
On-Demand Time Blurring to Support

Side-Channel Defense

Weijie Liu1, Debin Gao2, and Michael K. Reiter3

1 Computer School, Wuhan University, China
2 Singapore Management University, Singapore

3 University of North Carolina, Chapel Hill, NC, USA

Abstract. Side-channel attacks are a serious threat to multi-tenant
public clouds. Past work showed how secret information in one virtual
machine (VM) can be leaked to another, co-resident VM using timing
side channels. Recent defenses against timing side channels focus on re-
ducing the degree of resource sharing. However, such defenses necessarily
limit the flexibility with which resources are shared. In this paper, we
propose a technique that dynamically adjusts the granularity of platform
time sources, to interfere with timing side-channel attacks. Our proposed
technique supposes an interface by which a VM can request the tem-
porary coarsening of platform time sources as seen by all VMs on the
platform, which the hypervisor can effect since it virtualizes accesses to
those timers. We show that the VM-Function (VMFUNC) mechanism
provides a low-overhead such interface, thereby enabling applications to
adjust timer granularity with minimal overhead. We present a proof-
of-concept implementation using a Xen hypervisor running Linux-based
VMs on a cloud server using commodity Intel processors and supporting
adjustment of the timestamp-counter (TSC) granularity. We evaluate our
implementation and show that our scheme mitigates timing side-channel
attacks, while introducing negligible performance penalties.

1 Introduction

Computers that are simultaneously shared by multiple tenants introduce the risk
of information leakage between tenants via access-driven side-channel attacks. In
these attacks, one tenant (the attacker) infers information about another tenant
(the victim) by measuring victim’s impact on the resources that they share. A
predominant form of such side-channel attacks is timing attacks, in which the
attacker measures victim-induced perturbations in the time between events that
the attacker can observe. For example, a widely studied form of access-driven
timing attack is one in which the attacker observes which of the attacker’s lines
the victim evicted from a processor cache when it ran, which the attacker can
observe by timing the durations of its own memory fetches when it runs after
the victim [11]. Researchers have demonstrated that these attacks can be used to
steal a victim VM’s cryptographic keys over Xen [42,40,17], to collect potentially
sensitive application data and hijack accounts on a victim web-server in a PaaS
cloud [43,10], and others [13,4,3,9].

Many defenses against access-driven timing side channels focus on reducing
the degree or granularity of resource sharing (e.g., [2,41,44]). Such defenses, how-
ever, necessarily limit the flexibility with which resources are shared, typically
with costs to performance, efficiency, and/or utilization. For this reason, in this
paper we advance a second class of defense, namely interfering with the adver-
sary’s ability to time events. Even though there are theoretically many ways for
an adversary to time events [21], timing events with sufficiently fine granularity
to extract cryptographic keys, for example, typically leverages the time stamp

counter (TSC) on x86 platforms (e.g., [40,23]). As such, decreasing the fidelity
of the TSC has been advocated in previous research as a method to interfere
with the most potent of these attacks (e.g., [33,25]).

The important insight that we contribute in this paper is that the degradation
of TSC fidelity need not be constant over time, but can be tuned according to
the operations that a tenant application is performing. For example, since AES
operations are much faster than RSA operations, the degradation needed to hide
timing side channels during AES operations might be much smaller than what
would be needed to hide (potentially much larger) timing signals during RSA
operations.

In this paper we leverage this insight to advocate for a simple interface by
which a tenant application can adjust the fidelity of the TSC observed by ten-
ants on the platform to a specified level, i.e., specified as a number of low-order
bits of the TSC to zero before reporting it to a tenant. Our prototype virtualizes
the TSC and, at any point in time, zeros a number of bits requested by a tenant
on the machine. Moreover, we show that VM-Function (VMFUNC) techniques
offer a low-overhead mechanism to VMs to adjust TSC fidelity. Because of the
efficiency of these VMFUNC techniques, VMs have the flexibility to adjust TSC
fidelity frequently, without incurring significant performance impacts from doing
so. We show, for example, that these fidelity adjustments are sufficiently quick
to allow fine-grained adjustments to TSC fidelity with virtually no performance
impact to, e.g., encryption libraries and web and file servers employing encryp-
tion. Moreover, we quantify the degree of TSC degradation that is needed to
overcome simple but powerful covert-channel attacks, in which we reveal differ-
ent settings of the TSC degradation that are “just enough” to disable a last level
cache and a memory bus contention attack.

Allowing tenant applications to adjust the fidelity of the TSC could poten-
tially open the platform to detrimental effects caused by tenants overzealously
degrading the TSC fidelity for other tenants. We conduct experiments to show
that VMs are not particularly sensitive to TSC degradation, but there is ob-
viously a point at which this is no longer true. While our goal here is not to
measure the potential for abuse, we note that it is straightforward to impose
limits on the amount or duration of degradation that is allowed, e.g., as a cap
on the number of bits that will be dropped or a per-tenant budget on the time
during which it can request that the TSC fidelity be kept at a reduced level. In
the limit, a tenant in a public cloud could be charged extra, in proportion to the
time and amount of degradation that it requests, and likewise, tenants could be

partially reimbursed for durations in which their executions were subjected to
lower TSC fidelity at the request of co-located tenants.

The remainder of the paper is organized as follows. In Section 2 we estab-
lish our requirements. In Section 3 we outline our design and provide in-depth
details about our prototype implementations. Section 4 describes the experi-
ments performed using recent, state-of-the-art cross-VM side channels also the
performance evaluation of the prototype. Section 5 describes related work and
finally Section 6 provides brief concluding remarks and discusses limitations of
our technique.

2 Threat Model and Requirements

We focus on infrastructure-as-a-service (IaaS) clouds that potentially execute
multiple virtual machines from customers on the same, shared computer hard-
ware. Examples of such cloud providers include Amazon EC2 and Rackspace.
Due to the nature of shared computer hardware on this architecture, access-
driven side-channel attacks become possible among virtual machines (VMs) ex-
ecuting simultaneously, which might originate from different customers.

Threat model. Our threat model is an attacker VM that tries to infer informa-
tion about a victim VM running simultaneously on the same computer hardware.
Specifically, the attacks that we consider in this paper are those that perform
side-channel timing attacks by measuring victim-VM-induced perturbations in
the time between certain events on the shared hardware that the attacker VM
can observe. We assume that the infrastructure provides reliable access control
to prevent the attacker VM from accessing the victim VM directly or via forms
of privilege escalation. To this end, we assume that the cloud’s virtualization
software is trusted.

Under such a threat model, we focus our attention on defense mechanisms
that reduce the fidelity of the time stamp counter (TSC) to interfere with the at-
tacker’s ability to time events. We consider the following important requirements
of a flexible and effective defense.

“Just-enough” masking. We want to differentiate various side-channel tim-
ing attacks that measure the time between events at different granularities. For
example, since AES operations are much faster than RSA operations, their cor-
responding successful attacks need to obtain timing information at finer gran-
ularity. Therefore, a victim might demand that fine-grained timing information
be hidden while it performs AES operations and more coarse-grained timing
information be hidden during its RSA operations.

On-demand protection. While a potential victim has sensitive information
in the VM that requires protection and the victim VM knows precisely when
sensitive operations involving that data happen, we assume a powerful attacker
who also has precise information of such operations (what they are and when
they happen) and the corresponding events that the attacker VM can observe
in an attempt to infer the sensitive information. That said, we also assume that

such operations constitute a small percentage of the entire workload of the victim
VM, and so the victim would prefer an “on-demand” protection to minimize the
performance overhead. Specifically, we aim for a solution where the victim can
dynamically change the protection at low cost, e.g., allowing the victim to enable
protection when encrypting blocks of an https response (a sensitive operation
since the cryptographic key is involved) while turning off the protection when
sending out encrypted blocks (a non-sensitive networking operation).

Timing information available to VMs. Besides the security features cloud
customers desire when running virtual machines on a cloud, they may also de-
mand timing information from the cloud platform for their general computing
purposes. For example, a VM running a web server may need timestamp infor-
mation at microsecond precision for logging purposes. Therefore, a solution to
defend against the side-channel timing attacks should not have noticeable impact
on such uses of timing information.

3 Design and Implementation

As discussed in Section 1, attackers typically need to leverage the time stamp
counter (TSC) to obtain fine-grained timing information for the purpose of infer-
ring sensitive information from a victim VM. Therefore, decreasing the fidelity
of TSC has been proposed as a potential defense against side-channel timing at-
tacks [33,25]. However, existing such approaches do not satisfy our requirements
on just-enough masking and on-demand protection.

Victim VM
Hypervisor

Attacker VM

AES Encryption

Block cipher

encryption
Key

Spy Process

Time

measurement

...

Square-Multiply

ExponentiationKey

Outputting

BIGNUM objects

RSA Decryption

Mask 8 bits of TSC

Mask 0 bits of TSC

Mask 0 bits of TSC

Mask 12 bits of TSC

Real Time

Time

measurement

Setting IV

& Padding

...

...

Assigning

BIGNUM objects

...

Fig. 1. Overview with hypothetical victim
program

Our technique allows a tenant
to dynamically adjust the fidelity of
the TSC observed by tenants on a
virtualized platform to a specified
level, i.e., to request a number n

of low-order bits of the TSC be ze-
roed before reporting it to tenants.
The request n can be determined
by the nature of the sensitive oper-
ation that the victim VM is to per-
form and known exploits available
to attacker VMs, so that only just

enough bits are removed to disable
these attacks. After performing its
operation, the victim VM can re-
tract its request to coarsen the TSC
(i.e., by requesting that n = 0 bits
be removed).

Figure 1 shows an overview of
our design with a hypothetical victim program that performs on-demand re-
quests to reduce the fidelity of TSC. The victim VM in our example performs

both AES and RSA operations, while the attacker VM performs time measure-
ments to exercise a side-channel attack. To defend against such attacks, the
victim VM sends on-demand requests to the hypervisor to degrade the fidelity
of the TSC during only key-dependent operations that are vulnerable to timing
side-channel attacks. Moreover, the degree of degradation is set so that “just
enough” low-order bits of TSC are masked for the specific cryptographic opera-
tion (n = 8 bits for AES and n = 12 bits for RSA in Figure 1).

Although it is relatively simple to enable TSC emulation (by setting the
RDTSC EXITING bit in VMCS) and to zero n bits from TSC readings, two im-
plementation issues require further elaboration. The first is how to set n when
multiple threads from multiple VMs request different values of n at overlapping
times. In this case, the value of n used should be the maximum among those
requested (up to a limit). That is, we take a conservative approach, zeroing
the maximum number of bits for which any threads on any guest VMs has a
request in effect, which implies that the (lesser) protection requested by other
threads/VMs is additionally enforced, a fortiori.4

The second issue warranting further comment is how to achieve on-demand

protection without inducing substantial overhead. Specifically, we need to allow
a guest VM to dynamically request changing the value of n with little cost. It
could make these requests with a VMCALL/hypercall, but doing so causes the
guest VM to encounter a VM-exit and so is expected to result in prohibitive
overhead when a VM changes n frequently.

Here, we propose leveraging VM-Function (VMFUNC), a feature of the In-
tel micro-architecture instruction set, to reduce the overhead. VMFUNC allows
VMs to use hypervisor functionality without a VM-Exit. We performed a simple
experiment to compare the overhead of a VMCALL/hypercall interface and a
VMFUNC call interface with empty implementation, and find that they cost
1,622 and 160 CPU cycles, respectively, on our i7-4790 CPU. The VMFUNC
interface therefore promises substantial cost savings if it can be used.

Although VMFUNC is designed to be general purpose with up to 64 different
functions [1], current processors have implemented only one of them, specifically
to enable a VM to switch its Extended Page Table (EPT). A VM specifies
the EPT pointer by putting the corresponding index into the ecx register, and
then executing the VMFUNC instruction either from user mode or kernel mode.
Execution then traps into the hypervisor without any VM-exit, which switches
the EPT pointer to that specified by ecx, and subsequently returns to the VM
without a VM-enter.

Although the VMFUNC instruction is attractive as a general interface to
use hypervisor functionality (in our case to request the hypervisor to change the
value of n) with low overhead, no new function besides EPT switching can be

4 To adjust n to the second highest value when the most demanding thread/VM has
finished its sensitive operation, each VM kernel should track all masking requests
from its threads and the hypervisor should track all masking requests from VMs.
Our evaluation prototype supports this tracking at the VM kernel only, owing to
our inability to add or modify VMFUNC instructions, as discussed below.

added without changes to the processor hardware. To evaluate the corresponding
performance overhead should processor hardware support our functionality using
VMFUNC, we commandeered the EPT switching mechanism in our evaluation
prototype, reserving a few specific settings of the EPT pointer (ecx register value
when calling VMFUNC) for the purpose of our on-demand request to change the
value of n. That is, when the ecx register contains one of these specific values (0
to k in our prototype), we use it to set the value of n for TSC fidelity reduction.
This design is not viable in practice, since it disrupts EPT switching and supports
TSC degradation requests from only a single VM at a time. However, it suffices
to estimate the overheads associated with dynamically adjusting TSC fidelity
via the VMFUNC interface, should it be extended to support our mechanism.

V
M

F
U

N
C

W
it

h
o

u
t

V
M

 E
x

itUser space

In user application

/***Begin Encryption***/

do_VMFUNC(0, n1);

/***End Encryption***/

In EPTP switching routine

Hypervisor

EPT

0

EPT

1

EPT

index

EPT

k
... ...

hvm_rdtsc_intercept(cpu_user_regs *regs) {

n = ept_index;

tsc_tmp = tsc >> n;

tsc = tsc_tmp << n;Guest-VMs

Time Stamp Counter

Identical; reserved for setting n

In RDTSC interception

Kernel space

In system call

x = Max(n1, n2, , ni);

Asm volatile(

LOCK_PREFIX vmfunc

:: a (0), c (x));

<Thread_id, n1>

<Thread_id, n2>

<Thread_id, ni>

VM Entry

VM Exit

Fig. 2. Design of our evaluation prototype; do VMFUNC is a system call that tracks
requests from VM threads and communicates the VM’s current maximum masking
request to the hypervisor via VMFUNC invocations

Figure 2 shows the design of our evaluation prototype. We first create a few
identical EPT tables denoted EPT 0 to EPT k. A user-space process makes a
customized system call to request masking n bits of the TSC. Such a system
call is processed by the VM kernel, which keeps track on different requests from
different threads and executes a VMFUNC instruction with ecx ∈ [0, k]. In the
hypervisor, switching the EPT table thus has no effect on guest execution (due to
identical EPT tables). When any rdtsc instruction is executed, the hypervisor
reconstructs the setting of n by calculating the offset between the current EPT
pointer from EPT base address (effectively reconstructing the value of ecx in the
most recent VMFUNC call) and masks the low-order n bits of TSC value. With
this, we create an efficient communication channel from VMs to the hypervisor
for on-demand requests to modify n.

4 Evaluation

In this section, we evaluate our proposal. We present two representative covert-
channel timing attacks and show how n can be set accordingly to stop them.
Finally, we focus on a number of realistic workloads on virtual machines to

illustrate the impact of setting n at various values and modifying n at different
granularities.

4.1 Defending against timing attacks

In this subsection, we evaluate our prototype’s effectiveness in defending against
real timing attacks. Specifically, we want to see how n should be configured
dynamically to provide “just-enough” protection to mask out precise time mea-
surement by the attacker VMs to disable the attacks.

We choose two representative covert-channel timing attacks, the Last Level
Cache (LLC) attack and the memory bus contention attack, which are practical
on modern computers. We specifically choose these two attacks because they
typically require time measurement at different granularities, and we would like
to see how our proposed method can be configured to defend against them
with different values of n. Moreover, if we can show that our technique defends
against these covert channels, in which the sender cooperates with the receiver to
communicate information, then this provides strong assurance that it will also
defend against similar side channels, in which the sender does not knowingly
cooperate with the receiver.

Cross-VM covert-channel attacks. We briefly outline the two attacks here.
We target cross-VM covert-channel attacks in a general setting where a sender
process and a receiver process running on different VMs on the same physical
host are trying to communicate via a covert timing channel.

In the case of the Last Level Cache (LLC) attack [15], the receiver process
1) fills one or more cache sets with its own code or data; 2) waits for the sender
process to utilize the same cache set(s); and 3) measures the time to load his code
or data again. This follows a typical PRIME+PROBE technique [26] where the
sender process sends a bit of information by utilizing (or not utilizing) the same
cache sets, which results in different amount of time taken in the receiver’s last
PROBE operation. We follow the LLC attack by Liu et al. [23] and implement
it on two HVM guests running on an Acer Veriton M4630 machine running Xen.
We used an eviction set consisting of cache lines from all four cache slices on our
i7-4790 CPU to conservatively prime and probe the cache sets.

The memory bus contention attack works in a similar way, while the time
measurement is typically more coarse-grained compared to the LLC-based at-
tacks. The sender selectively performs an exotic atomic memory operation that
triggers a bus locking behavior [39], which causes longer access time by the
receiver and therefore effectively creates the covert channel. We configure the
receiver to use the latest Streaming SIMD Extensions (SSE) instructions to ac-
cess the memory bus bypassing the cache lines to reduce noise from the cache
lines (which could mask out the bus locking effect).

In both attacks, we do not implement channel error correction or other ac-
curacy improvements leveraged in previous work, except the necessary encoding
mechanism to handle VM scheduling and to provide transmission synchroniza-
tion. We do this to uncover the impact of reducing fidelity of TSC on the bit-
by-bit accuracy of the covert channel.

Impact of degrading TSC fidelity on timing attacks. Our intention here
is to first execute the LLC and memory bus contention attacks with some re-
alistic parameters on an unmodified Xen system and observe the corresponding
accuracy of information received at the receiver process. We then turn on our
protection and modify the value of n to observe the corresponding impact on
the accuracy observed. We also want to enable some coarse comparison between
the two different types of covert-channel attacks to demonstrate our scheme’s
flexibility in handling different types of threats.

To obtain some realistic attack settings, we configure various sending bit rates
for both attacks. Since they use different encoding schemes [23,39] (LLC attack
uses the RZ encoding while memory bus contention attack uses the Manchester
encoding), the sending bit rates are configured indirectly as follows. For the
LLC attack, we configure three different pause durations (waiting time between
two consecutive bits) of 1 µs, 2 µs and 10 µs, which result in sending bit rates
between 27 Kbps and 7 Kbps. For the memory bus contention attack, we set
the symbol period T (number of consecutive exotic atomic operations to be
repeated in sending out each bit of information) to be 1, 50, and 100, which
result in sending bit rates between 8 Kbps and 246 bps.

Under the various sending bit rates, we measure the accuracy at the receiving
process. We consider a powerful attacker who has access to our machine to
perform experiments to find out the best threshold — a timing threshold used
by the receiving process to infer whether the sender had performed the operation
(loading data into the cache set for LLC attack or executing the exotic atomic
memory operation for the memory bus contention attack) to signal a 1 or 0 on the
covert channel. We further assume that the attacker can perform re-calibration
of the threshold when we remove different number of bits from the the TSC
readings (n). Figure 3 shows the results of our experiments.

0 2 4 6 8
0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

n

 Pause duration = 1us, bit rate = 27.1Kbps
 Pause duration = 2us, bit rate = 18.3Kbps
 Pause duration = 10us, bit rate = 7.4Kbps

(a) LLC attack

0 2 4 6 8 10 12 14
0.5

0.6

0.7

0.8

0.9

1.0

A
cc
ur
ac
y

n

 Symbol period T = 1, bit rate = 8.4Kbps
 Symbol period T = 50, bit rate = 502.8bps
 Symbol period T = 100, bit rate = 246.3bps

(b) Memory bus contention attack

Fig. 3. Impact on mitigating covert-channel timing attacks

Figure 3 clearly shows that accuracy of the covert-channel attacks decreases
when n increases. What is interesting is that the accuracy experiences a much

steeper drop when n is greater than a certain number, and the accuracy quickly
approaches 50% (the same accuracy as random guessing).

Comparing the two types of attacks, we also notice that our scheme can
obtain the same protection (in terms of lowering the accuracy) with smaller n

for the LLC attack. This is due to the finer-grained time measurement needed
in LLC attacks since the LLC operates much faster than physical memory. This
observation reinforces our motivation of this paper — different victim programs
and different attacks require different degree of degradation of the TSC fidelity,
and the need of dynamically setting the value of n.

4.2 Performance evaluation

Having shown the effectiveness of our scheme in defending against covert-channel
timing attacks, we now focus on the overhead evaluation. More specifically, we
want to see the impact in terms of performance overhead when a potential victim
VM dynamically sends on-demand requests to the hypervisor to change the
value of n. With this, we hope to shed light on the recommended usage of our
protection mechanism in striking a balance between timing-attack protection
and performance overhead. We consider three different VM workloads in our
evaluation that differ in the percentage of instructions that require protection
against timing attacks.

Table 1. Experiment platform
Server Model: Dell XPS 8700-R39N8
Processor: Intel Core i7-4790 3.6GHz
Memory: 16GB
VMM: Xen 4.6.0
Guest OS: Linux kernel 3.14.60
vCPUs per VM: 1
Memory per VM: 2048MB

Our experiments were carried
out on a Dell XPS 8700-R39N8
desktop machine with Xen virtual
machine monitor installed. Table 1
shows the hardware and software
configurations of our prototype. In
some experiments, we have a client-
server setting where the server is
running as a VM on this machine,
and the client is running on a host OS on another physical machine with the
same hardware configuration and Ubuntu 16.04 LTS.

One subtlety we have in the performance overhead evaluation is to measure
the precise timing overhead when TSC fidelity has been degraded. Our protection
mechanism makes it impossible for any VMs to carry out precise time measure-
ment, but we (for the purpose of doing performance overhead evaluation) still
want to be able to obtain the finest-grained TSC readings. For this purpose, we
introduce a customized hypercall in Xen which always returns the precise TSC
readings when it is called. We use this customized hypercall for measuring the
overhead experienced by a VM in all experiments in the rest of this section.

WL-1 – Encryption. In this part of the evaluation on performance overhead,
we no longer focus on timing attacks but legitimate workloads on victim VMs.
The objective is to find out how much performance overhead such victim VMs
experience when they request timing-attack protection. The first workloads (WL-
1) we consider here include two encryption workloads, one where the victim VM

performs AES encryption and the other where the victim VM performs RSA
encryption, both using implementations that are vulnerable to cross-VM timing
attacks [14,17]. In both cases, the victim VM tries to protect its keys from being
compromised via co-residency timing attacks by inserting VMFUNC instructions
into its crypto library (libcrypto.so in OpenSSL 1.0.2g) to modify n.

When instrumenting OpenSSL source code to insert VMFUNC instructions,
we focus on protecting key-dependent components. Figure 4 shows an overview
of such instrumentation. For AES, we insert VMFUNC instructions before the
first round (to turn on TSC masking) and after the last round in each block
encryption (to turn off TSC masking), which translates to 32 pairs of VMFUNC
instructions executed for each 1 KB text encrypted. For RSA, we insert a pair of
VMFUNC instructions in the function bn_mod_mul_montgomery(), which per-
forms Montgomery modular multiplications and is usually the target of timing
attacks. A noticeable difference between our instrumentation on these two work-
loads is that our protection (code between a pair of VMFUNC instructions)
covers about 90% of AES runtime but only 30% – 40% of RSA runtime.

AES_cbc_encrypt()

CRYPTO_cbc_encryption()

AES CBC Mode Encryption

RSA Decryption

RSA_public_decrypt()

RSA_eay_init()

RSA_eay_finish()

RSA_eay_public_decrypt()

RSA_eay_mod_exp()

BN_mod_exp_mont()

BN_window_bits_for_exponent_size() BN_mod_mul_montgomery()

Block EncryptionPaddingSetting IV

AES_encrypt()

AES_encrypt(const

unsigned char *in,

unsigned char *out, const

AES_KEY *key){

rk = key->rd_key;

do_VMFUNC(0,n);

/* initialize round key*/

do_VMFUNC(0,0);}

BN_mod_mul_montgomery(const

BIGNUM *a, const BIGNUM *b,

BN_MONT_CTX *mont){

int ret = 0;

do_VMFUNC(0,n);

int num = mont->N.top;

do_VMFUNC(0,0);

return (ret);}

Fig. 4. Instrumenting AES and RSA crypto libraries

Figure 5 shows the normalized runtime overhead with the baseline being an
uninstrumented OpenSSL on a VM running on unmodified Xen. Here we try to
compare two different strategies of providing timing attack protection: S1 with
a constant degradation of TSC fidelity throughout the VM’s lifetime (with 8,
16, and 24 bits removed) where no communication is needed between the victim
VM and the hypervisor, and S2 with on-demand protection where VMFUNC
instructions signal the hypervisor to adjust TSC fidelity. Intuitively, S2 supports
on-demand and “just-enough” protection, but experiences additional overhead
due to the VMFUNC instructions, especially when they are invoked frequently
in the crypto operations.

AES with 2048-byte AES with 8192-byte AES with 20480-byte AES with 81920-byte RSA with 26-byte RSA with 46-byte RSA with 66-byte
1.00

1.01

1.02

1.03

1.04

1.05

1.06

N
or

m
al

iz
ed

 R
un

tim
e

 S1 (8 bits removed) S2 (8 bits removed)
 S1 (16 bits removed) S2 (16 bits removed)
 S1 (24 bits removed) S2 (24 bits removed)

Plaintext Size

Fig. 5. Runtime overhead in AES/RSA workload

Surprisingly, our results show that the difference between S1 and S2 is not
only small, but sometimes S2 actually outperforms S1, e.g., for RSA when 16 or
24 bits are masked. This is likely due to the smaller portion of key-dependent
instructions in RSA (30% to 40%) compared to that in AES (about 90%). When
key-dependent instructions constitute a small percentage, the overhead due to
unnecessary protection of key-independent instructions in S1 could outweigh
that due to VMFUNC instructions, which results in S2 experiencing lower overall
overhead. This result shows that the additional benefit of our scheme in providing
on-demand and “just-enough” security does not necessarily come with higher
overhead. In other words, we could obtain better security and lower overhead at
the same time in certain VM workloads.

WL-2 – HTTPS web server with PHP. In WL-1, we saw a case where S2
(our proposed on-demand and “just-enough” protection via frequent VMFUNC
instructions from victim VM to hypervisor) may outperform S1 (constant pro-
tection throughout VM’s lifetime without VM-hypervisor communication) in
certain scenarios where key-dependent instructions constitute a relatively small
percentage of all instructions executed in the VM program. Here, we focus on
another realistic workload where the percentage of key-dependent instructions
is even smaller — WL-2 where the VM runs an HTTPS web server with PHP.
In this case, the workload mainly consists of encryption (part of which is key-
dependent as shown in WL-1), web services (key-independent), and networking
(key-independent).

The experiment is on an isolated 1 Gbps LAN. The victim VM runs Apache
webserver with HTTPS and PHP, and a client running on another host (not
in a VM) executes a webserver load tester Siege (https://www.joedog.org/
siege-home/). Siege is configured to send continuous HTTPS requests (with no
delay between two consecutive ones) to the webserver for 10 minutes. One con-
current request is deployed for measuring the response time, while a maximum
number of concurrent requests (that result in a maximum throughput) are used
as the input for measuring the maximum network I/O performance.

The Apache webserver is configured to use RSA WITH AES 256 CBC SHA
for key exchange/agreement and AES256 CBC for data encryption, both of which
are key-dependent and require timing protection. We have four different configu-

SSL handshake

SSL_accept SSL_write

1

SSL_send_chain

SSL application data processing

Server B

Server C

Server D

SSL

initialization
SSL_new

Hello

MessageHTTP_init SSL_free

1 2

1 Modular exponentiation routine

AES rounds2

Finished

Message

Sending server certificates

Client certificate request Initializing the state array with the block data

Deriving the set of round key from the cipher key

1

3

42

1

2 3 4

Fig. 6. Instrumenting HTTPS webserver at different granularity

rations of the Apache webserver. Server A is the unmodified version without any
VMFUNC instrumentation, while Server B, C, and D are instrumented to in-
sert VMFUNC instructions to protect key-dependent instructions at decreasing
granularity; please see Figure 6.

Server B has the finest-grained instrumentation with VMFUNC pairs cov-
ering the cryptographic algorithms as described in WL-1. Server C and D have
fewer VMFUNC instructions inserted with protection covering some other key-
independent instructions of the webserver. Table 2 shows the number of VM-
FUNC instructions executed in preparing and sending off an HTTPS response.
As expected, finer-grained instrumentation results in more VMFUNC instruc-
tions called, e.g., in Server B.

Table 2. Number of VMFUNC instructions exe-
cuted in an HTTPS response

Server
File Size A B C D
100KB 0 6576 142 2
1MB 0 65596 1402 2
10MB 0 655520 13986 2
100MB 0 6554006 139824 2

Figure 7 shows the normal-
ized response times and nor-
malized throughput for WL-2
for five different configurations:
Server A without timing protec-
tion (the baseline of normalized
response time and throughput),
Server B, C, D, and Server A
with constant timing protec-
tion. We only show results when removing 8 low-order bits of TSC readings here.
We performed the same experiment when removing 12 bits, and the results were
very similar with slightly bigger variance (due to a more coarse-grained timer).

We first make a comparison among the five different configurations of the
webserver. Server A without any timing protection (the baseline) obviously gives
the best throughput result. What is interesting, though, is that Server C (an
instance of S2) very consistently outperforms Sever A with constant timing pro-
tection (S1), and the advantage is more pronounced for bigger file sizes. The
reason is similar to that in WL-1 — the savings on unnecessary timing protec-
tion on key-independent instructions outweigh the cost of additional VMFUNC
instructions called. Server B has the smallest throughput mainly because of its
most fine-grained VMFUNC instrumentation.

WL-3 – SCP server. Both WL-1 and WL-2 show instances where our on-
demand and “just-enough” timing protection (S2) outperforms constant timing
protection (S1) in specific settings. We now turn to a third workload in which

100KB 1MB 10MB 100MB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 R
es

po
ns

e
Ti

m
e

Object Size

 Server A
 Server B
 Server C
 Server D
 Server A with 8 bits removed from RDTSC

(a) Response time

100KB 1MB 10MB 100MB
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

 R
es

po
ns

es
/S

ec

Object Size

 Server A
 Server B
 Server C
 Server D
 Server A with 8 bits removed from RDTSC

(b) Throughput

Fig. 7. Evaluation of WL-2

SSH user authentication
Key

verification

Session key

generation

Server E

Server F

Child SSH

initialization

Version

exchange

scp

initialization

3
Montgomery's ladder scalar

multiplication for curves

SSH data transmission

3 3 7

7 Sending session key6 Disclosing servers identity

5

5 Responding to authentication request

6

Fig. 8. Instrumenting SCP server at different granularity

the key-dependent operations account for a very small percentage of the entire
workload — WL-3, of a secure file copying (SCP) server. In WL-3, only the
very initial part of the transaction involves the authentication key which is to
be protected from timing attacks (ECDSA computation in OPENSSL that is
vulnerable to a timing attack [16,8]), while the remaining part of the transaction
does not need to be protected.

256MB 512MB 1GB 2GB
0

10

20

30

40

50

60

70

80

90

100

Tr
an

sm
is

si
on

 R
at

e
(M

B
/s

)

File Size

 Server A
 Server E
 Server F
 Server A with 8 bits removed from TSC

Fig. 9. Network performance in WL-3

Instrumentation of the SCP server
results in Server E and F as shown in
Figure 8, with Server E having finer-
grained instrumentation and more VM-
FUNC instructions (12 VMFUNC in-
structions executed in Sever E com-
pared to 2 in Server F for an SCP trans-
mission).

Transmission rates of the servers are
shown in Figure 9 (showing only results
with 8 low-order bits of TSC masked
since those with 12 bits masked are very similar). We, again, observe that S2
(Server E and F) outperforms S1 (Server A with timing protection throughout
the VM lifetime), except that this time the difference is even more pronounced
than that in WL-2, and both instrumentations in S2 outperform that in S1.
With these three different workloads and the consistent results obtained, we
clearly show that in many realistic workloads, the benefits of the frequent com-
munication from a VM to the hypervisor (which saves on unnecessary timing

protection) could outweigh the overhead of the VMFUNC instructions. There-
fore, our proposed mechanism of on-demand and “just-enough” masking of TSC
readings not only provides better security, but also in many cases results in lower
overhead.

Overhead on VMs that do not need timing protection. We now turn to
the last part of our performance overhead evaluation, where we measure the im-
pact of one VM demanding n bits of TSC masking on other co-resident “victim”
VMs. These other VMs are not under any timing attacks but simply experi-
ence some performance overhead due to a co-resident VM that demands higher
security.

A B C D A (TSC truncated)
0.00

0.01

0.02

0.03

0.04

R
es

po
ns

e
Ti

m
e

(s
ec

)

 VM1 VM2

(a) Response time

A B C D A (TSC truncated)
0

10

20

30

40

50

60

70

R
es
po

ns
es
/S
ec

 VM1 VM2

(b) Throughput

Fig. 10. Results of being co-resident with a security-demanding VM

blackscholes canneal dedup
0

1

2

3

4

5

6

7

8

9

10

Ex
ec

ut
io

n
tim

e
(s

)

 co-located with Server A
 co-located with Server B
 co-located with Server C
 co-located with Server D
 co-located with Server A (TSC truncated)

Fig. 11. Overheads of PARSEC bench-
marks when co-located with a VM re-
questing TSC masking

Figure 10 shows the response time
and throughput of individual VMs when
VM1 requests n = 8 low-order bits of
the TSC be masked, while VM2 makes
no such requests. Both VMs are running
the Apache webservers and connected
to a Siege client as in WL-2. These re-
sults show that the performance over-
head on VM2 is minimal. Sever C and
its co-resident innocent VM experiences
the smallest overhead, which is consis-
tent with the results obtained in WL-2.

Our last experiment includes a VM
running a PARSEC benchmark while
co-resident with another VM running Server A, B, C, or D with n = 8 bits
of the TSC masked. Figure 11 shows that, in general, the performance impact
is minimal. That said, canneal seems to be more affected by the TSC masking.
We believe that it is due to canneal being most memory intensive, and the large
amount of VMFUNC instructions (in the case of Server B) potentially leads to
more cache-misses on the other VM.

5 Related work

Many existing works have proposed defenses against co-residence-based timing
side-channel attacks. Adding noise to time sources was one of the first timing-
attack mitigation schemes [12], and this has been applied specifically to the time
stamp counter on Intel platforms [33,25], as discussed previously. Our scheme
also belongs to this category; our contribution lies in showing how dynamically
coarsening the time stamp counter can provide on-demand protection for very lit-
tle cost. Other approaches seek to ensure that measurable intervals of executions
are independent of secret values, by causing all such measurements to return the
same, secret-independent result [2,41] or by aggregating timing events among
multiple VM replicas [21]. These approaches come with greater costs, however.

Apart from general-purpose mitigations of timing side-channel attacks such
as these, there are also defense mechanisms targeting specific side-channel at-
tacks, i.e., by interfering with resource sharing so as to eliminate information
conveyed by the events that the attacker times in its attack. For example, re-
source partitioning (e.g., [27,30,7]) and access randomization (e.g., [35,36,18])
have been proposed as hardware defenses against timing side channels in CPU
caches. Other approaches have modified how caches are used to mitigate side
channels in them (e.g., [19,44]). Some have coarsened CPU sharing by alter-
ing the CPU scheduler to mitigate timing side channels specifically in per-core
caches (e.g., [31,32]). Wang et al. [34] analyzed timing channels through shared
memory controllers and proposed techniques to close them. CATalyst uses an
Intel-specific cache optimization [22] to fight against LLC-based side channels.

Yet another way of defending against side-channel attacks is to modify the
applications to better protect their secrets. These solutions range from tools to
limit branching on sensitive data (e.g., [6]) to application-specific side-channel-
free implementations (e.g., [20]), or even to execute multiple program paths —
as if the program were executed using many secret values [28]. Our proposal also
requires changes to the application, although the changes are straightforward,
involving inserting some VMFUNC instructions right before and after operations
involving secrets.

While we have focused in this paper on demonstrating on-demand defense via
adaptive coarsening of the time stamp counter, this technique could be equally
well applied to other real-time clocks on the platform. Still, it remains possible
for an application to implement its own timer thread that it can use to measure
other events in the system [37]. For example, Shwarz et al. [29] and Chen et
al. [5] used this technique to build a timer inside an SGX enclave (and thus
without access to a real-time clock), for the purposes of mounting and defending
against classes of side-channel attacks, respectively. Adapting the techniques we
describe here to provide on-demand coarsening of such “clocks” is an intriguing
area of future work.

We are not the first to use VMFUNC in the implementation of security tech-
niques. SeCage [24] retrofits VMFUNC and nested paging in Intel processors to
transparently provide different memory views for different compartments at a
low cost, preventing the disclosure of private keys and memory scanning from

rootkits. We, on the other hand, simply leverage VMFUNC as a low-cost in-
terface between the VM and the hypervisor to make frequent communications
between them efficient.

6 Conclusion and Limitations

In conclusion, we propose a method to allow VMs to dynamically request that
the time stamp counter (TSC) be coarsened temporarily (to a level requested
by the VM) on the platform, to mitigate timing side channels that use it. We
take advantage of hardware virtualization extensions to provide a lightweight yet
effective method to enable system-wide side-channel mitigation. By leveraging
the VMFUNC interface in a novel way, our technique allows a VM application to
send on-demand requests to the hypervisor to mask just enough low-order bits
of the TSC to disable precise time measurements by another co-resident VM.
We demonstrated the efficacy of our defense against two covert channels, thereby
shedding light on how many TSC bits should be zeroed in these attack scenarios.
Our experiments with three different workloads showed that our proposal could
have lower performance overhead than existing defenses that provide constant
degradation of TSC fidelity throughout the VM’s lifetime.

Our design does have a few limitations, however. First, our design depends
on hardware support, specifically for invoking a new function via the VM-
FUNC instruction. Second, any defense that coarsens timing sources (ours or
others [33,25,38]) might affect time-critical operations. Third, our approach re-
lies on application developers to locate sensitive portions of the code that are
vulnerable to timing side-channel attacks. Fourth, an attacker VM might re-
quest large values of n simply to degrade others’ use of the TSC. As discussed
in Section 1, we believe that policies could be put in place to discourage such
activities. Lastly, allowing applications to vary n could itself potentially lead to
a side-channel leakage by revealing when a sensitive operation is occurring. Be-
cause attackers can often infer these occurrences based on other circumstances,
or even cause them to occur (e.g., by submitting requests to the victim VM), we
consider this risk to be minimal.

Acknowledgment This work was supported in part by NSF grant 1330599.

References

1. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual. http://www.intel.com/content/www/us/en/processors/

architectures-software-developer-manuals.html.

2. A. Askarov, D. Zhang, and A. C. Myers. Predictive black-box mitigation of timing
channels. In 17th ACM Conf. Comp. & Comm. Sec., 2010.

3. A. Barresi, K. Razavi, M. Payer, and T. R. Gross. CAIN: Silently breaking ASLR
in the cloud. In 9th USENIX Workshop on Offensive Technologies, 2015.

4. N. Benger, J. Van De Pol, N. P. Smart, and Y. Yarom. “ooh aah... just a little
bit”: A small amount of side channel can go a long way. In 16th Intern. Workshop
on Cryptographic Hardware and Embedded Systems, 2014.

5. S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting privileged side-channel
attacks in shielded execution with Déjá Vu. In 12th ACM Asia Conf. Comp. &
Comm. Sec., 2017.

6. S. Crane, A. Homescu, S. Brunthaler, P. Larsen, and M. Franz. Thwarting cache
side-channel attacks through dynamic software diversity. In ISOC Network and
Distributed System Security Symp., 2015.

7. L. Domnitser, A. Jaleel, J. Loew, N. Abu-Ghazaleh, and D. Ponomarev. Non-
monopolizable caches: Low-complexity mitigation of cache side channel attacks.
ACM Trans. Architecture and Code Optimization, 8(4), 2012.

8. D. Genkin, L. Pachmanov, I. Pipman, E. Tromer, and Y. Yarom. ECDSA key
extraction from mobile devices via nonintrusive physical side channels. In 23rd
ACM Conf. Comp. & Comm. Sec., 2016.

9. B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida. ASLR on the line:
Practical cache attacks on the MMU. In ISOC Network and Distributed System
Security Symp., 2017.

10. D. Gruss, R. Spreitzer, and S. Mangard. Cache template attacks: Automating
attacks on inclusive last-level caches. In 24th USENIX Security Symp., 2015.

11. D. Gullasch, E. Bangerter, and S. Krenn. Cache games–bringing access-based cache
attacks on AES to practice. In 32nd IEEE Symp. Security and Privacy, 2011.

12. W.-M. Hu. Reducing timing channels with fuzzy time. Journal of Computer
Security, 1(3-4), 1992.

13. R. Hund, C. Willems, and T. Holz. Practical timing side channel attacks against
kernel space ASLR. In 34th IEEE Symp. Security and Privacy, 2013.

14. M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar. Seriously,
get off my cloud! Cross-VM RSA key recovery in a public cloud. IACR Cryptology
ePrint Archive, Report 2015/898, 2015.

15. G. Irazoqui, T. Eisenbarth, and B. Sunar. A shared cache attack that works across
cores and defies VM sandboxing–and its application to AES. In 36th IEEE Symp.
Security and Privacy, 2015.

16. G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Fine grain cross-VM attacks
on Xen and VMware. 2014.

17. G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a minute! A fast, cross-
VM attack on AES. In 17th Intern. Symp. Research in Attacks, Intrusions, and
Defenses, 2014.

18. G. Keramidas, A. Antonopoulos, D. N. Serpanos, and S. Kaxiras. Non determin-
istic caches: A simple and effective defense against side channel attacks. Design
Automation for Embedded Systems, 12(3), 2008.

19. T. Kim, M. Peinado, and G. Mainar-Ruiz. StealthMem: system-level protection
against cache-based side channel attacks in the cloud. In 21st USENIX Security
Symp., 2012.

20. R. Könighofer. A fast and cache-timing resistant implementation of the AES. In
RSA Conf., Cryptographers’ Track. Springer, 2008.

21. P. Li, D. Gao, and M. K. Reiter. StopWatch: A cloud architecture for timing
channel mitigation. ACM Trans. Information and System Security, 17(2), 2014.

22. F. Liu, Q. Ge, Y. Yarom, F. Mckeen, C. Rozas, G. Heiser, and R. B. Lee. Catalyst:
Defeating last-level cache side channel attacks in cloud computing. In 22nd Intern.
Symp. High Performance Comp. Arch., 2016.

23. F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-level cache side-channel
attacks are practical. In 36th IEEE Symp. Security and Privacy, 2015.

24. Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting memory disclosure with
efficient hypervisor-enforced intra-domain isolation. In 22nd ACM Conf. Comp. &
Comm. Sec., 2015.

25. R. Martin, J. Demme, and S. Sethumadhavan. TimeWarp: Rethinking timekeeping
and performance monitoring mechanisms to mitigate side-channel attacks. In 39th
Intern. Symp. Comp. Arch., 2012.

26. D. A. Osvik, A. Shamir, and E. Tromer. Cache attacks and countermeasures: the
case of AES. In RSA Conf., Cryptographers’ Track, 2006.

27. H. Raj, R. Nathuji, A. Singh, and P. England. Resource management for isolation
enhanced cloud services. In 1st ACM Cloud Computing Security Workshop, 2009.

28. A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing digital side-channels through
obfuscated execution. In 24th USENIX Security Symp., 2015.

29. M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware guard
extension: Using SGX to conceal cache attacks. arXiv:1702.08719, 2017.

30. J. Shi, X. Song, H. Chen, and B. Zang. Limiting cache-based side-channel in multi-
tenant cloud using dynamic page coloring. In 41st IEEE/IFIP International Conf.
Dependable Systems and Networks, 2011.

31. D. Stefan, P. Buiras, E. Z. Yang, A. Levy, D. Terei, A. Russo, and D. Mazières.
Eliminating cache-based timing attacks with instruction-based scheduling. In 18th
European Symp. Research in Computer Security, 2013.

32. V. Varadarajan, T. Ristenpart, and M. Swift. Scheduler-based defenses against
cross-VM side-channels. In 23rd USENIX Security Symp., 2014.

33. B. C. Vattikonda, S. Das, and H. Shacham. Eliminating fine grained timers in xen.
In 3rd ACM Cloud Computing Security Workshop, 2011.

34. Y. Wang, A. Ferraiuolo, and G. E. Suh. Timing channel protection for a shared
memory controller. In 20th Intern. Symp. High Performance Comp. Arch., 2014.

35. Z. Wang and R. B. Lee. New cache designs for thwarting software cache-based side
channel attacks. In 34th Intern. Symp. Comp. Arch., 2007.

36. Z. Wang and R. B. Lee. A novel cache architecture with enhanced performance
and security. In 41st IEEE/ACM Intern. Symp. Microarchitecture, 2008.

37. J. C. Wray. An analysis of covert timing channels. Journal of Computer Security,
1(3-4), 1992.

38. W. Wu, E. Zhai, D. I. Wolinsky, B. Ford, L. Gu, and D. Jackowitz. Warding off
timing attacks in Deterland. In Conf. Timely Results in Operating Systems, 2015.

39. Z. Wu, Z. Xu, and H. Wang. Whispers in the hyper-space: high-bandwidth and
reliable covert channel attacks inside the cloud. IEEE/ACM Trans. Networking,
23(2), 2015.

40. Y. Yarom and K. Falkner. Flush+reload: a high resolution, low noise, L3 cache
side-channel attack. In 23rd USENIX Security Symp., 2014.

41. D. Zhang, A. Askarov, and A. C. Myers. Predictive mitigation of timing channels
in interactive systems. In 18th ACM Conf. Comp. & Comm. Sec., 2011.

42. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-VM side channels and
their use to extract private keys. In 19th ACM Conf. Comp. & Comm. Sec., 2012.

43. Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-tenant side-channel
attacks in PaaS clouds. In 21st ACM Conf. Comp. & Comm. Sec., 2014.

44. Z. Zhou, M. K. Reiter, and Y. Zhang. A software approach to defeating side
channels in last-level caches. In 23rd ACM Conf. Comp. & Comm. Sec., 2016.

