
Empirical Software Engineering (2024) 29:69
https://doi.org/10.1007/s10664-024-10453-9

Analyzing and revivifying function signature inference using
deep learning

Yan Lin1 · Trisha Singhal2 · Debin Gao3 · David Lo3

Accepted: 30 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract
Function signature plays an important role in binary analysis and security enhancement, with
typical examples in bug finding and control-flow integrity enforcement. However, recovery
of function signatures by static binary analysis is challenging since crucial information vital
for such recovery is stripped off during compilation. Although function signature recovery
using deep learning (DL) is proposed in an effort to handle such challenges, the reported
accuracy is low for binaries compiled with optimizations. In this paper, we first perform a
systematic study to quantify the extent to which compiler optimizations (negatively) impact
the accuracy of existing DL techniques based on Recurrent Neural Network (RNN) for func-
tion signature recovery. Our experiments show that the state-of-the-art DL technique has its
accuracy dropped from 98.7% to 87.7% when training and testing optimized binaries. We
further investigate the type of instructions that existing RNN model deems most important
in inferring function signatures with the help of saliency map. The results show that existing
RNN model mistakenly considers non-argument-accessing instructions to infer the number
of arguments, especially when dealing with optimized binaries. Finally, we identify spe-
cific weaknesses in such existing approaches and propose an enhanced DL approach named
ReSIL to incorporate compiler-optimization-specific domain knowledge into the learning
process. Our experimental results show that ReSIL significantly improves the accuracy and
F1 score in inferring function signatures, e.g., with accuracy in inferring the number of argu-
ments for callees compiled with optimization flag O1 from 84.83% to 92.68%. Meanwhile,
ReSIL correctly considers the argument-accessing instructions as the most important ones
to perform the inferencing. We also demonstrate security implications of ReSIL in Control-
Flow Integrity enforcement in stopping potential Counterfeit Object-Oriented Programming
(COOP) attacks.

Keywords Function signature · recurrent neural network · compiler optimization ·
control-flow integrity

Communicated by: Tegawendé F. Bissyandé

B Yan Lin
yanlin@jnu.edu.cn

Extended author information available on the last page of the article

0123456789().: V,-vol 123

/ Published online: 8 May 2024

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-024-10453-9&domain=pdf
http://orcid.org/0000-0002-6509-9131

Empirical Software Engineering (2024) 29:69

1 Introduction

Function signatures play a critical role in many security applications. For example, enforcing
control-flow integrity (CFI) (Prakash et al. 2015; Van Der Veen et al. 2016; Muntean et al.
2018; Lin et al. 2019) and detecting code clones Hu et al. (2017) are typically based on
function signatures, a fuzzer can strategically mutate test cases (Jain et al. 2018; He et al.
2019) for better vulnerability detection when function signatures are known. However, it
is challenging to recover function signatures from stripped binaries, though, since there is
no debug information available and the binary only contains low-level information such as
instructions and register usage. Compilers typically do not preserve much language-level
information, e.g., types, in generating the binary executable. To make things worse, compiler
optimizations further complicate the recovery of function signatures Lin and Gao (2021).

Many existing techniques to recover function signatures for closed-source applica-
tions (Van Der Veen et al. 2016; Muntean et al. 2018; Balakrishnan and Reps 2007; Lee
et al. 2011) are limited to custom and manually created rules based on calling conventions of
the toolchain that generated the binary. For example, TypeArmor Van Der Veen et al. (2016)
and τCFI Muntean et al. (2018) are based on the calling convention that the first six integer
arguments are properly set and retrieved at callee and caller sites. A callee, defined as a func-
tion invoked or called by another function (the caller), plays a critical role in reconstructing
the call graph. Consequently, CFI can be enforced based on the constructed call graph.

However, compiler optimizations may violate such calling convention as demonstrated
in the recent study Lin and Gao (2021), where, e.g., a callee or caller may skip retrieving
or setting certain arguments, respectively, resulting in the miscalculation of the number of
arguments. For example, the accuracy in identifying the number of arguments at the callee
site drops to 83% for applications compiled by clang with optimization flag O2. Also note
that new optimization strategies are constantly being proposed and added to our mainstream
compilers including gcc and clang. Moreover, identifying idioms common in binary code
and designing analysis procedures, both principled and heuristic-based, have been an area
that is reliant on human expertise, often engaging years of specialized binary analysts. These
analysis engines need to be continuously updated as compilers evolve or newer architectures
are targeted.

DIVINE Balakrishnan and Reps (2007) and TIE Lee et al. (2011) reduce the binary type
inference problem into a constraint solving problem. However, they are too heavy-weight to
be used in practice. For example, large-scale programs may result in too many constraints
to solve. “DIVINE Balakrishnan and Reps (2007) spends 2 hours while analyzing programs
of the order of 55, 000 assembly instructions" ElWazeer et al. (2013) because (i) there are
many more instructions at the low-level code than high-level code; and (ii) there are several
possible constraints for low-level instructions, such as add and sub Xu et al. (2018).

To avoid the reliance on a potentially brittle set of manually created rules and keep track
of the latest optimization strategies to make it more efficient to infer function signature,
an alternative line of research is proposed to train machines to learn features from binary
code directly, without specifying compiler idioms and instruction semantics explicitly, e.g.,
EKLAVYA Chua et al. (2017). It uses word embedding and a three-layer Recurrent Neural
Network (RNN) to learn the number and types of arguments from disassembled binary code.
Meanwhile, no domain-specific knowledge is assumed and everything is inferred from the
training data, and once a classifier is trained, it can learn the function signatures efficiently.
However, the reported results in EKLAVYA show that the accuracy in inferring the number
of arguments at callee and caller sites for optimized binaries (O1/O2/O3) is only around

123

69 Page 2 of 48

Empirical Software Engineering (2024) 29:69

80%, compared to 97% for unoptimized ones (O0). Moreover, the accuracy in inferring even
a coarse-grained type (considers different types of integers, e.g., bool, short, int, and long as
one type) for the third argument is only about 70% for optimized callees. Such low accuracy
has a significant impact on corresponding applications, e.g., in enforcement of CFI.

To have a better understanding on howEKLAVYA infers the number of arguments and dig
up the underlying reasons of inferior performance of RNN approaches in recovering function
signatures from optimized binaries, in this paper, we make use of saliency maps Simonyan
et al. (2013) to study which parts of an input the deep-learning network considers important
in a prediction at the corresponding callees and callers. Our results show that most of the mis-
takes are not due to the learning capabilities of the model, but rather the absence of evidence
that function arguments are accessed or prepared. Such absence of evidence in the represen-
tation of training and testing sets results in EKLAVYA considering non-argument-accessing
instructions as the most important ones in determining the number of arguments — the criti-
cal cause of low accuracy for optimized binaries. For example, Compiler optimizations could
potentially make two callees (callers) with different signatures look very similar in terms of
their raw instructions because, e.g., the accessing and preparing of specific arguments are
omitted, or that the same instructions are used to operate on different types of arguments.
Having two functions with different ground-truth labels but seemingly identical function
bodies confuses a supervised deep learning model in its training. The natural question then
is how we could design an enhanced representation of the training and testing sets that incor-
porate all vital function signature evidence even when optimization is enabled, so that we
can revivify the RNN capabilities in function signature recovery.

We address the challenge of inferring function signatures by incorporating compiler-
optimization-specific domain knowledge into the representation of samples to improve the
quality of the dataset. For example, our proposed system ReSIL selectively injects additional
instructions into the function body of optimized training samples to reinstantiate evidence of
the access or preparation of certain function arguments. Note that such additional instructions
injected are solely based on the analysis of the optimized binary (e.g., child function of the
callee and parent function of the caller) without relying on other information sources like the
compilation process. ReSIL supports ELF binaries on Linux x86-64 and is able to recover
function signatures with higher accuracy and F1 score compared to EKLAVYA . We also
show that ReSIL correctly considers argument-accessing instructions as the most important
ones in predicting the number of arguments.

We further use CFI enforcement as an example of applications of ReSIL to demonstrate its
security implication. Due to the higher accuracy in recovering function signatures which fur-
ther limits the control transfer targets allowed (only calleeswithmatching function signatures)
in an optimized binary, we show that stealthy Counterfeit Object-Oriented Programming
(COOP) attacks could be defeated.

The contributions of the paper are as follows:

– We identify an extensive set of intricacies that confuse existing RNN approaches in infer-
ring function signatures, and show that the root causes are not about learning capability
but representation of binary samples.

– We use saliencymap to study how existing RNN approachesmistakenly consider “noisy”
instructions as most important in function signature inference.

– We propose ReSIL, a system that incorporates compiler-optimization-specific domain
knowledge to improve the accuracy in inferring function signatures.

123

Page 3 of 48 69

Empirical Software Engineering (2024) 29:69

– We perform a thorough evaluation on ReSIL and show that ReSIL can achieve better
accuracy and F1 score in inferring function signatures compared to EKLAVYA .We also
demonstrate the security implication of using ReSIL for CFI enforcement.

2 Background and related work

In this section, we discuss related work on function signature recovery and machine learning
approaches for analyzing binaries.

2.1 Function signature recovery

Function signature recovery is an important step in binary analysis. Variable liveness analysis
and heuristics based on calling conventions and idioms are usually used to recover function
signatures. EIWazeer et al. (2013) apply liveness analysis to recover arguments, variables,
and their types for x86 executables. TIE Lee et al. (2011) infers variable types in binaries
through formulating the usage of different data types. Caballero et al. (2009) make use of
dynamic liveness analysis to recover function arguments for execution traces.

TypeArmor Van Der Veen et al. (2016) and τCFI Muntean et al. (2018) make use
of liveness analysis and heuristics to recover the number of arguments and widths of the
argument-storing registers at callee and indirect caller sites by inspecting the state for the six
integer argument registers. Both of them can be used to enforce fine-grained CFI bymatching
the observed number of arguments and arguments widths at indirect caller and callee sites.
Zeng et al. (2018) propose to perform type inference based on debug information generated by
the compiler. Yan et al. Lin and Gao (2021) demonstrate how compiler optimization impacts
function signature recovery and propose heuristic methods to recover function signature
more precisely. Besides the difference of being a heuristic-based approach vs. a machine-
learning-based approach as we do in this paper, Yan et al. Lin andGao (2021) suffers from the
requirement of having to constantly update the corresponding heuristics by domain experts
whenever new compiler optimization strategies are incorporated into our modern compilers.

2.2 Machine learning for binary analysis

Machine learning methods have been adopted for different binary analysis tasks. For exam-
ple, function (boundary) identification (Bao et al. 2014; Shin et al. 2015; Wang et al. 2017)
is the preliminary of many advanced binary analysis, including our proposed system in this
paper, ReSIL, EKLAVYA Chua et al. (2017), and Nimbus Qian et al. (2022). In addition,
machine learning has been increasingly applied to type inference (Hellendoorn et al. 2018;
He et al. 2018; Maier et al. 2019; Chen et al. 2020; Pei et al. 2021), compiler provenance
recovery (Rosenblum et al. 2011; Otsubo et al. 2020; Pizzolotto and Inoue 2020; Tian et al.
2021; Ji et al. 2021), function similarity identification (Xu et al. 2017; Duan et al. 2020), and
decompiling (Katz et al. 2018, 2019; Fu et al. 2019; Liang et al. 2021). Here, we discuss some
of them briefly. Rosenblum et al. (2011) make use of linear Support VectorMachines (SVMs)
to infer the compiler family, versions, optimization options, and source languages. Pizzolotto
and Inoue Pizzolotto and Inoue (2020) recognize both the compiler and the presence of opti-
mizations using a Long-Short Term Memory network and a Convolutional Neural Network.
TypeMiner Maier et al. (2019) extracts Data Object Traces obtained through data depen-
dency analysis and uses n-gram to capture the characteristics of each data object trace and

123

69 Page 4 of 48

Empirical Software Engineering (2024) 29:69

predict the data type. STATEFORMER Pei et al. (2021) first approximates execution effects
of assembly instructions in both forward and backward directions and obtain a pretrained
model, then infers argument and variable types with the pretrained model using transfer
learning. CATI Chen et al. (2020) uses Convolutional Neural Network (CNN) to infer vari-
able types by taking the instruction context into account. DEBIN He et al. (2018) recovers
debugging information in stripped binaries including symbol names, types, and locations on
three architectures (x86, x64, and ARM) using Extremely Randomized Trees classification
and Conditional Random Field model. DEEPBINDIFF Duan et al. (2020) learns basic block
embeddings via unsupervised DL and then use these embeddings to efficiently and accu-
rately calculate the similarities among basic blocks. Katz et al. (2018) train an RNNmodel to
convert binary code into C-like code directly and improve the syntax and semantic accuracy
through post-processing. Our approach, ReSIL, belongs to this category of work, leveraging
powerful machine learning techniques with a focus on improving the accuracy in analyzing
optimized binaries specifically.

Since EKLAVYA is closely related to the contributions we are making in this paper, we
discuss it in slightly more detail. Fig. 1 shows an overview of EKLAVYA .

EKLAVYAfirst uncovers the syntactic information of each instruction using word embed-
ding. Specifically, all instructions are represented in a 256-dimensional vectors. Labels
denoting the number of arguments and types (the ground truth) serve as input to a Recurrent
Neural Network (RNN) with Gated Recurrent Unit (GRU). EKLAVYA has four tasks:

– Task 1: Inferring the number of arguments for each function based on instructions from
the caller;

– Task 2: Inferring the number of arguments for each function based on instructions from
the callee;

– Task 3: Recovering the type of arguments based on instructions from the caller;
– Task 4: Recovering the type of arguments based on instructions from the callee;

The classes of argument types are defined as τ ::= int |char | f loat |void ∗|enum|union|
struct with different types of integers (e.g., 32-bit integers and 64-bit integers) merged
into one single type int . All the instructions (with a limit of 500) preceding a direct call

Fig. 1 Overview of EKLAVYA

123

Page 5 of 48 69

Empirical Software Engineering (2024) 29:69

instruction are used in tasks 1 and 3, whereas only instructions in the callee itself are used in
tasks 2 and 4.

A key observation is that EKLAVYA uses instructions in a function body as input to
RNN without considering whether they actually access the argument registers (potentially
introducing noise) or whether they provide a complete representation of all arguments (poten-
tially missing key inputs). In this paper, we first provide a detailed analysis on the extent to
which these drawbacks would misguide the machine learning model when processing opti-
mized binaries (our first and second contributions in this paper), and then propose applying
compiler-optimization-specific domain knowledge in the representations of the input binary
to improve model accuracy (our third contribution).

3 Methodology

Characterizing the impact of compiler optimizations on function signature inference is a
complex problem.Modern compilers employ a vast number of optimizations, many of which
are synergistic and require careful phase ordering to be effective. Individual optimizations
are also quite diverse in their features; they have varying goals (e.g., reducing code size
vs. reducing execution time), make different trade-offs (e.g., increase code size to reduce
execution time), and have different scopes (e.g., intra- vs. inter-procedural). As a result,
compilers bundle optimizations into levels (i.e., O0 - O3) tuned for different objectives such
as fast compilation or fast execution.

In this section, we present the systematic methodology we developed to characterize the
impacts of compiler optimizations on function signature inference.

3.1 Method selection

Numerous deep learning approaches have been proposed for binary analysis, with some
specifically focused on accurately recovering the types of arguments (variables) at callee
sites, such as STATEFORMER Pei et al. (2021) and TypeMiner Maier et al. (2019). The
primary objective of this paper is to investigate the impact of compiler optimization on
function signature inference, encompassing both the number and type of arguments. To
achieve this, we select the open-source approach EKLAVYA for an investigation into how
compiler optimization affects its performance in recovering arguments at both callee and
caller sites.

Another notable work called Nimbus Qian et al. (2022) also makes use of RNN with
GRUs to infer function signature. However, its main purpose is to reduce the time in training
and testing procedures and it achieves about 1% higher prediction accuracy over all function
signature recovery tasks compared to EKLAVYA . The low level RNN architecture of it is
quite similar to EKLAVYA except that it uses one multi-task learning (MTL) structure to
infer the number and types of arguments simultaneously. Therefore, We stress that it should
have the similar issues discussed in this paper and don’t perform the detailed comparison
since it is not open source.

3.2 Benchmark selection and variant generation

We selected the same dataset employed in the EKLAVYA paper, comprising binutils,
coreutils, findutils, sg3utils, util-linux, inetutils, diffutils, and usbutils. We compiled these

123

69 Page 6 of 48

Empirical Software Engineering (2024) 29:69

programs using the latest compiler versions, resulting in the creation of 2,584 distinct vari-
ants (binaries) for our benchmark tests. This choice to use the most recent compiler versions
aligns with the continuous improvement of optimization strategies. It’s worth noting that this
approach differs from replicating the experiments detailed in the EKLAVYA paper.

Our primary focus revolves around function signature inference within the x86-64 Linux
environment. To generate the binaries, we employed two widely used compilers: gcc-10
and clang-10, each with varying optimization levels, namely O0, O1, O2, and O3. While
optimization level definitions vary between compilers, they are consistent for GCC and
Clang. Code produced at level O0 is almost entirely unoptimized. Specifying level O1 enables
entry-level optimizations that reduce code size and execution time with minimal incremental
compile time. At level O2, optimizations that improve execution speed without increasing
code size are enabled. This increases compile time, but further reduces the binary’s size
and execution time over level O1. Specifying level O3 enables almost all optimizations and
generally produces the fastest binaries, but they are generally larger and requiremore compile
time versus level O2.

3.3 Variant analysis

To determine how each optimization level strategy impacts function signature inference, we
conduct a comprehensive analysis, contrasting function signature in various variants against
the groundtruth collected by baseline. More Specifically, for each variant, we recover the
number and widths of arguments at the callee and caller sites using EKLAVYA and compare
them with the groundtruth obtained by parsing the DWARF debug information Committee
et al. (2010).

Furthermore, we delve into the source code of compilers, with particular emphasis on the
mechanisms governing argument passage from callers to callees under distinct optimization
flags such as -O0, -O1, -O2, and -O3. In our pursuit of a deeper understanding, we also consult
the Intel instructionmanual INTEL (2018) to gain insights into howvarious instructionsmight
influence function signatures.

At the same time, we scrutinize instances in which EKLAVYA incorrectly infers the
number and types of arguments at either callee and caller sites with the help of saliency
maps. Through the aggregation of these observations, we identify recurring patterns and
common features among the affected callees and callers. Finally, we consolidate our findings
by summarizing the complexities encountered in function signature inference by EKLAVYA
. For a comprehensive account of these complexities, please refer to Section 4.3.

3.4 Threats to validity

As with any empirical study, our methodology is subject to certain threats to validity. We
acknowledge the following potential biases:

Representativeness of the SelectedApproach:Thefindings of this paper are solely based
on EKLAVYA and may not be fully representative of all RNN approaches. Our focus was on
open-source approaches, and while they are widely used, our findings may not generalize to
the broader population of other DL approaches. Nonetheless, our findings provide insights
into function signature recovery, and we argue that they can be applied to all DL approaches
that do not take into account inter-procedure control flow transfers in function signature
inference.

123

Page 7 of 48 69

Empirical Software Engineering (2024) 29:69

Table 1 Percentage of functions with specific number of arguments

Opt % of functions with specific number of arguments
0 1 2 3 4 5 6 7 8 9

O0 7.36 32.50 31.41 18.11 7.21 3.29 0.08 0.01 0.02 0.01

O1 9.58 30.26 30.46 17.27 6.72 3.27 1.37 0.58 0.37 0.12

O2 8.93 27.43 31.49 18.02 7.43 3.72 1.61 0.72 0.48 0.19

O3 7.76 21.50 32.97 20.12 9.38 4.53 2.20 0.86 0.45 0.24

Diversity of the Dataset: It is important to acknowledge that our dataset may not cover all
types of callees and callers. The determination of an appropriate dataset depends on various
factors, such as the desired level of statistical significance, effect size, and variability within
the population. While a larger dataset may provide more precise estimates and increase
confidence in the findings, it may not always be feasible due to constraints such as time
and budget. In our study, we believe that the Linux utility dataset, which consists of 2,584
different variants, provides valuable insights into common issues of EKLAVYA .

4 Why deep learning techniques fall short of optimized binaries

In this section, we take a deep dive into the reasons why existing RNN techniques fall short
of recovering function signatures from optimized binaries. We first present our experiments
with a state-of-the-art RNN technique EKLAVYA and its overall accuracy and F1 scores in
processing unoptimized and optimized binaries (Section 4.1).

Due to the difficulty in explainability of machine learning models in general, our next task
(Section 4.2) is to make use of saliency map to understand whether EKLAVYA manages to
learn from argument-accessing-relevant instructions. We also use saliency map to analyze
optimized binary samples with which EKLAVYAmakes mistakes in its recovery of function
signatures in order to shed light on possible reasons of its inferior performance (Section 4.3).

4.1 Accuracy in inferring function signatures

We evaluate the accuracy of inferring the number and types of arguments for a state-of-the-art
RNN approach, named EKLAVYA Chua et al. (2017). The experiments are performed on a
server machine with two 32-core AMD Ryzen ThreadRipper 3GHz CPUs, 128GB of RAM,
and four GeForce RTX 2080 Ti GPUs with 12GB of memory.

We use the same sanitizing method in EKLAVYA to remove duplicated functions in
the benchmark. The resulting dataset contains 51,907 distinct functions, and 104,046 direct
callers. Table 1 shows the percentage of functions with specific number of arguments in
different optimization levels. We find that most functions have fewer than 3 arguments (e.g.,
more than 80% of functions have fewer than 3 arguments as shown in Table 1). Therefore,
we only report recovery results in type inference for the first 3 arguments, most of which are
pointers, 32-bit integers, and 64-bit integers. Note that this strategy is also used by EKLAVYA
and Nimbus.

We use 5-fold cross-validation to perform training and testing. The average results are
shown in Tables 2 and 3 with the definitions of accuracy and F1 score given in Definition 1.
Note that here we report the F1 score for fine-grained type inference, so that we can compare

123

69 Page 8 of 48

Empirical Software Engineering (2024) 29:69

Table 2 Accuracy of EKLAVYA

(a) Inferring number of arguments

Inst Opt Clang Gcc

CI T Acc% CI T Acc%

Caller O0 3,157 3,363 93.87 4,182 4,293 97.41

O1 2,936 3,359 87.41 3,252 3,591 90.56

O2 1,039 1,140 91.14 1,735 1,957 88.66

O3 155 164 94.51 571 614 93.00

Callee O0 2,000 2,022 98.91 2,175 2,209 98.46

O1 1,772 2,089 84.83 1,349 1,542 87.48

O2 725 797 90.97 1,008 1,136 88.73

O3 150 159 94.34 390 425 91.76

(b) Inferring types of arguments

Inst Arg Opt Clang Gcc

CI T Acc% CI T Acc%

Caller 1st O0 3,645 3,766 96.78 4,061 4,173 97.31

O1 3,004 3,133 95.88 3,239 3,362 96.34

O2 1,015 1,049 96.75 1,717 1,795 95.65

O3 160 163 98.16 518 530 97.74

2nd O0 2,065 3,274 90.81 2,598 2,828 91.87

O1 1,647 1,895 86.91 2,087 2,331 89.53

O2 631 673 93.76 1,068 1,175 90.89

O3 123 127 96.85 338 358 94.41

3rd O0 1,142 1,291 88.46 1,466 1,608 91.17

O1 806 918 87.80 1,298 1,422 91.28

O2 347 382 90.84 693 760 91.18

O3 89 91 97.80 223 237 94.09

Callee 1st O0 1,799 1,871 96.15 1,963 2,049 95.80

O1 1,809 1,927 93.88 1,360 1,420 95.77

O2 716 735 97.41 1,012 1,047 96.66

O3 147 150 98.00 381 390 97.69

2nd O0 1,079 1,215 88.81 1,170 1,327 88.17

O1 1,087 1,252 86.82 851 954 89.20

O2 492 528 93.18 648 710 91.27

O3 115 121 95.04 278 293 94.88

3rd O0 489 579 84.42 528 633 83.41

O1 514 612 83.99 409 473 86.47

O2 240 265 90.57 320 361 88.64

O3 59 66 89.39 143 156 91.67

CI: Number of callers/callees correctly inferred
T: Number of callers/callees in the testing set

123

Page 9 of 48 69

Empirical Software Engineering (2024) 29:69

Table 3 F1 score of EKLAVYA

(a) Inferring the number of arguments

Inst CPL Opt Number of Arguments

0 1 2 3 4 5 6 7 8 MF

Caller Clang O0 0.87 0.96 0.96 0.94 0.92 0.87 0.87 0.93 0.87 0.94

O1 0.77 0.90 0.90 0.89 0.87 0.83 0.83 0.79 0.85 0.88

O2 0.81 0.92 0.91 0.92 0.93 0.85 0.86 0.86 0.92 0.91

O3 0.85 0.94 0.93 0.89 0.93 0.97 0.99 0.89 0.80 0.94

Gcc O0 0.92 0.98 0.98 0.98 0.97 0.96 0.97 0.97 0.95 0.98

O1 0.79 0.92 0.90 0.92 0.90 0.89 0.89 0.92 0.92 0.90

O2 0.73 0.91 0.87 0.91 0.85 0.85 0.85 0.84 0.93 0.89

O3 0.78 0.94 0.91 0.94 0.89 0.90 0.85 0.85 0.78 0.92

Callee Clang O0 0.98 0.99 0.99 0.99 0.98 0.97 0.00 0.00 0.00 0.99

O1 0.79 0.87 0.87 0.86 0.82 0.83 0.65 0.39 0.40 0.85

O2 0.89 0.92 0.93 0.90 0.90 0.89 0.82 0.75 0.74 0.91

O3 0.93 0.96 0.98 0.95 0.94 0.90 0.82 0.47 0.78 0.95

Gcc O0 0.99 0.99 0.99 0.98 0.97 0.96 0.00 0.50 0.00 0.98

O1 0.80 0.89 0.90 0.89 0.87 0.85 0.67 0.48 0.43 0.88

O2 0.85 0.91 0.90 0.89 0.85 0.85 0.73 0.69 0.55 0.89

O3 0.90 0.93 0.93 0.93 0.88 0.89 0.75 0.56 0.43 0.92

(b) Inferring types of arguments

Inst CPL Opt Type of Arguments

int8 int16 int32 int64 float pointer enum struct union MF

Caller Clang O0 0.74 0.38 0.90 0.74 0.00 0.94 0.54 0.53 0.98 0.90

O1 0.63 0.17 0.88 0.71 0.00 0.92 0.65 0.37 0.97 0.88

O2 0.60 0.22 0.90 0.78 - 0.94 0.69 0.50 - 0.91

O3 0.75 - 0.96 0.74 - 0.98 0.80 - - 0.96

Gcc O0 0.77 0.31 0.93 0.76 0.00 0.94 0.75 0.50 0.96 0.90

O1 0.62 0.10 0.89 0.78 - 0.93 0.78 0.59 - 0.89

O2 0.66 0.00 0.91 0.80 - 0.93 0.71 0.90 - 0.90

O3 0.86 - 0.91 0.83 - 0.95 0.80 - - 0.93

Callee Clang O0 0.93 0.33 0.97 0.55 0.17 0.93 0.25 0.36 0.88 0.91

O1 0.39 0.25 0.87 0.57 0.22 0.92 0.34 0.19 0.22 0.89

O2 0.63 0.00 0.91 0.74 1.00 0.95 0.47 0.89 - 0.94

O3 0.95 - 0.90 0.81 - 0.97 0.93 - - 0.95

Gcc O0 0.91 0.10 0.96 0.55 0.39 0.93 0.29 0.69 0.88 0.91

O1 0.48 0.25 0.89 0.64 0.50 0.94 0.42 0.44 0.00 0.91

O2 0.61 0.33 0.91 0.70 1.00 0.94 0.59 0.00 0.00 0.93

O3 0.76 - 0.96 0.85 1.00 0.97 0.73 - - 0.96

123

69 Page 10 of 48

Empirical Software Engineering (2024) 29:69

it with our approach. We only analyze the type inference result for the second argument as
it has a wider variety of different types. Note that MF (the last column of Table 3) measures
the F1-score of the aggregated contributions of all classes; see its definition in Definition 3.

Acc =
n∑

i=1

Pi × Rci F1i = 2 × Pci × Rci
Pci + Rci

(1)

where n is the number of labels in the testing set and Pi is the fraction of samples belonging
to label i in the testing set. Pci and Rci are the Precision and Recall for class i, and they are
defined as:

Pci = T Pi
T Pi + FPi

Rci = T Pi
T Pi + FNi

(2)

where T Pi , FPiand FNiare the true positive prediction, false positive prediction, and false
negative prediction of class i respectively.

MF = 2 × mp × mr

mp + mr
(3)

mp =

n∑
i=1

T Pi

n∑
i=1

T Pi +
n∑

i=1
FPi

mr =

n∑
i=1

T Pi

n∑
i=1

T Pi +
n∑

i=1
FNi

(4)

As shown in Table 2a, when optimization is enabled (O1/O2/O3), the accuracy in infer-
ring the number of arguments drops compared to that for unoptimized callees and callers.
Intuitively, this is mainly because that optimizations eliminate unnecessary argument reading
(reading from argument registers) or preparing (writing to argument registers) instructions.
Probably a bit counter-intuitive, another observation is that binaries compiled with O1 typ-
ically have lower accuracy than those compiled with O2 and O3. We will discuss in more
details the reasons behind this in Section 4.3.

Table 2b shows more interesting results. First, the accuracy in inferring the types for the
second and third arguments is lower than that for the first argument. When counting the
type distribution, we realize that more than 95% of the first arguments are 32-bit integers
and pointers, which are relatively easy to tell apart. On the other hand, a lot more of the
second and third arguments are 64-bit integers, which are more difficult to recognize as the
compiler typically uses similar instructions to access 64-bit integers and pointers regardless
of optimization settings. We will discuss this in more detail in Section 4.3.

As shown in Table 3a, the F1 score for callers with zero arguments is relatively low. It
shows that existing DL techniques have difficulties in distinguishing callers which actually
do not have any arguments from callers which do not prepare any argument due to compiler
optimization. Meanwhile, It also shows that the F1 score for callers compiled with opti-
mization is generally lower compared to non-optimized callers. The F1 score for callees in
Table 3a delivers a similar message that callees compiled with optimization have a lower F1
score in inferring the number of arguments compared with unoptimized callees. In addition,
the F1 score in inferring callees with more than five arguments suffers a significant drop.

Table 3b shows that the F1 score for 64-bit integers (int64) is low but that for pointers is
higher, which implies that EKLAVYA does not have a good performance in distinguishing
between 64-bit integers and pointers. The F1 score for arguments whose sizes are less than
32-bit is quite small. We note that this is mainly because of lack of samples.

123

Page 11 of 48 69

Empirical Software Engineering (2024) 29:69

4.2 Analysis with saliencymap

The previous section shows that EKLAVYA has a good performance for binaries compiled
with O0 but suffers in inferring the number of arguments for optimized binaries. In this
subsection, we further generate saliency map to dig up the reasons behind that — more
specifically, does the RNNmodel manage to learn from argument-accessing instructions for
its inferencing.

Given the instruction sequence of a certain callee (caller) function and a RNN model’s
(potentially incorrect) classification, a logical question to ask is: “which parts of the instruc-
tion sequence are most influential for the classification?” Does the DL model consider
argument-accessing instructions most important in its inferencing (which makes sense), or
does it rely more on “noisy” instructions (which could lead to inaccurate classification)?
To answer this question, we seek to visualize the amount of influence each instruction con-
tributes to the prediction. We find saliency map is a good candidate to help us answer this
question since it provides per-time-step explanations that alignwell with the sequential nature
of RNNs and offers a contextually relevant understanding of the model’s decision-making
process. Moreover, by examining the saliency map of misclassified samples, we can gain
insights into the model’s failure modes. Another possible interpretable approach is called
Gradient-weighted Class Activation Mapping (Grad-CAM) Selvaraju et al. (2017), which is
a technique primarily designed for interpreting Convolutional Neural Network (CNN) and
is more suitable for visualizing the important regions in images that contribute to a specific
class prediction. Although it can be adapted for RNN, it provides a more global explanation
that may not be as relevant in the context of sequential data.

Specifically, Saliency maps are visual representations that highlight the most important
regions or features in an input data sample that significantly influence the model’s decision.
Intuitively, the important part of an input is one for which a minimal change results in a
different prediction. This is commonly obtained by computing the gradient of the network’s
output with respect to the input. In our work, We chose the approach described by Simonyan
et al. Simonyan et al. (2013) to obtain the gradient by back-propagation. Given a sequence
X0 of length |X0|, and class c ∈ C , a RNN model provides a score function Sc(X0). We
rank the instructions of X0 based on their influence on the score Sc(X0). Sc(X) is a highly
non-linear function of X with deep neural nets. It is hard to directly see the influence of each
instruction of X on Sc. Mathematically, around the point X0, Sc(X) can be approximated by
a linear function by computing the first-order Taylor expansion:

Sc(X) ≈ wT X + b =
|X |∑

i=1

wi xi + b (5)

where w is the derivative of Sc with respect to the sequence variable X at the point X0:

w = ∂Sc
∂x

∣∣∣
X0

= saliency map (6)

This derivative is simply one step of backpropagation in the RNN model, and is therefore
easy to compute. It results in a Jacobian matrix and each element in a Jacobian matrix tells
us how each dimension of the instruction vector will affect the output of a specific class. In
this case, we just want to know how much effect a particular dimension has over the entire
output, therefore we sum up the partial derivatives for all elements of the output with respect
to the particular input dimension. The result is a 256-dimension vector which tells us the
magnitude of change each dimension has over the input. In order for us to visualize our

123

69 Page 12 of 48

Empirical Software Engineering (2024) 29:69

saliency map, we choose to calculate the L2-norm of the gradient vector of each instruction
in the function. To keep the value between 0 to 1, we divide each L2-norm with the largest
one in the function. We call this value as the saliency score.

4.2.1 Categorization of instructions

In x86-64, argument registers %rdi, %rsi, %rdx, %rcx, %r8, %r9 are used to
pass thefirst six integer arguments,with the seventh and subsequent arguments passedonto the
stack. Therefore, these argument registers and the corresponding instructions accessing them
are deemed the most important in function signature inferencing. To see if these instructions
actually have higher saliency scores, we first classify all instructions in callees and callers
into the following six categories:

– RG : instructions reading the ground-truth integer argument registers.
– RO : instructions reading the non-ground-truth integer argument registers.
– WG : instructions writing to the ground-truth integer argument registers.
– WO : instructions writing to the non-ground-truth integer argument registers.
– AS : instructions accessing the stack pointer (register %rsp, %rbp) which are not in the
above categories.

– OT : instructions that are not in the above categories (e.g., those that never access any
integer argument registers and control-flow transfer instructions).

For example, the callee shown in Fig. 2a has three arguments and the instruction at Line 6
reads the ground-truth integer argument register %rdx; therefore it belongs toRG . Similarly.
the caller in Fig. 2b requires three arguments and the instruction at Line 7 belongs to WG
since it writes to the ground-truth argument register. A good RNN model should learn to
consider RG (WG) as the most important instructions and instructions access the other
argument registers (RO , WO) as the secondary important instructions. Arguments which
are pushed onto the stack will be in category AS . Floating-point arguments that a callee uses
and a caller prepares can be in the category OT . Since the percentage of callees which have
floating-point arguments is small, we don’t put such instructions into a new category.

4.2.2 Distribution of all instructions

We first present the distribution of various instruction types for caller and callee instruction
sequences which are the input to RNN, respectively, in Fig. 3. We can find the inputs to the
RNN consist of a lot of OT , and the percentage of WG and RG is very small. This confirms

Fig. 2 Example for different kinds of instructions

123

Page 13 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 3 Instruction type distribution for the caller and callee instruction sequences

that function signature inferencing is a non-trivial problem, with DL proposed to identify the
small amount of WG and RG instructions to perform accurate inferencing. The question is
whether EKLAVYA manages to pick up RG or WG as the most important instructions.

4.2.3 Distribution of the most important instruction

Wenext focus on the specific types for instructionswhich are considered as themost important
(with the highest saliency score) by EKLAVYA in inferring the number of arguments, and
the results are shown in Table 4. Note that we exclude callees and callers with (ground-truth)

Table 4 Instruction types for instructions that EKLAVYA considers most important

Inst CPL Opt Instruction Types
OT AS WO WG RO RG

Caller Clang O0 1341 172 469 966 136 21

O1 1569 138 588 724 81 37

O2 529 57 213 226 30 11

O3 100 11 19 20 7 2

Gcc O0 1871 302 1033 679 134 28

O1 1479 139 832 804 79 49

O2 944 122 386 310 79 21

O3 316 24 112 111 17 10

Callee Clang O0 323 228 100 74 90 965

O1 678 70 150 58 317 706

O2 262 21 40 19 143 245

O3 52 6 7 4 41 64

Gcc O0 243 173 68 28 175 1314

O1 409 70 90 49 266 617

O2 320 22 90 20 195 466

O3 109 23 32 8 90 153

The value shows the number of callers (callees) in which different types of instructions are considered as most
important

123

69 Page 14 of 48

Empirical Software Engineering (2024) 29:69

0 argument since the RNN model would have no choice but to consider non-argument-
accessing instructions as the most important ones. Results show that when optimization is
enabled, the most important instruction to infer the number of arguments is OT for many
callers and callees. When optimization is disabled, OT is still the most important instruction
for callers even though the accuracy value is high as shown in Table 2a. That is, there are a
significant number of cases which confuse the training model to use non-argument-accessing
instructions to infer the number of arguments. We identify four categories of sub-cases and
introduce them in the next section.

4.2.4 Zooming into samples misclassified

To get a better understanding of how and why EKLAVYA misclassifies test samples, we
further zoom into the instruction types for callers and callees whose number of arguments
are incorrectly classified byEKLAVYA ; see Table 5. As highlighted in the table,OT accounts
for the biggest share, meaning that OT contributes to the most misclassification cases. That
said, there are a significant number of cases where WG and RG instructions are correctly
picked up as the most important, while EKLAVYA still fails to infer the number of arguments
correctly. We therefore pick up some specific cases to have a deeper understanding.
Examples of callees Fig. 4 shows the saliency map for some examples of misclassified
callees. As shown in Fig. 4a, callee bfd_arch_default_fill has three arguments
but the instruction sequence only has an instruction that reads the first argument register
(%rdi). EKLAVYA considers the call instruction at Line 6 as the most important one (which
isn’t really important for inferring the number of arguments). After checking the source

Table 5 Instruction types of themost important instructions for callers and callees whose number of arguments
are incorrectly recovered

Inst CPL Opt Instruction Types
OT AS WO WG RO RG

Caller Clang O0 50 15 37 61 5 -

O1 146 19 68 97 20 5

O2 41 6 12 23 5 1

O3 4 - 1 1 2 -

Gcc O0 30 12 18 26 6 -

O1 80 8 74 95 19 8

O2 68 15 55 42 18 3

O3 22 1 6 5 1 1

Callee Clang O0 2 7 3 - 7 9

O1 96 16 23 6 95 75

O2 20 2 2 2 29 12

O3 1 - - - 6 2

Gcc O0 3 11 1 - 13 18

O1 48 9 10 2 59 55

O2 35 1 10 1 29 28

O3 5 3 1 1 14 9

The value shows the number of callers (callees) in which different types of instructions are considered as most
important

123

Page 15 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 4 Saliency map example for callees whose number of arguments are incorrectly classified by EKLAVYA

code of the callee, we realize that the callee never uses the second and third argument, and
therefore compiler optimization leaves only the instruction that reads the first argument in its
function body. Similarly, callee fh_baseaddr_query in Fig. 4c has three arguments but
the instruction sequence does not have any evidence about it since the reading of the second
and third arguments is in callee at address 0x404510. Therefore, EKLAVYA considers the
instruction at Line 5 as most important and the number of arguments is incorrectly predicted.

It is obvious that when the instruction sequence does not have RG , EKLAVYA would
prefer to consider non-argument-accessing instructions as themost important ones. However,
themistakes also impact classification results for calleeswhich actually haveRG instructions,
like the one in Fig. 4d. We can see that callee getcon actually has one argument but
EKLAVYA incorrectly identifying instruction at Line 6 as the most important one even
though the RG instruction at Line 5, in fact, provides the strongest hint.

Examples of callers Fig. 5 shows the saliencymap of some examples ofmisclassified callers.
As shown in Fig. 5a, the caller at Line 8 requires 1 argument but EKLAVYA determines that

123

69 Page 16 of 48

Empirical Software Engineering (2024) 29:69

Fig. 5 Saliency map example for callers whose number of arguments are incorrectly predicted. Callers that
need to predict the number of arguments are highlighted with gray color

it doesn’t require any argument since the instruction sequence does not haveWG . It, instead,
considers the instruction at Line 7 as the most important. Caller in Fig. 5b does not require
any argument but EKLAVYA determines that it requires one. Caller in Fig. 5c requires 5
arguments but the instruction that writes to the fifth argument register (%r8) at Line 5 has
a very small saliency score, leading EKLAVYA to determine that it has 3 arguments rather
than 5. Caller at Line 16 of Fig. 5d requires 4 arguments with the WG instruction at Line 15
having the largest saliency score. However, EKLAVYA still wrongly classifies it as having
only 3 arguments.

Examples of misclassification with correctly identified RG and WG More interestingly,
even when RG and WG are considered as the most important instructions by EKLAVYA as
shown in Fig. 4b and Fig. 5d, the classification results are still incorrect for some callees
and callers. We perform detailed analysis for these cases and find that those RG and WG
instructions usually have a larger distance from the entry of the function and to the caller,
respectively, compared to cases which are correctly predicted. Fig. 6 draws the distance
(in terms of the number of instructions from the entry of the function or to the caller) of
the instruction with the highest saliency score. We can see that the misclassification cases
typically have a larger distance compared to cases of correct classification. In addition, all
the argument registers can also be used to store temporary values, and therefore the RNN

123

Page 17 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 6 Instruction types and distance measurement for the most important instructions when the number of
arguments is incorrectly recovered

model may incorrectly consider WG as very important at the caller site, when the registers
are in fact being used to store temporary values.

Top 5 important instructions Finally, we extend our analysis to five instructions with
the biggest saliency scores instead of only the top one, in an effort to see to what extent
EKLAVYA is completely lost in picking upWG and RG instructions (not even among the top
5). Table 6 shows the number of functions (among the misclassification cases) which manage

123

69 Page 18 of 48

Empirical Software Engineering (2024) 29:69

Table 6 Instruction types of the
top 5 important instructions for
callers and callees whose number
of arguments are incorrectly
recovered

CPL Opt Caller Callee
without WG with WG without RG with RG

Clang O0 32 136 9 19

O1 147 193 178 141

O2 38 50 39 28

O3 4 4 6 3

Gcc O0 31 61 12 34

O1 89 195 81 102

O2 76 125 47 57

O3 21 15 14 19

The value shows the number of callers (callees) with at least oneWG or
RG instruction in its top 5 most important instructions

to identify at least one WG or RG instructions among the top 5 most important instructions
and otherwise. We can see that EKLAVYA fails to identify RG and WG instructions as the
top 5 most important instructions for a large number of callees and callers, which shows up
more significantly with optimized binaries.

4.2.5 Summary of the saliency map analysis

Our detailed analysis using saliency map shows that the existing RNN approaches fail to
identify argument-accessing instructions as important ones in inferring the function signa-
tures, and that is the reason for many misclassification cases. The problem shows up even
more significantly with optimized binaries. The next question is, is this failure in identifying
the most important instructions due to the poor learning capability of our machine learning
model, or is this failure due to other reasons, e.g., noisy training data.

4.3 Four key scenarios that contribute to the lower accuracy and bad saliencymap

The overall statistics presented in Section 4.1 and Section 4.2 show that existing RNN
approaches fall short on analyzing optimized binaries. However, the failure in attributing
important instructions to WG and RG could be due to the poor learning capability of the
machine learning, noisy inputs in the training data, or even non-existence of WG and RG
instructions. In this section, we dig deeper into the reasons behind that observation by ana-
lyzing the instructions in functions to which EKLAVYA makes mistakes in inferring the
number and type of function arguments. Specifically, we summarize the common features
those callees and callers have and compile our findings into the following four key scenarios.
For example, for callees whose top 5 important instructions do not have instruction type RG
, we perform detailed analysis to collect the features they have.

4.3.1 Missing argument-reading instructions

This refers to cases where argument-reading instructions are missing in optimized binaries
due to, e.g., dead code elimination, dead argument elimination, constant propagation, and
other optimization strategies. This scenario could be the result of the following two sub-cases.

123

Page 19 of 48 69

Empirical Software Engineering (2024) 29:69

Arguments are accessed in helper functions (denoted as Helper) There are cases where
the access of an argument is in helper functions when optimization is enabled. Here, a
helper function is a function that performs part of the computation and is called by the
callee being analyzed. Fig. 7a and b show such an example in which all the arguments of
function lua_toboolean are accessed in helper function index2adr. If the input to
the RNN engine only consists of the function body of lua_toboolean (which is the case
for existing deep learning approaches like EKLAVYA), the training sample would confuse
the RNN model since the sample label indicates multiple arguments whereas the function
body (helper excluded) does not have the corresponding argument reading instructions. As
a result, the model would likely pick up other irrelevant information, e.g., OT , as important
instructions.
Arguments are not used (denoted as Unread) There are also cases with unused argu-
ments in callees, usually due to fixed prototypes of the functions (e.g., virtual functions).
However, the label given to the RNN engine in existing approaches always has these unused
arguments counted, which would confuse the training process. As shown in Fig. 8, the first

Fig. 7 Arguments are accessed in helper function

123

69 Page 20 of 48

Empirical Software Engineering (2024) 29:69

Fig. 8 Not reading argument registers

and third arguments of jpeg_free_large are not used, but the label used in the training
set indicates that it has three arguments.

4.3.2 Missing argument-preparing instructions (denoted asWrapper)

If a caller is in awrapper function, an optimized compilermay decide not to reset the argument
registers but simply “pass them through” from the caller of the wrapper function. Here, a
wrapper function is a subroutine whose main purpose is to call another subroutine. As shown
in Fig. 9a, function ar_emul_append is a wrapper function and existing RNN approaches
only use the four instructions from Line 2 to Line 5, none of which accesses an argument
register, to infer the number of arguments of the caller at Line 6, while the ground-truth label
indicates five arguments. It would, again, confuse the training process.

Wecan see that in both cases ofmissing argument-reading andmissing argument-preparing
instructions, the label of the training sample does not tally with instructions in the function
body for optimized binaries, which affects the training quality of RNN models and in turn
the accuracy of function signature recovery. To rectify this problem, our key idea would be
to make the label and representation of function body agree; see how ReSIL achieves this in
Section 5.

Figure 10 shows thedistribution of themost important instruction forHelper ,Unread , and
Wrapper .We can find that forHelper , EKLAVYAuses non-argument-accessing instructions
(OT) to infer the number of arguments. RO and OT have the largest score for most callees as

Fig. 9 Missing argument-preparing instructions

123

Page 21 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 10 Most important instruction types for Helper , Unread , and Wrapper

shown in Fig. 10b. Since someWrapper cases will prepare the ground-truth argument register
but do not set other argument registers, there are significant WG cases in Fig. 10c. We can
also find that for case Wrapper , instructions that read the argument register (RO , RG) are
also considered as most important in EKLAVYA for many callers. These cases would further
confuse the RNN models to wrongly consider OT as the most important instructions for
callees (callers).

4.3.3 Indistinguishable cases

The next key reason to lower accuracy when dealing with optimized binaries refers to cases
where even human experts would not be able to classify correctly with all information pre-
sented.
Argument registers used for other purposes (denoted as Temp) As described in the Intel
Manual INTEL (2018), all argument registers could also be used as scratch registers to store
temporary values. This serves as noise to the RNN engine, sometimes to the extent that it
is impossible to distinguish the intended usage of a register. There is hardly any evidence
for distinguishing the two cases even for human experts, not to mention a machine learning
engine; see an example in Fig. 11.

We had considered handling such cases by accommodating information from the callee.
However, some argument-reading instructions at the callees could have been eliminated due
to optimization (as discussed above) while similar optimization is absent at the caller site,
which introduces mismatches and uncertainties. In addition, we are not able to get actual
target for an indirect caller from a binary. Therefore, it remains infeasible to distinguish them
with reasonable accuracy.

Fig. 11 Indistinguishable argument register usage

123

69 Page 22 of 48

Empirical Software Engineering (2024) 29:69

Fig. 12 Example of Indistinguishable types

Indistinguishable argument types (denoted as Indis-type)
There simply isn’t enough evidence for a machine learning engine to tell some types apart

as the same (or similar in general) instruction can be used in an optimized binary to access
different types of arguments. This problem also makes it hard for a DL engine to differentiate
various integer types (e.g., int and long), which could provide significant benefits to security
applications like CFI. We further discuss this in Section 6.4. It is more difficult to distinguish
these cases for optimized binaries since compiler optimizations remove many redundant
instructions that would provide information to help distinguish them. Fig. 12 shows such an
example.

4.3.4 Irrelevant instructions (denoted as Irrelevance).

The last contributor to lower accuracy in processing optimized binaries and bad saliency
map information for unoptimized ones refer to noise in the training and testing samples.
Current DL approaches take the entire function body as input, where many instructions are
not related to the identification of the number (and types) of arguments. Such noise may
affect the performance of machine learning as shown by Sharma et al. (2015). As shown in
Fig. 7a, many instructions are not relevant to argument reading, such as instructions at Line
9 and Line 10. As shown in Table 4, OT are considered as the most important instruction in
inferring the number of arguments for a lot of callees and callers even though RG (WG) and
RO (WO) can be found in the instruction sequence, such as the callees and callers compiled
with optimization flag O0.

4.3.5 Statistics of the various complication scenarios

Table 7 shows the number of occurrences of Helper , Unread , Wrapper , and Temp in our
dataset. They are calculated by making use of static binary analysis based on TypeArmor
and then the recovered signature is compared with the ground truth. It is clear that the
complications ofHelper ,Unread ,Wrapperonly occur in optimized binaries,which partially

Table 7 Number of intricacy
cases

Opt #Helper #Unread #Wrapper #Temp

O0 0 0 0 6,803

O1 1,182 1,189 819 3,218

O2 349 568 82 1,630

O3 78 151 6 266

Total 1,609 1,908 907 11,917

123

Page 23 of 48 69

Empirical Software Engineering (2024) 29:69

explains why existing deep learning approaches have lower accuracy in analyzing them.
Interestingly, the number of these cases in binaries compiled with O1 is larger than those
compiled with O2 and O3. Our further analysis shows that O1 binaries simply have a larger
number of functions compared to O2 and O3 binaries. In other words, the numbers reported
in Table 7 do not necessarily imply the likelihood of occurrences in different optimization
levels. Another interesting observation is that unoptimized binaries are more likely to use
argument registers to store temporary values (case Temp).

We do not report the number of cases for Indis-type and Irrelevance as it is difficult to
define what kind of instructions are considered similar and that almost every callee (caller)
would have irrelevant instructions.

5 ReSIL: revivifying deep learning on optimized binaries

In the previous section, we detail four complication scenarios that contribute to the lower
accuracy of DL when processing optimized binaries. In this section, we present our solutions
to these four scenarios and propose ReSIL to incorporate compiler-optimization-specific
domain knowledge into the representation of samples to make DL models regain its learning
capability.

5.1 Missing argument-related instructions

As discussed in Section 4.3, the problem here is that the function body (with missing
argument-reading or argument-preparing instructions) does not match with ground-truth
labels, causing difficulties in the learning process. Intuitively, we need to correct such mis-
matches so that DL can regain its learning capability and high accuracy. Such correction in
ReSIL takes different forms depending on the nature of the mismatches.
Arguments are read in helper functions (Helper) A simple solution is to include all
instructions in the helper function, but that will also include many irrelevant instructions
which would at the same time hurt the learning process. Instead, we make use of inter-
procedural analysis to find all (potential) argument-reading instructions (process of which is
identical to that detailed in existing work Lin and Gao (2021)), and “summarize” them with
our newly introduced instruction set before inserting the summarized instructions ahead of the
call to the helper function. Such summarizing instructions serve as part of the input samples
to the machine learning model. Note that the summary instructions inserted preserve the
operand information with only the opcode being replaced, to signal to the machine learning
engine that the corresponding argument related instructions are present in a helper function.

Our newly introduced instruction set includes the following opcode that is not defined in
the Intel Manual INTEL (2018):

– 0xd6 is used to summarize any single-byte argument-reading instructions.
– 0x0f 0x25 is used to summarize any two-byte argument-reading instructions whose
operand is an integer.

– 0x0f 0x27 is used to summarize any two-byte argument-reading instructions whose
operand is floating-point.

– 0x0f 0x38 0x51 is used to summarize any three-byte argument-reading instructions
whose single operand is an integer.

– 0x0f 0x38 0x53 is used to summarize any three-byte argument-reading instructions
whose single operand is floating-point.

123

69 Page 24 of 48

Empirical Software Engineering (2024) 29:69

The key idea of introducing our new opcodes here to summarize the argument-reading
instructions is two-fold. First, once these instructions with our new opcode are inserted
into the function body, we correct the mismatches between function body and ground-truth
labels. Note that we do not need to tell the DL engine what these newly introduced opcodes
mean, as the DL engine is supposed to be able to learn their meanings given sufficient
number of training samples. Second, such insertion of only summary instructions avoids
“over-correcting” with other noisy instructions.

For the example in Fig. 7a and b, we identify the two argument-reading instructions in
function index2adr and insert two summary instructions with our newly defined opcode;
see Line 3 and Line 4 in Fig. 7c1. We perform the same correction to both training and testing
samples.

We emphasize here that our identification of argument-reading instructions in the helper
function does not need to be 100% accurate, e.g., an instruction reading %rcx not for argu-
ment reading but for accessing temporary storage could also be summarized and inserted
into the function body. We leave the DL model to choose which extra instruction inserted is
more important in inferring the number of arguments as our additional treatment here is not
to replace the DL engine but to present it the corrected samples.

Arguments are not used (Unread) In this case, ReSIL takes a simpler approach to correct
the label so that the deep learning classification would eventually output the number of argu-
ments used by a function rather than the number of arguments the function (to bemore precise
— its source code) has. Therefore, in the training set, we label functionjpeg_free_large
in Fig. 8 as using two arguments.

One may question the extent to which such a change in the expected output of the machine
learning engine would impact its usefulness in specific application scenarios. For example,
in the case of CFI, it will lead to the use of a CFI policy that the number of arguments passed
at the caller site should be equal or larger than that at the targeted callee site. However, we
argue that such impact would be minimal as existing fine-grained CFI enforcement always
apply exactly the same policy due to the conservative inferencing at callees and callers (Van
Der Veen et al. 2016; Muntean et al. 2018).

ReSIL obtained the corrected ground-truth label by examining the presence or absence of
attribute __attribute__((unused)) or by performing static binary analysis Lin and
Gao (2021) to find out the number of argument registers that are actually used. Such analysis
is only performed for the training samples. The ground-truth label of the testing samples is
obtained by performing static binary analysis Lin and Gao (2021).

Arguments are not set in wrapper functions (Wrapper)
For the same reason outlined above, here we summarize the argument-preparing instruc-

tions in caller of the wrapper function (identified in the same way as in related work Lin
and Gao (2021)) with our newly introduced opcodes, and then insert them into the wrapper
function. Fig. 9b shows the result of our insertion (Line 2 to Line 6) to the example shown
in Fig. 9. Note that we cater for cases where argument-preparing instructions appear in both
the wrapper function and its caller. We perform this analysis and correction for both training
and testing samples.

1 The opcode for the instruction at Line 4 is 0x3b with 0x48 being the prefix used to indicate use of a 64-bit
register.

123

Page 25 of 48 69

Empirical Software Engineering (2024) 29:69

5.2 Indistinguishable cases

Since these are indistinguishable cases (number of arguments and argument types) where not
enough evidence is present in the function body for the DL engine to perform classification,
ReSIL simply outputs the top five inferencing results rather than only the top one as in the
existing approach EKLAVYA . For the example in Fig. 12b, the top five outputs for the
type of the second argument are < pointer , int64, int32, f loat, int8 > with probabilities
< 0.876, 0.124, 3.18e-05, 2.23e-05, 2.44e-07 >. We can see that it has a non-negligible
probability being a 64-bit integer.

5.3 Irrelevant instructions

We consider an instruction relevant if it accesses any argument registers or stack addresses.
Meanwhile, any branch instructions are also considered relevant. For example, the irrelevant
instructions in function lua_toboolean are shown in Fig. 7a with light gray color, which
are not included as input to the DL engine (for both training and testing samples) in ReSIL.

5.4 Classification output of ReSIL

With our corrections to the DL engine discussed above, the output of ReSIL for a target
function a includes:

– Number of arguments. At the callee site a, ReSIL outputs the number of arguments
used by a while at the caller site, ReSIL outputs the number of arguments that are passed
to a. Note that the ground-truth of the two outputs could be different. Also note that
ReSIL outputs the top five most likely values.

– Types of arguments. Each argument of a is defined as: τ ::= int8|int16|int32|int64|
pointer |struct | f loat . Different from the struct type in EKLAVYA ,we only use struct
to represent an argument on the stack whose aligned size is bigger than 16 bytes. We also
don’t have types enum and union used in EKLAVYA since ReSIL always outputs the
corresponding container type.

6 Evaluation

In this section, we first evaluate the performance of ReSIL in inferring the number and
types of arguments. Then compare the saliency map obtained from ReSIL with the one in
EKLAVYA to confirm the impact of our targeted changes in ReSIL. We further investigate
the impact of instruction embedding on function signature inference, including the dimension
of embedding vectors and the type of embedding. The implementation of the neural network
remains the same as in EKLAVYA , while the data processing routine is written in Python
with 1,850 lines of code which extracts the binary code for each function, inserts our special
instructions for callees and callers, and corrects labels for callees that do not use some of
their arguments.

We base our ground truth (the number and types of arguments) on information collected
by an LLVMLattner and Adve (2004) pass and on DWARF v4 debugging information Com-
mittee et al. (2010) which is the default setting for gcc and clang. We use LLVM to
collect source-level information, including the number and types of arguments for each callee

123

69 Page 26 of 48

Empirical Software Engineering (2024) 29:69

and caller as well as their source line numbers. We then compile the test applications with
DWARF information and link the source-level line numberswith binary-level addresses using
the DWARF line number table. Different from EKLAVYA which obtains the ground truth
by parsing the DWARF debug information, the ground truth we obtained is of finer-grain.
For example, if one function has an argument whose type is a structure and its size is less
than 16-bytes, it will be passed by two consecutive integer argument registers. In this case,
ReSIL uses the ground truth by LLVM as the function has two arguments rather than one.
Note that the ground truth is collected at the compiler intermediate level after optimization.
That is, the ground truth we collected focus on how many arguments one function will use
rather than the number of arguments it has. inferred result is not 100% accurate, and usually
we need human effort to help see whether the result is correct. In this case, human can only
see how many arguments are used from the binary.

We use the same dataset described in Section 4.1 to perform the evaluation, in which a
five-fold cross-validation is used to perform training and testing. Specifically, we randomly
split each complication case in Table 7 into five folds (one used for testing and the remaining
for training). For other callees (callers) which are not in the complication cases, we randomly
split each utility package into five folds. Note that the training set contains all binaries com-
piled with multiple optimization levels from both compilers. The test results are reported on
different categories of optimizations for different compilers. In order to ensure the general-
izability of our approach, we also use a new training and testing set to see the effectiveness
of our approach.

ReSIL and EKLAVYA share the same architecture, which is based on RNN. RNN is very
effective for sequential data, as it mines time-series information and semantic information. In
order to deal with the exploding and vanishing gradients during training Bengio et al. (1994),
one could use an LSTM network or use an RNN model with gated recurrent units (GRUs).
We use GRUs since it has the control to save or discard previous information and may train
faster due to fewer parameters. Meanwhile, GRU further simplifies the gate structure, merges
the forget gate and the input gate into an update gate.

6.1 Performance evaluation

6.1.1 Accuracy

Our goal is to evaluate the accuracy of inferences for the four tasks by using the approach we
proposed in Section 5 to correct the complication scenarioswe identified.Results are shown in
Tables 8, 9 and 10, which are the average accuracy for the five folds under different compilers
with different optimization levels. Note that we present the accuracy of ReSILwith its top five
output, top one output, and top one output for coarse-grained type inference for comparison
with EKLAVYA on argument types. Confidence scores are computed by calculating the
geometric means using softmax probability with matrix scaling calibration Guo et al. (2017).

Table 8 shows that ReSIL (with its top one output) generally outperforms EKLAVYA
with its most significant improvement in inferring the number of arguments at callees when
optimization is enabled, especially for callees compiled by O1. This agrees with the statistics
of the complication scenarios in Table 7 from which we can see that complications hap-
pen mostly in callees compiled with O1. The confidence score of ReSIL top one output is
comparable with EKLAVYA .

The accuracy in identifying the type of an argument at the caller site is comparablewith the
result of EKLAVYA ; see Table 9. If we only use ReSIL’s top one output as the inferred label,

123

Page 27 of 48 69

Empirical Software Engineering (2024) 29:69

Table 8 Accuracy in inferring the number of arguments

Inst Opt App Clang Gcc
CI T Acc% CS% CI T Acc% CS%

Caller O0 R5 3,217 3,363 95.66 96.88 4,197 4,293 97.76 95.94

E 3,157 93.87 99.00 4,182 97.41 98.99

R1 3,169 94.23 99.57 4,168 97.09 99.69

O1 R5 3,142 3,359 93.54 96.62 3,317 3,591 92.37 93.49

E 2,936 87.41 98.80 3,252 90.56 98.39

R1 3,058 91.04 99.19 3,202 89.17 98.69

O2 R5 1,080 1,140 94.47 97.94 1,779 1,957 90.90 93.89

E 1,039 91.14 99.01 1,735 88.66 98.55

R1 1,051 92.19 99.56 1,734 88.61 98.70

O3 R5 160 164 97.56 98.42 567 614 92.35 94.41

E 155 94.51 99.28 571 93.00 98.72

R1 158 96.34 99.66 555 90.40 99.09

Callee O0 R5 2,006 2,022 99.21 99.55 2,181 2,209 98.73 98.78

E 2,000 98.91 99.30 2,175 98.46 99.37

R1 2,002 99.01 99.46 2,167 98.10 99.54

O1 R5 1,936 2,089 92.68 95.12 1,444 1,542 93.64 95.78

E 1,772 84.83 98.86 1,349 87.48 98.90

R1 1,894 90.67 99.13 1,415 91.76 99.21

O2 R5 756 797 94.86 97.01 1,063 1,136 93.57 95.86

E 725 90.97 99.28 1,008 88.73 99.08

R1 746 93.60 99.30 1,044 90.00 99.14

O3 R5 152 159 95.60 96.32 406 425 95.53 96.57

E 150 94.34 99.70 390 91.76 99.27

R1 150 94.34 99.63 399 93.88 99.08

Numbers in the gray background show that ReSIL improves the accuracy in inferring the number of arguments
even only using the top 1 output as the inference number
R5: ReSIL with top 5 outputs
E: EKLAVYA
R1: ReSIL with top 1 output
CI: Number of callers/callees correctly inferred
T: Number of callers/callees
CS: Confidence score

we can see that the accuracy of ReSIL in identifying the argument type in a finer-grained
manner is a bit lower especially for binaries compiled by gcc. This is because there are many
misidentifications among different types of integers. For binaries compiled by clang, themain
misidentification comes from the indistinguishability between 64-bit integers and pointers.

We stress that this comparison betweenReSIL andEKLAVYA isn’t fair asReSIL performs
a much finer-grained inferencing of argument types. To establish a fairer comparison, we re-
group the finer-grained types identified by ReSIL to be as close to that in EKLAVYA as
possible, and present the results in the last three columns of Tables 9 and 10. We can see that
nowReSIL has a comparable accuracywith EKLAVYAwhen inferring a coarse-grained type.
It also shows that the insertion of our summary instructions helps argument type recovery as

123

69 Page 28 of 48

Empirical Software Engineering (2024) 29:69

Ta
bl
e
9

A
cc
ur
ac
y
in

in
fe
rr
in
g
th
e
ty
pe

of
ar
gu

m
en
ta
tc
al
le
rs

C
PL

A
rg

O
pt

R
eS
IL

E
K
L
A
V
Y
A

R
1

R
C
1

T
C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S
%

C
la
ng

1s
t

O
0

3,
64

9
96

.8
9

98
.4
3

3,
64

5
96

.7
9

99
.6
0

3,
61

2
95

.9
1

99
.6
9

3,
62

5
96

.2
6

99
.6
5

3,
76

6
O
1

3,
02

7
96

.5
6

98
.7
9

3,
00

4
95

.8
8

99
.6
2

3,
00

3
95

.7
9

99
.7
5

3,
02

3
96

.4
2

99
.7
2

3,
13

3
O
2

1,
03

3
98

.3
8

98
.8
6

1,
01

5
96

.7
6

99
.8
1

1,
02

1
97

.2
3

99
.8
6

1,
02

5
97

.5
2

99
.8
4

1,
04

9
O
3

16
0

98
.1
6

99
.2
4

16
0

98
.1
6

99
.8
2

16
0

98
.1
6

99
.9
1

16
1

98
.7
7

99
.8
7

16
3

2n
d

O
0

2,
10

8
92

.7
0

95
.7
9

2,
06

5
90

.8
1

99
.1
9

2,
04

1
89

.7
5

99
.2
3

2,
05

9
90

.6
4

99
.1
6

2,
27

4
O
1

1,
72

2
90

.6
8

96
.0
0

1,
64

7
86

.9
1

99
.2
9

1,
65

8
87

.3
1

99
.2
3

1,
68

8
88

.8
9

99
.1
3

1,
89

5
O
2

63
7

94
.5
1

96
.6
1

63
1

93
.7
6

99
.5
0

61
6

91
.3
9

99
.5
6

61
8

91
.6
9

99
.5
0

67
3

O
3

12
3

96
.8
5

97
.3
3

12
3

96
.8
5

99
.6
4

12
1

95
.2
8

99
.6
9

12
1

95
.2
8

99
.6
1

12
7

3r
d

O
0

1,
17

7
91

.1
7

96
.3
4

1,
14

2
88

.4
6

99
.1
0

1,
15

1
89

.1
6

99
.3
2

1,
16

9
89

.1
6

99
.1
9

1,
29

1
O
1

80
6

87
.8
0

97
.1
2

80
6

87
.8
0

99
.2
4

78
4

85
.1
2

99
.5
3

81
3

88
.2
7

99
.4
4

91
8

O
2

35
0

91
.3
8

97
.6
9

34
7

90
.8
3

99
.5
7

34
0

88
.7
7

99
.5
4

34
6

90
.3
4

99
.4
4

38
2

O
3

87
95

.6
0

99
.5
9

89
97

.8
0

99
.4
3

87
95

.6
0

99
.7
5

87
95

.6
0

99
.7
5

91
G
cc

1s
t

O
0

4,
07

3
97

.6
0

98
.4
9

4,
06

1
97

.3
2

99
.6
3

4,
04

0
96

.8
1

99
.6
7

4,
06

0
97

.2
9

99
.6
2

4,
17

3
O
1

3,
26

3
97

.0
3

97
.8
7

3,
23

9
96

.3
4

99
.4
9

3,
22

2
95

.8
1

99
.5
6

3,
24

9
96

.6
1

99
.4
7

3,
36

2
O
2

1,
73

5
96

.6
0

97
.7
4

1,
71

7
95

.6
5

99
.5
2

1,
71

3
95

.3
8

99
.5
6

1,
72

3
95

.9
4

99
.5
0

1,
79

5
O
3

51
8

97
.7
4

98
.4
9

51
8

97
.7
4

99
.5
3

51
6

97
.3
6

99
.6
2

51
9

97
.9
2

99
.5
5

53
0

2n
d

O
0

2,
64

0
93

.3
5

94
.4
2

2,
59

8
91

.8
7

99
.0
6

2,
56

6
90

.7
4

99
.0
1

2,
61

2
92

.3
6

98
.8
6

2,
82

8
O
1

2,
15

8
92

.5
8

93
.4
3

2,
08

7
89

.5
3

98
.9
1

2,
07

7
89

.1
0

98
.8
8

2,
13

3
91

.5
1

98
.6
0

2,
33

1
O
2

1,
08

1
91

.8
4

93
.7
4

1,
06

8
90

.8
9

99
.1
1

1,
03

8
88

.1
9

98
.8
0

1,
07

0
91

.0
8

98
.5
8

1,
17

5
O
3

33
1

92
.4
6

95
.8
6

33
8

94
.4
1

99
.3
6

32
5

90
.7
8

98
.9
8

33
2

92
.7
4

98
.8
1

35
8

3r
d

O
0

1,
45

8
90

.6
7

94
.3
9

1,
46

6
91

.1
7

98
.9
3

1,
40

2
88

.1
8

99
.1
0

1,
47

5
91

.7
3

98
.8
5

1,
60

8
O
1

1,
29

4
91

.0
0

95
.2
2

1,
29

8
91

.2
8

98
.8
3

1,
22

0
89

.2
5

99
.0
4

1,
30

4
91

.7
0

98
.8
0

1,
42

2
O
2

71
4

93
.7
1

94
.9
7

69
3

91
.1
8

99
.1
1

68
8

89
.5
8

99
.0
6

71
9

94
.3
6

98
.8
8

76
0

O
3

22
4

94
.5
1

96
.6
5

22
3

94
.0
9

99
.4
0

21
6

92
.3
1

99
.5
7

22
7

95
.7
8

99
.4
6

23
7

C
I:
N
um

be
r
of

ca
lle
rs
/c
al
le
es

co
rr
ec
tly

in
fe
rr
ed

T
:N

um
be
r
of

ca
lle
rs
/c
al
le
es

in
th
e
te
st
in
g
se
t

C
S:

C
on

fid
en
ce

sc
or
e

R
1:

R
eS

IL
w
ith

to
p1

ou
tp
ut

R
C
1:

R
eS

IL
w
ith

to
p1

ou
tp
ut

an
d
co
ar
se
-g
ra
in
ed

ty
pe

123

Page 29 of 48 69

Empirical Software Engineering (2024) 29:69

Ta
bl
e
10

A
cc
ur
ac
y
in

in
fe
rr
in
g
th
e
ty
pe

of
ar
gu

m
en
ta
tc
al
le
es

C
PL

A
rg

O
pt

R
eS
IL

E
K
L
A
V
Y
A

R
1

R
C
1

T
C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S%

C
I

A
cc
%

C
S%

C
la
ng

1s
t

O
0

1,
82

1
97

.3
3

98
.5
4

1,
79

9
96

.1
5

99
.6
8

1,
80

8
96

.6
3

99
.6
6

1,
80

9
96

.6
9

99
.6
5

1,
87

1
O
1

1,
84

2
95

.5
9

97
.3
3

1,
80

9
93

.8
8

99
.5
9

1,
82

0
94

.4
5

99
.5
3

1,
83

9
95

.4
3

99
.3
9

1,
92

7
O
2

71
9

97
.8
2

98
.4
7

71
6

97
.4
1

99
.7
6

71
4

97
.1
4

99
.8
4

71
8

97
.6
9

99
.8
1

73
5

O
3

14
8

98
.6
7

99
.5
4

14
7

98
.0
0

99
.8
4

14
8

98
.6
7

99
.8
7

14
8

98
.6
7

99
.8
7

15
0

2n
d

O
0

1,
11

4
91

.6
9

95
.3
3

1,
07

9
88

.8
1

99
.1
6

1,
09

0
89

.7
1

99
.0
6

1,
09

2
89

.8
8

99
.0
2

1,
21

5
O
1

1,
12

2
89

.6
2

93
.5
6

1,
08

7
86

.8
2

99
.1
9

1,
08

7
86

.8
2

99
.0
0

11
09

88
.5
8

98
.9
0

1,
25

2
O
2

49
8

94
.3
2

96
.1
2

49
2

93
.1
8

99
.4
1

48
9

92
.6
1

99
.3
4

49
3

93
.3
7

99
.2
2

52
8

O
3

11
7

96
.6
9

96
.5
6

11
5

95
.0
4

99
.6
9

11
5

95
.0
4

99
.5
0

11
6

95
.8
7

99
.5
0

12
1

3r
d

O
0

51
4

88
.7
7

92
.4
0

48
9

84
.4
6

98
.8
7

49
4

85
.3
2

98
.6
5

49
5

85
.4
9

98
.6
0

57
9

O
1

53
0

86
.6
0

93
.0
7

51
4

83
.9
9

98
.9
6

51
2

83
.6
6

98
.7
1

52
4

85
.6
2

98
.5
0

61
2

O
2

24
3

91
.7
0

95
.5
4

24
0

90
.5
7

99
.1
7

23
8

89
.8
1

99
.3
6

24
1

90
.9
4

99
.2
2

26
5

O
3

60
90

.9
1

94
.7
0

59
89

.3
9

99
.4
9

58
87

.8
8

99
.4
0

60
90

.9
1

99
.1
2

66
G
cc

1s
t

O
0

1,
98

8
97

.0
2

97
.9
3

1,
96

3
95

.8
0

99
.6
5

1,
96

9
96

.1
0

99
.5
8

1,
97

4
96

.3
4

99
.5
7

2,
04

9
O
1

1,
37

6
96

.9
0

97
.9
0

1,
36

0
95

.7
7

99
.6
8

1,
36

2
95

.9
2

99
.6
8

1,
37

2
96

.6
2

99
.5
3

1,
42

0
O
2

1,
02

3
97

.7
1

97
.8
6

1,
01

2
96

.6
6

99
.6
7

1,
01

3
96

.7
5

99
.5
6

1,
01

5
96

.9
4

99
.5
3

1,
04

7
O
3

38
1

97
.6
9

98
.5
2

38
1

97
.6
9

99
.7
4

37
9

97
.1
8

99
.6
6

38
0

97
.4
4

99
.6
1

39
0

2n
d

O
0

1,
21

3
91

.4
1

94
.4
9

1,
17

0
88

.1
7

99
.0
8

1,
18

2
89

.1
2

89
.3
7

1,
18

6
89

.0
7

99
.1
0

1,
32

7
O
1

87
9

92
.1
4

95
.0
6

85
1

89
.2
0

99
.1
2

85
8

89
.9
4

99
.1
6

86
7

90
.8
8

99
.0
5

95
4

O
2

66
0

92
.9
6

95
.1
6

64
8

91
.2
7

99
.1
2

64
6

90
.9
9

98
.8
9

65
4

92
.1
1

98
.7
7

71
0

O
3

27
9

95
.2
2

96
.0
2

27
8

94
.8
8

99
.6
2

27
4

93
.5
2

99
.5
3

27
5

93
.8
6

99
.4
5

29
3

3r
d

O
0

55
2

87
.2
0

92
.9
3

52
8

83
.4
1

98
.9
2

53
2

84
.0
4

98
.6
2

53
6

84
.6
8

98
.5
8

63
3

O
1

41
9

88
.5
8

93
.0
2

40
9

86
.4
7

98
.4
4

40
5

85
.6
2

99
.0
3

41
2

87
.1
0

98
.9
2

47
3

O
2

32
7

90
.5
8

93
.8
4

32
0

88
.6
4

99
.2
3

31
7

87
.8
1

98
.6
7

32
2

89
.2
0

98
.4
9

36
1

O
3

14
6

93
.5
9

95
.6
1

14
3

91
.6
7

99
.3
0

14
3

91
.6
7

99
.0
4

14
4

92
.3
1

99
.0
5

15
6

C
I:
N
um

be
r
of

ca
lle
rs
/c
al
le
es

co
rr
ec
tly

in
fe
rr
ed

T
:N

um
be
r
of

ca
lle
rs
/c
al
le
es

in
th
e
te
st
in
g
se
t

C
S:

C
on

fid
en
ce

sc
or
e

R
1:

R
eS

IL
w
ith

to
p1

ou
tp
ut

R
C
1:

R
eS

IL
w
ith

to
p1

ou
tp
ut

an
d
co
ar
se
-g
ra
in
ed

ty
pe

123

69 Page 30 of 48

Empirical Software Engineering (2024) 29:69

they give evidence to the RNN model on the number of bits of the argument that are being
accessed.

Regarding recovery of argument types from the callee site, we can see that ReSIL has
its more significant improvement in identifying types of the second and third arguments.
Such improvement comes from the benefit of using the top five outputs. As discussed in Sec-
tion 4.1, most of the first arguments are 32-bit integers and pointers which are immune to the
complication scenarios we identified in Section 4.3.3; therefore, our accuracy in identifying
them is much higher.

6.1.2 F1 scores

We also use F1 score to measure the performance of ReSIL for each class; see Table 11 and
for the F1 scores improvement in different tasks.

Table 11a shows that ReSIL can effectively infer the number of arguments when callers
have zero arguments. This is mainly due to the insertion of our summary instructions in
wrapper functions that do not prepare arguments due to compiler optimization. ReSIL also
performs better than EKLAVYA especially for callees compiled with optimizations and
callees with more than six arguments. Moreover, we can see that ReSIL has a higher F1 score
for callees which have zero arguments.

Table 11b shows that ReSIL improves the performance in distinguishing between 64-bit
integers and pointers. For example, we can see that ReSIL improves the F1 score in inferring
64-bit integers for callers and callees compiled byClangwith optimization level O3 by 13.8%
and 9.4% respectively.

6.1.3 Distribution of testing set

Table 12 shows the distribution of the testing dataset and in particular, the number of various
cases that our testing dataset contains. For example, when evaluating the function signature
inference for callees compiled by clang with O0 optimization flag, the testing set has 151
callees with 0 arguments, 656 callees with 1 argument, and 636 callees with 2 arguments.

We can find that there are few callees which have more than 6 arguments and there are
few cases where the type of the argument is 16-bit integers, floating-point, or struct. This
explains why the F1-score improvement in Table 11 for these cases is not meaningful.

6.1.4 Saliency map

To see if ReSIL manages to correct the complexity scenarios we identified earlier, here we
perform a more in-depth saliency map analysis comparing the extent to which ReSIL and
EKLAVYA make best use of RG and WG instructions. More specifically, we first perform
the saliency map analysis on both models and extract the saliency scores of all RG and WG
instructions within a callee or caller. Among these RG andWG instructions, we pick the one
that has the highest saliency score within the callee or caller, and then present the box and
count distribution plot in Fig. 13. Note that the saliency score is always normalized to 1.0
among all instructions within the callee or caller.

We can see from both the box plot and the count distribution that ReSIL values the
RG and WG instructions more when inferring the number of arguments, which is exactly
the problem we identified in EKLAVYA (see Section 4.2). Result is more apparent from

123

Page 31 of 48 69

Empirical Software Engineering (2024) 29:69

Table 11 Improvement of F1 score

(a) Inferring the number of arguments

Inst CPL Opt Number of Arguments

0 1 2 3 4 5 6 7 8 MF

Caller Clang O0 4.5 1.3 0.9 1.3 1.2 3.4 0.9 2.8 5.5 1.6

O1 10.9 3.9 3.8 4.6 4.9 7.1 5.8 9.4 5.8 4.9

O2 7.5 3.7 3.9 4.7 2.8 7.4 6.5 10.7 3.8 4.4

O3 3.0 4.2 4.6 6.0 5.9 2.4 0.7 5.5 20.0 4.0

Gcc O0 5.2 0.3 -0.2 -0.3 -0.1 1.6 0.1 -0.2 -1.1 0.4

O1 8.6 2.4 2.1 1.4 1.0 1.5 2.2 1.8 1.5 2.3

O2 10.4 2.2 1.6 1.5 3.7 4.2 0.7 3.9 -0.5 2.5

O3 2.9 0.0 0.5 0.8 3.4 1.9 3.0 7.3 22.2 0.9

Callee Clang O0 1.2 0.3 0.2 0.4 0.1 0.0 51.7 0.0 0.0 0.3

O1 15.0 7.1 6.5 6.8 10.1 7.9 7.4 19.9 20.0 7.9

O2 7.1 4.5 3.4 4.1 1.4 -0.7 5.7 -0.3 3.7 3.8

O3 3.3 1.0 -0.2 0.9 2.9 1.4 9.5 19.4 -11.1 1.4

Gcc O0 0.6 0.4 0.4 0.0 -0.4 0.5 22.2 -50.0 0.0 0.3

O1 15.6 6.3 5.1 5.3 4.9 3.3 4.5 10.8 6.1 6.1

O2 10.0 4.7 4.3 4.3 5.1 5.3 0.9 3.5 10.7 4.9

O3 7.1 3.8 3.0 2.4 5.4 3.5 4.5 18.5 14.0 3.7

(b) Inferring types of arguments

Inst CPL Opt Type of Arguments

int16 int32 int64 float pointer struct MF

Caller Clang O0 4.8 7.5 3.7 3.9 0.00 0.9 - 1.9

O1 8.2 -16.7 3.6 6.1 0.00 1.7 - 2.8

O2 0.7 0.00 4.8 8.3 - 2.1 - 3.5

O3 25.0 - 0.9 13.8 - 0.8 - 1.6

Gcc O0 4.7 8.7 2.7 5.6 0.00 1.5 29.7 2.6

O1 8.3 30.5 3.6 4.4 - 1.8 40.7 2.9

O2 5.6 0.0 1.1 3.6 - 1.4 3.3 1.9

O3 -5.2 - 1.5 3.3 - 0.8 - 1.2

Callee Clang O0 4.4 16.7 2.4 7.7 56.7 1.3 10.2 0.4

O1 15.4 -8.3 4.8 5.9 33.3 1.5 3.3 0.7

O2 7.9 100.0 3.5 5.1 0.0 1.1 -88.9 0.2

O3 -25.0 - 4.4 9.4 - 1.8 - 1.8

Gcc O0 0.42 -10.0 2.7 6.4 51.1 1.4 -69.1 0.1

O1 16.0 0.0 5.4 4.2 -50.0 1.4 -11.1 0.9

O2 6.2 16.7 2.9 6.5 -16.7 1.2 33.3 0.4

O3 3.1 - 0.7 -1.8 0.0 -0.2 - -0.8

The number is calculated by (F1ReSIL − F1EKLAVYA)%

123

69 Page 32 of 48

Empirical Software Engineering (2024) 29:69

Table 12 Distribution of testing dataset

(a) Number of arguments

Inst CPL Opt Number of Arguments

0 1 2 3 4 5 6 7 8

Caller Clang O0 258 1,064 984 496 299 126 66 31 19

O1 221 928 929 692 304 130 82 36 15

O2 74 305 230 272 147 38 40 16 8

O3 5 53 21 21 22 9 22 2 2

Gcc O0 246 1,267 1,188 948 318 154 89 39 24

O1 209 986 998 799 314 139 74 36 20

O2 95 704 371 486 140 91 36 15 12

O3 24 213 145 143 42 18 12 3 1

Callee Clang O0 151 656 636 366 144 67 1 0 1

O1 145 639 646 379 150 70 30 15 7

O2 41 200 278 150 67 31 16 7 4

O3 9 29 55 30 19 9 5 1 1

Gcc O0 161 722 693 402 156 73 1 1 1

O1 102 449 500 289 110 53 20 8 6

O2 78 325 363 216 81 42 15 8 5

O3 25 97 142 92 35 18 8 4 2

(b) Types of arguments

Inst CPL Opt Type of Arguments

int8 int16 int32 int64 float pointer struct

Caller Clang O0 20 3 289 334 2 1,609 -

O1 18 3 326 301 1 1,229 -

O2 3 2 86 115 - 467 -

O3 3 - 21 7 - 96 -

Gcc O0 43 4 621 420 2 1,690 2

O1 16 4 515 384 - 1,369 2

O2 12 2 242 245 - 662 1

O3 5 - 59 50 - 239 -

Callee Clang O0 17 2 222 141 2 818 3

O1 17 2 229 145 2 844 3

O2 4 1 88 55 1 376 1

O3 2 - 15 13 - 91 -

Gcc O0 14 6 195 167 2 748 5

O1 10 3 167 105 1 659 2

O2 8 2 120 82 1 491 2

O3 3 - 55 33 1 201 -

123

Page 33 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 13 Distribution of RG and WG with largest score at callee and caller sites

the count distribution — ReSIL has almost two times of the cases of EKLAVYA with the
corresponding saliency score equal to 1.0.

We also compare the types of the most important instruction in ReSIL with the ones in
EKLAVYA ; see Fig. 14.We can find that ReSIL considersRG andWG as themost important
instructions for most callees and callers, as opposed to EKLAVYA considering OT as the
most important ones. The interesting part is that even though the accuracy of ReSIL has not
improved a lot in inferring the number of arguments at the caller site as shown in Table 8,
it makes the RNN focus more on WG and less on OT compared to EKLAVYA as shown in
Fig. 14a.

One may argue that this could be due to the policy to remove the irrelevant instructions
(see Section 5.3) rather than the policy to insert summarized instructions and to correct the
labels for Unread (see Section 5.1). To check the relative effectiveness of these two policies,
we show the most important instructions at the callee and caller sites when only irrelevant
instructions are removed (without inserting summarized instructions); see the bar for ReSIL-
IR in Fig. 14. We can find that even though some irrelevant instructions are removed, the
RNN model has not improved significantly in terms of identifying important instructions.
An interesting observation is that when only removing irrelevant instructions, RO will be
considered as the most important instructions for most callees. It also demonstrates that our
policy for Helper and Unread further makes the RNNmodel focus on the inserted summary
instructions and RG .

123

69 Page 34 of 48

Empirical Software Engineering (2024) 29:69

Fig. 14 Types of the most important instructions in ReSIL. ReSIL-IR refers to the model which only removes
irrelevant instructions

6.1.5 Handling of complication scenarios

We also evaluate the effectiveness of ReSIL in dealing with different complication scenarios.
Specifically, about 90%of calleeswithUnread that are incorrectly inferred byEKLAVYAare
now correctly inferred by ReSIL. For callees with Helper which are incorrectly inferred by
EKLAVYA , ReSIL can correctly identify the number of arguments for around 50% of them.
Note that EKLAVYA is able to correctly infer the number of arguments for themajority of the
callers with Temp , but it would misidentify registers that are used to store temporary values
rather than passing arguments. Such inaccuracy is mitigated by ReSIL with top five outputs.
Meanwhile, nearly all callers with Wrapper that are incorrectly inferred by EKLAVYA are
correctly recovered by ReSIL.

The result seems to suggest that ReSIL does not perform well withHelper . To get a better
idea if the relatively small improvement comes from the ineffectiveness of ReSIL or the
nondeterminism introduced in the RNN training process, we evaluate ReSIL and EKLAVYA
by repeating the 5-fold cross validation process ten times.We consider the signature recovered
(in)correctly if all these ten runs give (in)correct results. The result can be found Table 13.

From the analysis result, we find that ReSIL can correctly infer the number of arguments
for all callees with Helper and Unread in the testing set. Meanwhile, ReSIL provides a
limited improvement in inferring the number of arguments for other callees since the cases
of Helper and Unread will confuse the RNN model to incorrectly infer the signature for
them. We also find that ReSIL can correctly identify all Wrapper cases which are wrongly
inferred by EKLAVYA .Moreover, ReSIL can also help identify function signature for callers
which do not have any arguments.

123

Page 35 of 48 69

Empirical Software Engineering (2024) 29:69

Table 13 Number of complication scenarios incorrectly recovered

Opt Fold 1 Fold 2 Fold 3 Fold 4 Fold 5
E R5 R1 E R5 R1 E R5 R1 E R5 R1 E R5 R1

Unread O0 - - - - - - - - - - - - - - -

O1 129 17 19 141 16 19 123 10 16 124 20 30 132 14 19

O2 33 3 3 37 3 4 35 7 9 31 4 7 37 4 4

O3 7 1 1 6 1 2 3 0 0 10 0 0 7 1 1

Helper O0 - - - - - - - - - - - - - - -

O1 64 38 49 72 30 34 67 32 39 78 35 45 54 35 46

O2 14 5 6 18 11 11 14 10 10 19 13 16 13 10 11

O3 3 1 1 1 2 2 1 0 0 0 1 1 1 0 0

Temp O0 4 3 3 6 6 9 8 1 5 4 2 5 1 2 7

O1 4 0 0 1 1 1 8 5 5 6 3 6 6 4 1

O2 2 0 0 2 0 1 1 0 0 3 1 1 3 0 2

O3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

Wrapper O0 - - - - - - - - - - - - - - -

O1 14 1 1 9 0 0 17 0 0 9 1 2 4 1 1

O2 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E: EKLAVYA
R5: ReSIL with top 5 output
R1: ReSIL with top 1 output

The distribution of instruction types for casesHelper ,Unread andWrapper can be found
in Fig. 15. We can find that the inserted summary instructions (ic , iw) are considered as the
most important instruction for case Helper . For caseWrapper which actually does not have
WG , ReSIL considers ic as the most important instructions. When the RNN model outputs
the number of arguments used by a function rather than the number of arguments the function
has, instructions which read the ground-truth argument register (RG) are more important as
shown in Fig. 15b.

Fig. 15 Most important instruction types for Helper , Unread , and Wrapper in ReSIL. IC refers to the
inserted summary instructions with correct prediction result; IW refers the inserted instructions with incorrect
prediction result

123

69 Page 36 of 48

Empirical Software Engineering (2024) 29:69

6.1.6 Time consumption

We also compare the time consumption between EKLAVYA and ReSIL in the 5-fold cross-
validation training and testing stages, the result is shown in Table 14. Training represents
the average time in seconds that the model takes to train one epoch. Testing represents the
testing time for one function in milliseconds.

We also compared the time consumption of EKLAVYA and ReSIL with Nimbus at the
last row of Table 14. Since Numbus is not open source, we just cited the number from the
Nimbus paper. The result shows that Nimbus ismore efficient due to the fact thatMTLmerges
the task-specific layers into the shared layer, thus avoiding duplicate computations. We can
also see that ReSIL takes less time for training and testing since it removes some irrelevant
instructions as mentioned in Section 4.3.4.

6.2 Impact of instruction embedding

In this section, we further investigate the impact of instruction embedding on the effectiveness
of function signature inference, including the dimension of the instruction embedding vector
and the type of instruction embedding approach.

6.2.1 Embedding dimensions

We modify the embedding dimension to further explore its impact on accuracy and the time
required for both training and testing stages. We experiment with four common instruction
embedding dimensions: 64, 128, 256, and 512, which are also widely used in other deep
learning-based approaches. These four models are evaluated for inferring the number of
arguments at callee sites, and the results are presented in Fig. 16.

From the results, we can observe that there is a clear trend that the performance becomes
better when increasing the embedding size. The largest embedding size has the best per-
formance both in EKLAVYA and ReSIL. However, considering efficiency, we recommend
having a suitable embedding dimension configuration. Here, we use 256 as the embedding
dimension. This choice is based on the observation that the accuracy in inferring the num-
ber of arguments doesn’t significantly increase, but training and testing times considerably
increase when the embedding dimension is set to 512, as shown in Fig. 17.

6.2.2 Type of instruction embedding

In this section, we further test the performance of different types of embeddings in inferring
the number of arguments at callee sites using EKLAVYA and ReSIL as the downstream
application. Specifically, we replaced the original Word2Vec embedding in EKLAVYA and

Table 14 Comparison on training
and testing time

Approach Training (s) Testing (ms)

EKLAVYA 217.41 22.83

ReSIL 210.47 20.40

Nimbus 94.84 2.20

123

Page 37 of 48 69

Empirical Software Engineering (2024) 29:69

Fig. 16 Accuracy in inferring the number of arguments at callee sites under different embedding dimensions

ReSIL with the BERT embedding, as used by Li et al. (2021). We compare the accuracy of
inferring the number of arguments at callee sites in Fig. 18.

We can observe that using instruction embedding generated by BERT can improve the
accuracy of inferring the number of arguments, but the accuracy for binaries compiled with
optimization is still not good for EKLAVYA . For example, the accuracy for binaries compiled
by clang -O1 is only around 86.89%. Meanwhile, we can find ReSIL can also work for
instruction embedding generated by BERT and further improves the accuracy.

We also compare the distribution of box and count scores for the RG instructions with the
highest scores when using BERT instruction embedding for both EKLAVYA and ReSIL, as

Fig. 17 Traing and testing times in inferring the number of arguments at callee sites under different embedding
dimensions

123

69 Page 38 of 48

Empirical Software Engineering (2024) 29:69

Fig. 18 Accuracy in inferring the number of arguments at callee sites under different types of instruction
embedding

shown in Fig. 19. We observe that ReSIL assigns a higher value to the RG instructions when
inferring the number of arguments with BERT instruction embedding.

6.3 Generalizability of ReSIL

To thoroughly evaluate the generalizability of the trained model across various inputs, we
employed entirely distinct and more diverse training and testing sets, compiled them using
different compiler versions, and documented the dataset details in Table 15. The dataset
includes programs of diverse functionality and complexity, written in C, and containing
hand-written assembly and intentional security vulnerabilities. It also carries a significant
amount of complications described in Section 4.3.

In direct comparison to the original dataset utilized by EKLAVYA , this new dataset stands
out for its heightened diversity. The inclusion of hand-written assembly code and a broader
range of intentional security vulnerabilities introduces additional dimensions of complexity.
This diversity is pivotal for evaluating the generalizability and robustness of ReSIL.

Specifically, the new dataset comprises 73,765 distinct functions, and we also use 5-fold
cross-validation to perform training and testing on those functions. Table 16 presents the
accuracy of recovering the number of arguments at callee sites. As shown, even with this
new dataset, ReSIL consistently outperforms EKLAVYA, when using only the top 1 output
for inference. This further validates the robustness of our approach.

Fig. 19 Distribution of RG with the largest score at callee sites when BERT instruction embedding is used

123

Page 39 of 48 69

Empirical Software Engineering (2024) 29:69

Table 15 New applications used in training and testing

Type Name Programs/Binaries

Servers Vsftpd-3.0.3 Uftpd-2.15 4/32

Sqlite3-3.30.1 Zaver-0.1

Clients Cflow-1.4 Gzip-1.3.5 Bcrypt-1.1 28/224

FastLZ Http-parser MiniUnz-1.01b

Iperf-3.11 Mdp-1.0.15 Nuklear-

Vcut Vorbis-tools-1.4.0

Benchmark SPECCPU-2006 LLVM test-suite 112/896

CGC Challenge Binaries

Total 144/1,152

6.4 Security applications of ReSIL

In this subsection, we look into a specific application of ReSIL and evaluate the extent to
which ReSIL could be used to improve the effectiveness and security of CFI enforcement.

After we recover the function signature at both the indirect caller and callee sites, we can
enforce CFI by allowing only control transfers from indirect callers to callees with matching
signature. Specifically, we discuss how ReSIL can be used to defend against practical Coun-
terfeit Object-oriented Programming (COOP) Schuster et al. (2015). It is a security attack
on object-oriented systems, where attackers exploit vulnerabilities to manipulate objects,
potentially causing unintended behavior or data corruption. We stress that our purpose in this
subsection is to provide examples of security applications in which ReSIL plays a critical
part. We leave a more systematic coverage of all security applications as our future work.

6.4.1 Effectiveness against COOP

By exploiting a memory corruption vulnerability, COOP diverts execution flows to a chain
of existing virtual function calls (so-called vfgadgets) via an initial vfgadget. The original
COOP paper Schuster et al. (2015) proposes two main types of initial vfgadgets, the main-
loop gadget (ML-G) and the recursive gadget (REC-G). Such gadgets are responsible for
dispatching the vfgadget chain using virtual function calls. We use the published exploits for
Firefox Schuster et al. (2015) to show how ReSIL could stop such an exploit.

The details about the gadgets can be found in Fig. 20. Function
nsMultiplexInputStream::Close is used as the ML-G gadget, while when we

Table 16 Accuracy in inferring the number of arguments at the callee site with the new dataset

Approach Clang Gcc
O0 O1 O2 O3 O0 O1 O2 O3

R5 99.44 92.19 92.35 94.17 98.49 92.34 92.11 91.22

E 98.53 81.95 85.78 88.99 96.50 84.49 84.44 83.42

R1 99.25 89.30 89.61 91.88 98.00 89.64 89.34 88.29

R5: ReSIL with top 5 outputs
E: EKLAVYA
R1: ReSIL with top 1 output

123

69 Page 40 of 48

Empirical Software Engineering (2024) 29:69

Fig. 20 Gadgets used in COOP’s 64-bit Firefox exploit

use ReSIL to recover the number of arguments for the indirect callers in it, the result sug-
gests that it has one argument, which is the top one output of ReSIL. However, the inferred
number of arguments for other three functions is two using ReSIL with the top one output.
Therefore, the target of this indirect caller cannot be any of the three functions, suggesting
that ReSIL successfully stops the Firefox COOP exploit.

When we use EKLAVYA to infer the number of arguments for function
MVariadicInstruction::getOperand, the result is that it only has one argument
as the access of the second argument is in the helper function at address 0x7d7c60. The
inter-procedural analysis performed by ReSIL can identify the instruction that accesses the
second argument and the summary instruction inserted by ReSIL enables the RNN model to
correctly recover the number of arguments for it.

6.4.2 Other applications of ReSIL

In addition to applying ReSIL to help CFI enforcement, ReSIL can also be used to help binary
code reuse, fuzzing, function reuse detection, andmalware similarity analysis. Reusing binary

123

Page 41 of 48 69

Empirical Software Engineering (2024) 29:69

code is useful especially in scenarios where the source code is not available. Extraction of a
functional code block (e.g., function) allows a programmer to add that functionality directly
to other applications, and function signature is required so that we know how to invoke this
code block Caballero et al. (2009). In addition, as shown by Jain et al. (2018), the inferred
function signature can be used to improve fuzzing and trigger bugs much earlier than existing
solutions. Function signature (number of arguments and argument types) is also an important
feature to help perform malware similarity and function reuse analysis (Nouh et al. 2017;
Kim et al. 2020).

7 Discussion

7.1 Adopting ReSIL to other platforms

Now, the focus of the paper is on function signature recovery of x86-64 Linux binaries.
However, the same technique can also be applied to other platforms, such as Windows and
ARM64 architectures. These new platforms may encounter new issues since the calling
conventions, argument passing mechanisms, and register allocation strategies are different.
For example, the calling convention of Windows with non-overlapping register-indices for
both floating-point and integer parameters within a function may further complicate the
function signature inference.

7.2 Limitations of ReSIL

In this section, we discuss a number of limitations of ReSIL.

7.2.1 Limitations of the GRU-Based Approach

The use of GRU in ReSIL might introduce certain limitations, such as the handling of
long-range dependencies, scalability to larger datasets, and capturing complex contextual
relationships within scenarios. Adopting a transformer-based architecture in ReSIL could
potentially address some of the limitations associated with the current GRU-based approach.
For example, transformers can be scaled effectively to handle larger datasets and more
complex scenarios, allowing for the exploration of a broader range of possibilities and trans-
formers’ attention mechanism naturally handles long-range dependencies, which can be
crucial when considering scenarios with extended time horizons or complex causal chains.
While transformers offer several advantages, they also come with their own challenges,
including increased computational requirements and potential overfitting on small datasets.

7.2.2 Limitations in inferring function signatures

By analyzing the results, we notice a number of limitations of ReSIL in inferring function
signatures.

– Callees (Callers) with more than six arguments.We find it more difficult for ReSIL to
correctly infer the number of arguments for a callee (caller) with more than 6 argu-
ments. This is because the higher-order arguments are passed onto the stack and typically

123

69 Page 42 of 48

Empirical Software Engineering (2024) 29:69

accessed in the later part of a callee. At the caller, the compiler always uses register %rsp
plus some displacements to pass them. When optimization is enabled, local variables are
also accessed using %rsp plus some displacements. This causes ReSIL to misclassify
some argument-preparing instructions as storing local variables.

– Callees (Callers) whose arguments are accessed (prepared) by instructions of large
sizes. It is more difficult for ReSIL to correctly identify arguments accessed (prepared)
with instructions more than five bytes long. For example, instruction mov %rdi,
0x25e088(%rip) has seven bytes, and ReSIL cannot correctly infer that there is
a reading operation on the first argument register %rdi and this causes the number of
arguments to be underestimated.

– Callees with complex functionalities. We find it easier for ReSIL to correctly identify
arguments which are accessed in the first two to three basic blocks of callees. This is also
the limitation of RNN which does not have good performance for long sentences.

– Callers whose argument-preparing instructions precede ret, call, and direct jump
instructions. It appears that ReSIL does not consider argument-preparing instructions
that precede a ret, call, and jump instruction in recovering the number of arguments.

In addition to these limitations, we also find cases where EKLAVYA infers the function
signature correctly while ReSIL cannot, but the number of these cases is quite small (fewer
than10 in our dataset).We showone example of such cases inFig. 21.Here, calleestringer
has one argument and the access of the argument (%dil) is after the call instruction at Line 5.
ReSIL infers that this callee has zero argumentswhile EKLAVYAoutputs one. This is because
ReSIL finds that there are no summarized instructions inserted before the call instruction at
Line 5, and it (incorrectly) outputs that this callee has zero arguments.

8 Artifact availiability

(1) Data. Our corpus of binary variants and their associated function signature output is
available at: https://1drv.ms/f/s!Aj9CYr_j_6FAoM5x2fHA9J0whrpyYw?e=34pI8z

(2) Source Code. The source code for instruction embedding, model training and testing is
available at: https://1drv.ms/f/s!Aj9CYr_j_6FAoM51VbxaL5xQ8I61FQ?e=CDkhW3

(3) Trained Model. The trained model for different tasks is available at:https://1drv.ms/f/s!
Aj9CYr_j_6FAoNBpzELCBZsjh7tBTw?e=iZYpol

Fig. 21 Number of arguments inferred correctly by EKLAVYA but wrongly by ReSIL

123

Page 43 of 48 69

https://1drv.ms/f/s!Aj9CYr_j_6FAoM5x2fHA9J0whrpyYw?e=34pI8z
https://1drv.ms/f/s!Aj9CYr_j_6FAoM51VbxaL5xQ8I61FQ?e=CDkhW3
https://1drv.ms/f/s!Aj9CYr_j_6FAoNBpzELCBZsjh7tBTw?e=iZYpol
https://1drv.ms/f/s!Aj9CYr_j_6FAoNBpzELCBZsjh7tBTw?e=iZYpol

Empirical Software Engineering (2024) 29:69

9 Conclusion

In this paper, we study the underlying reasons why state-of-the-art deep learning approaches
suffer lower accuracy in recovering function signatures from optimized binaries, and pro-
pose ReSIL which incorporates compiler-optimization-specific domain knowledge into the
samples. Experimental results show that ReSIL effectively improves the accuracy and F1
score in identifying function signatures. Our evaluation also shows that ReSIL effectively
improves security of CFI enforcement.

Acknowledgements This work of Yan Lin was supported by the Fundamental Research Funds for the Cen-
tral Universities (Grant No. 21623342) and the National Natural Science Foundation of China (Grant No.
62302193). This work of Debin Gao was supported by the National Research Foundation, Singapore and
National University of Singapore through its National Satellite of Excellence in Trustworthy Software Sys-
tems (NSOE-TSS) office under the Trustworthy Software Systems - Core Technologies Grant (TSSCTG)
award no. NSOE-TSS2019-02.

Data Availability Statements The authors confirm that the data supporting the findings of this study are
availablewithin the article. Rawdata that support the findings of this study are available from the corresponding
author, upon reasonable request.

Declarations

Conflicts of Interests The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper

References

Balakrishnan G, Reps T (2007) Divine: Discovering variables in executables. In: International Workshop on
Verification, Model Checking, and Abstract Interpretation, Springer, pp 1–28

Bao T, Burket J, Woo M, Turner R, Brumley D (2014) byteweight : Learning to recognize functions in binary
code. In: Proceedings of the 23rd USENIX Security Symposium, pp 845–860

Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult.
IEEE Trans Neural Netw 5(2):157–166

Caballero J, Johnson NM, McCamant S, Song D (2009) Binary code extraction and interface identification for
security applications. California Univ Berkeley Dept of Electrical Engineering and Computer Science,
Tech. rep

Chen L, He Z, Mao B (2020) Cati: Context-assisted type inference from stripped binaries. In: Proceedings of
the 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, IEEE, pp
88–98

Chua ZL, Shen S, Saxena P, Liang Z (2017) Neural nets can learn function type signatures from binaries. In:
Proceedings of the 26th USENIX Security Symposium, pp 99–116

Committee DDIF et al (2010) Dwarf debugging information format, version 4. Free Standards Group
Duan Y, Li X, Wang J, Yin H (2020) Deepbindiff: Learning program-wide code representations for binary

diffing. In: Network and Distributed System Security Symposium
ElWazeer K, Anand K, Kotha A, Smithson M, Barua R (2013) Scalable variable and data type detection in

a binary rewriter. In: Proceedings of the 34th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, pp 51–60

Fu C, Chen H, Liu H, Chen X, Tian Y, Koushanfar F, Zhao J (2019) Coda: An end-to-end neural program
decompiler. Advances in Neural Information Processing Systems 32

Guo C, Pleiss G, Sun Y, Weinberger KQ (2017) On calibration of modern neural networks. In: International
Conference on Machine Learning, PMLR, pp 1321–1330

He J, Balunović M, Ambroladze N, Tsankov P, Vechev M (2019) Learning to fuzz from symbolic execution
with application to smart contracts. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer
and Communications Security, pp 531–548

123

69 Page 44 of 48

Empirical Software Engineering (2024) 29:69

He J, Ivanov P, Tsankov P, Raychev V, Vechev M (2018) Debin: Predicting debug information in stripped
binaries. In: Proceedings of the 25th ACM Conference on Computer and Communications Security,
ACM, pp 1667–1680

Hellendoorn VJ, Bird C, Barr ET, Allamanis M (2018) Deep learning type inference. In: Proceedings of
the 2018 26th acm joint meeting on european software engineering conference and symposium on the
foundations of software engineering, pp 152–162

Hu Y, Zhang Y, Li J, Gu D (2017) Binary code clone detection across architectures and compiling config-
urations. In: Proceedings of the 25th International Conference on Program Comprehension, IEEE, pp
88–98

INTEL I (2018) Intel® 64 and ia-32 architectures software developer’s manual
Jain V, Rawat S, Giuffrida C, Bos H (2018) Tiff: using input type inference to improve fuzzing. In: Proceedings

of the 34th Annual Computer Security Applications Conference, ACM, pp 505–517
Ji Y, Cui L, Huang HH (2021) Vestige: Identifying binary code provenance for vulnerability detection. In:

International Conference on Applied Cryptography and Network Security, Springer, pp 287–310
Katz DS, Ruchti J, Schulte E (2018) Using recurrent neural networks for decompilation. 2018 IEEE 25th

International Conference on Software Analysis. Evolution and Reengineering (SANER), IEEE, pp 346–
356

Katz O, Olshaker Y, Goldberg Y, Yahav E (2019) Towards neural decompilation. arXiv preprint
arXiv:1905.08325

Kim D, Kim E, Cha SK, Son S, Kim Y (2020) Revisiting binary code similarity analysis using interpretable
feature engineering and lessons learned. arXiv:2011.10749

Lattner C, Adve V (2004) LLVM: A compilation framework for lifelong program analysis & transformation.
In: Proceedings of the 2nd international symposium on Code generation and optimization, IEEE

Lee J, Avgerinos T, Brumley D (2011) Tie: Principled reverse engineering of types in binary programs. In:
Proceedings of the 18th Network and Distributed System Security Symposium

Liang R, Cao Y, Hu P, Chen K (2021) Neutron: an attention-based neural decompiler. Cybersecurity 4(1):1–13
Lin Y, Cheng X, Gao D (2019) Control-flow carrying code. In: Proceedings of the 14th ACMAsia Conference

on Computer and Communications Security, ACM, pp 3–14
Lin Y, Gao D (2021) When function signature recovery meets compiler optimization. In: Proceedings of the

42nd IEEE Symposium on Security and Privacy, IEEE
Li X, Qu Y, Yin H (2021) Palmtree: Learning an assembly language model for instruction embedding. In:

Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pp
3236–3251

Maier A, Gascon H, Wressnegger C, Rieck K (2019) Typeminer: Recovering types in binary programs using
machine learning. In: International Conference onDetection of Intrusions andMalware, andVulnerability
Assessment, Springer, pp 288–308

Muntean P, FischerM, TanG, Lin Z, Grossklags J, Eckert C (2018) τcfi: Type-assisted control flow integrity for
x86-64 binaries. In: International Symposium onResearch in Attacks, Intrusions, andDefenses, Springer,
pp 423–444

Nouh L, Rahimian A, Mouheb D, Debbabi M, Hanna A (2017) Binsign: fingerprinting binary functions
to support automated analysis of code executables. In: IFIP International Conference on ICT Systems
Security and Privacy Protection, Springer, pp 341–355

Otsubo Y, Otsuka A, Mimura M, Sakaki T, Ukegawa H (2020) o-glassesx: compiler provenance recovery
with attention mechanism from a short code fragment. In: Proceedings of the 3nd Workshop on Binary
Analysis Research

Pei K, Guan J, Broughton M, Chen Z, Yao S, Williams-King D, Ummadisetty V, Yang J, Ray B, Jana S (2021)
Stateformer: fine-grained type recovery from binaries using generative state modeling. In: Proceedings
of the 29th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pp 690–702

Pizzolotto D, Inoue K (2020) Identifying compiler and optimization options from binary code using deep
learning approaches. In: Proceedings of the 36th IEEE InternationalConference onSoftwareMaintenance
and Evolution, IEEE, pp 232–242

Prakash A, Hu X, Yin H (2015) vfguard: Strict protection for virtual function calls in cots c++ binaries. In:
Proceedings of the 22nd Network and Distributed System Security Symposium

QianY,ChenL,WangY,MaoB (2022)Nimbus: Toward speed up function signature recovery via input resizing
and multi-task learning. 2022 IEEE 22nd International Conference on Software Quality. Reliability and
Security (QRS), IEEE, pp 454–463

Rosenblum N, Miller BP, Zhu X (2011) Recovering the toolchain provenance of binary code. In: Proceedings
of the 20th International Symposium on Software Testing and Analysis, ACM, pp 100–110

123

Page 45 of 48 69

http://arxiv.org/abs/1905.08325
http://arxiv.org/abs/2011.10749

Empirical Software Engineering (2024) 29:69

Schuster F, Tendyck T, Liebchen C, Davi L, Sadeghi AR, Holz T (2015) Counterfeit object-oriented program-
ming: On the difficulty of preventing code reuse attacks in c++ applications. In: Proceedings of the 36th
IEEE Symposium on Security and Privacy, IEEE, pp 745–762

Selvaraju RR, CogswellM, Das A, VedantamR, Parikh D, Batra D (2017) Grad-cam: Visual explanations from
deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on
computer vision, pp 618–626

Sharma A, Tian Y, Lo D (2015) Nirmal: Automatic identification of software relevant tweets leveraging
language model. In: Proceedings of the 22nd International Conference on Software Analysis, Evolution,
and Reengineering, IEEE, pp 449–458

ShinECR, SongD,MoazzeziR (2015)Recognizing functions in binarieswith neural networks. In: Proceedings
of the 24th USENIX Security Symposium, pp 611–626

Simonyan K, Vedaldi A, Zisserman A (2013) Deep inside convolutional networks: Visualising image classi-
fication models and saliency maps. arXiv preprint arXiv:1312.6034

Tian Z, Huang Y, Xie B, Chen Y, Chen L, Wu D (2021) Fine-grained compiler identification with sequence-
oriented neural modeling. IEEE Access 9:49160–49175

Van Der Veen V, Göktas E, Contag M, Pawoloski A, Chen X, Rawat S, Bos H, Holz T, Athanasopoulos
E, Giuffrida C (2016) A tough call: Mitigating advanced code-reuse attacks at the binary level. In:
Proceedings of the 37th IEEE Symposium on Security and Privacy, IEEE, pp 934–953

Wang S, Wang P, Wu D (2017) Semantics-aware machine learning for function recognition in binary code.
In: Proceedings of the 33rd International Conference on Software Maintenance and Evolution, IEEE, pp
388–398

Xu Z, Wen C, Qin S (2018) Type learning for binaries and its applications. IEEE Transactions on Reliability
68(3):893–912

XuX, LiuC, FengQ,YinH, SongL, SongD (2017)Neural network-based graph embedding for cross-platform
binary code similarity detection. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp 363–376

Zeng D, Tan G (2018) From debugging-information based binary-level type inference to cfg generation. In:
Proceedings of the 8thACMConference onData andApplication Security andPrivacy,ACM, pp 366–376

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

Yan Lin received her Ph.D. degree in computer science from Singa-
pore Management University. She is currently a pre-tenue Associate
Professor at the College of Cyber Security, Jinan University. Her cur-
rent research focuses on system security, software security, and mobile
security.

123

69 Page 46 of 48

http://arxiv.org/abs/1312.6034

Empirical Software Engineering (2024) 29:69

Trisha Singhal received the B.Tech degree in Computer Science and
Engineering from Dr. A.P.J. Abdul Kalam University, India in 2019.
She is working as a Data Scientist in Optum, Inc. (UnitedHealth
Group). Her research interests include Natural Language Processing,
Computer Vision, and Multimodal Learning.

Debin Gao is currently an Associate Professor from School of Com-
puting and Information Systems, Singapore Management University.
Having obtained his Ph.D degree from Carnegie Mellon University in
2006, Debin focuses his research on software and systems security.
In recent years, Debin also actively participated in research of mobile
security, cloud security, and human factors in security. Debin received
the best paper award from NDSS in 2013.

David Lo is an Professor of Computer Science in the School of
Computing and Information Systems, Singapore Management Uni-
versity (SMU). He received his Ph.D. in Computer Science from the
National University of Singapore. His research interests include soft-
ware analytics, software maintenance, empirical software engineering,
and cyber security.

123

Page 47 of 48 69

Empirical Software Engineering (2024) 29:69

Authors and Affiliations

Yan Lin1 · Trisha Singhal2 · Debin Gao3 · David Lo3

Trisha Singhal
singhaltrisha25@gmail.com

Debin Gao
dbgao@smu.edu.sg

David Lo
davidlo@smu.edu.sg

1 Jinan University, Guangzhou, China
2 Optum, Inc, Gurugram, India
3 Singapore Management University, Singapore, Singapore

123

69 Page 48 of 48

http://orcid.org/0000-0002-6509-9131

	Analyzing and revivifying function signature inference using deep learning
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Function signature recovery
	2.2 Machine learning for binary analysis

	3 Methodology
	3.1 Method selection
	3.2 Benchmark selection and variant generation
	3.3 Variant analysis
	3.4 Threats to validity

	4 Why deep learning techniques fall short of optimized binaries
	4.1 Accuracy in inferring function signatures
	4.2 Analysis with saliency map
	4.2.1 Categorization of instructions
	4.2.2 Distribution of all instructions
	4.2.3 Distribution of the most important instruction
	4.2.4 Zooming into samples misclassified
	4.2.5 Summary of the saliency map analysis

	4.3 Four key scenarios that contribute to the lower accuracy and bad saliency map
	4.3.1 Missing argument-reading instructions
	4.3.2 Missing argument-preparing instructions (denoted as Wrapper)
	4.3.3 Indistinguishable cases
	4.3.4 Irrelevant instructions (denoted as Irrelevance).
	4.3.5 Statistics of the various complication scenarios

	5 ReSIL: revivifying deep learning on optimized binaries
	5.1 Missing argument-related instructions
	5.2 Indistinguishable cases
	5.3 Irrelevant instructions
	5.4 Classification output of ReSIL

	6 Evaluation
	6.1 Performance evaluation
	6.1.1 Accuracy
	6.1.2 F1 scores
	6.1.3 Distribution of testing set
	6.1.4 Saliency map
	6.1.5 Handling of complication scenarios
	6.1.6 Time consumption

	6.2 Impact of instruction embedding
	6.2.1 Embedding dimensions
	6.2.2 Type of instruction embedding

	6.3 Generalizability of ReSIL
	6.4 Security applications of ReSIL
	6.4.1 Effectiveness against COOP
	6.4.2 Other applications of ReSIL

	7 Discussion
	7.1 Adopting ReSIL to other platforms
	7.2 Limitations of ReSIL
	7.2.1 Limitations of the GRU-Based Approach
	7.2.2 Limitations in inferring function signatures

	8 Artifact availiability
	9 Conclusion
	Acknowledgements
	References

