android_aapt
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
https://github.com/emdete/tabulae/issues/12
https://ibotpeaches.github.io/Apktool/
https://developer.android.com/studio/build/multidex
https://www.idc.com/promo/smartphone-market-share/os
https://developer.yahoo.com/flurry/docs/integrateflurry/android/
https://developer.android.com/google/play/publishing/multiple-apks
https://developer.android.com/google/play/publishing/multiple-apks
http://www.openfeint.com/
http://developer.android.com/guide/topics/manifest/uses-sdk-element.htm l
http://developer.android.com/guide/topics/manifest/uses-sdk-element.htm l
https://developer.android.com/about/dashboards/
https://source.android.com/source/build-numbers.html
https://source.android.com/source/build-numbers.html


Gordon MI, Kim D, Perkins J, Gilham L, Nguyen N, Rinard M (2015) Information-flow analysis of Android
applications in DroidSafe. In: Proceedings of the ISOC NDSS

Grace M, Zhou Y, Wang Z, Jiang X (2012) Systematic detection of capability leaks in stock Android
smartphones. In: Proceedings of the ISOC NDSS

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X (2012) Riskranker: Scalable and accurate zero-day Android
malware detection. In: Proceedings of the ACM MobiSys

He D, Li L, Wang L, Zheng H, Li G, Xue J (2018) Understanding and detecting evolution-induced
compatibility issues in Android apps. In: Proceedings of the ACM ASE

Jia Y, Chen Q, Lin Y, Kong C, Mao Z (2017) Open doors for Bob and Mallory: Open port usage in Android
apps and security implications. In: Proceedings of the IEEE EuroS&P

Lei L, He Y, Sun K, Jing J, Wang Y, Li Q, Weng J (2017) Vulnerable Implicit Service: A Revisit. In:
Proceedings of the ACM CCS

Li L, Bissyandé TF, Traon Y, Klein J (2016) Accessing inaccessible Android APIs: An empirical study. In:
Proceedings of the IEEE ICSME

Li L, Bissyandé T. F., Wang H, Klein J (2018) CiD: Automating the detection of API-related compatibility
issues in Android apps. In: Proceedings of the ACM ISSTA

Li M, Wang W, Wang P, Wang S, Wu D, Liu J, Xue R, Huo W (2017) LibD: Scalable and precise third-party
library detection in Android markets. In: Proceedings of the ACM ICSE

Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Penta MD, Oliveto R, Poshyvanyk D (2013) API change
and fault proneness: A threat to the success of Android apps. In: Proceedings of the ACM FSE

Mariconti E, Onwuzurike L, Andriotis P, Cristofaro ED, Ross G, Stringhini G (2017) MaMaDroid: Detecting
Android malware by building markov chains of behavioral models. In: Proceedings of the ISOC NDSS

McDonnell T, Ray B, Kim M (2013) An empirical study of API stability and adoption in the Android
ecosystem. In: Proceedings of the IEEE ICSM

McIlroy S, Ali N, Hassan AE (2016) Fresh apps: an empirical study of frequently-updated mobile apps in
the Google play store. Empir Softw Eng 21(3)

Mutchler P, Safaei Y, Doupe A, Mitchell J (2016) Target fragmentation in Android apps. In: Proceedings of
the IEEE mobile security technologies (MoST)

Octeau D, Jha S, McDaniel P (2012) Retargeting Android applications to Java bytecode. In: Proceedings of
the ACM FSE

Pan X, Wang X, Duan Y, Wang X, Yin H (2017) Dark hazard: Learning-based, large-scale discovery of
hidden sensitive operations in Android apps. In: Proceedings of the ISOC NDSS

Scalabrino S, Bavota G, Linares-Vȧsquez M, Lanza M, Oliveto R, Data-driven solutions to detect API
compatibility issues in android: an empirical study (2019). In: Proceedings of the MSR

Shao Y, Ott J, Jia YJ, Qian Z, Mao ZM (2016) The misuse of Android Unix domain sockets and security
implications. In: Proceedings of the ACM CCS

Tiwari A, Prakash J, Groß S, Hammer C (2020) A large scale analysis of android — web hybridization. J
Syst Softw 170

Wei F, Roy S, Ou X (2014) Robby: Amandroid: A precise and general inter-component data flow analysis
framework for security vetting of Android apps. In: Proceedings of the ACM CCS

Wei L, Liu Y, Cheung SC (2016) Taming Android fragmentation: Characterizing and detecting compatibility
issues for Android apps. In: Proceedings of the ACM ASE

Wei T, Zhang Y, Xue H, Zheng M, Ren C, Song D (2014) Sidewinder targeted attack against android in the
golden age of ad libraries. In: Black Hat USA

Wu D, Chang RKC (2014) Analyzing Android browser apps for file:// vulnerabilities. In: Proceedings of the
springer information security conference (ISC)

Wu D, Chang RKC (2015) Indirect file leaks in mobile applications. In: Proceedings of the IEEE mobile
security technologies (MoST)

Wu D, Chang RKC, Li W, Cheng EKT, Gao D (2017) MopEye: Opportunistic monitoring of per-app mobile
network performance. In: Proceedings of the USENIX annual technical conference

Wu D, Cheng Y, Gao D, Li Y, Deng RH (2018) SCLib: A practical and lightweight defense against compo-
nent hijacking in Android applications. In: Proceedings of the ACM conference on data and applications
security and privacy (CODASPY)

Wu D, Gao D, Chang RKC, He E, Cheng EKT, Deng RH (2019) Understanding open ports in Android
applications: Discovery, diagnosis, and security assessment. In: Proceedings of the ISOC NDSS

Wu D, Liu X, Xu J, Lo D, Gao D (2017) Measuring the declared SDK versions and their consistency with API
calls in Android apps. In: Proceedings of the Springer international conference on wireless algorithms,
systems, and applications (WASA)

(2021) 26: 7Empir Software Eng Page 31 of 32 7



Wu D, Luo X, Chang RKC (2014) A sink-driven approach to detecting exposed component vulnerabilities
in android apps. arXiv:1405.6282

Yang W, Xiao X, Andow B, Li S, Xie T, Enck W (2015) AppContext: Differentiating malicious and benign
mobile app behaviors using context. In: Proceedings of the ACM ICSE

Zhou Y, Jiang X (2013) Detecting passive content leaks and pollution in Android applications. In:
Proceedings of the ISOC NDSS

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

(2021) 26: 7Empir Software EngPage 32 of 327

http://arxiv.org/abs/1405.6282

	Measuring declared SDK versions and their consistency with API calls
	Abstract
	Introduction
	Demystifying Declared SDK Versions and Their Two Side Effects
	Declared SDK Versions in Android Apps
	Two Side Effects of Inappropriate DSDK Versions
	Side Effect I: Causing Runtime Crashes
	Side Effect II: Making Apps Vulnerable


	Methodology
	Overview
	Offline Phase: API Document Analysis
	Building the API-SDK mapping
	Document analysis results


	Online Phase: Android App Analysis
	Retrieving DSDK Versions via Manifest Analysis
	Extracting Valid API Calls via Bytecode Search
	The basic bytecode search mechanism
	Searching VERSION.SDK_INT checking
	Searching vulnerable API calls
	Excluding uninvoked third-party libraries

	Calculating API Levels and Comparing Their Consistency with DSDKs


	Evaluation
	Dataset
	RQ1: Characteristics of Declared SDK Versions in the Wild
	Finding 1-1
	Finding 1-2
	Finding 1-3
	Finding 1-4


	RQ2: Inconsistency Results with Compatibility Effect
	Finding 2-1:
	Finding 2-2
	Finding 2-3
	Case study: Solo VPN


	RQ3: Inconsistency Results with Security Effect
	Finding 3-1
	Finding 3-2
	Finding 3-3:
	Case study: Exsoul Browser


	RQ4: Performance Metrics of Our Approach
	Finding 4-1
	Finding 4-2


	RQ5: The Updatability of The Buggy Apps
	Finding 5


	Implications
	Implication 1
	Implication 2


	Threats To Validity
	Related Work
	Research on Declared SDK Versions
	Android API Studies
	Android App Static Analysis

	Conclusion and Future Work
	References




