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ABSTRACT
Understanding Android applications’ behavior is essential to many
security applications, e.g., malware analysis. Although many sys-
tems have been proposed to perform such dynamic analysis, they
are limited by their applicable analysis environment (on device vs.
emulator), transparency to subject apps, applicable runtime (Dalvik
vs. ART), applicable system stack, or granularity. In this paper,
we propose 𝐹𝐴3 (Fine-Grained Android Application Analysis), a
novel on-device, non-invasive, and fine-grained analysis platform
by leveraging existing profiling mechanisms in the Android Run-
time (ART) and kernel to inspect method invocations and control-
flow transfers for both Java methods and third-party native libraries.
𝐹𝐴3 embeds its tracing capability in multiple layers of the Android
system stack to not only capture fine-grained application behaviors
but ensure even non-conventional or malicious tricks of loading
and executing OAT/ELF binaries cannot escape our monitoring. We
carefully evaluated 𝐹𝐴3 using real-world malware. Experimental re-
sults showed that 𝐹𝐴3 successfully analyzes sophisticated malware
samples and provides a comprehensive view of their behavior.
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1 INTRODUCTION
It is essential for analysts to fully understand behaviors of Android
applications, especially for malware. Many systems have been pro-
posed for the objective of statically analyzing Android apps, but
most of them can be evaded by advanced techniques in one way
or the other. For instance, malware can evade static analysis tools
that inspect the Dalvik bytecode by using various obfuscation tech-
niques to raise the bar of code comprehension [13, 19], implement-
ing malicious activities in native libraries [7, 18], and leveraging
packing techniques to hide malicious payloads [26, 32].

Similar sophisticated techniques could also make dynamic anal-
ysis systems ineffective for a number of reasons. First, malicious
∗This work was done when she was a Research Scientist at Singapore Management
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applications usually exhibit their behavior across multiple system
layers (e.g., Android Runtime and native library), failing in captur-
ing any one of which could render the dynamic analysis incomplete
and result in malicious behaviors escaping analysis and detection.
However, the majority of dynamic analysis systems [12, 25, 31] lack
capability of cross-layer inspection. For example, CopperDroid [25]
monitors malware behaviors mainly through the trace of system
calls, making it hard to expose the execution details for methods
in Android Runtime. A more critical failure resulted from this lack
of cross-layer and comprehensive analysis attributes to the non-
conventional and malicious way of loading and executing OAT/ELF
binaries that were not included in the app’s APK file [21], leading
to its behavior escaping radar of the dynamic analysis system.

Second, anti-debug and anti-emulator techniques [15, 16] fur-
ther limit the usage of many dynamic analysis systems, most of
which [27, 30] rely on emulators or instrumentation tools tomonitor
malware behaviors. Such limitation demands for not only on-device
dynamic analysis that are friendly with end-user handsets, but non-
invasive properties such that the original behavior exhibited by the
app is not affected by the monitoring platform.

Third, existing systems are not effective in capturing executions
in a fine-grained manner. Most existing systems only monitor the
method invocation, and lacks support of tracing intra-procedural
control-flow transfers. However, control-flow transfer information
is important in understanding the app’s behavior [20], especially
for (malicious) apps that apply control-flow obfuscation and when
there are return-oriented programming (ROP) executions [22].

In this paper, we propose 𝐹𝐴3, a novel on-device, non-invasive,
and fine-grained platform which captures the app’s execution on
multiple layers in a fine-grained manner. Moreover, 𝐹𝐴3 does not
need to statically instrument apps’ bytecode or native library.

𝐹𝐴3 embeds its monitoring capability in multiple Android sys-
tem layers. It records the invocations of Java methods, including
framework APIs and methods in apps, and captures stealthy be-
haviors such as dynamic code loading and JNI invocations in the
Android Runtime. It monitors control-flow transfers in Java meth-
ods, which helps to understand the behavior of apps protected by
control-flow obfuscation [10]. 𝐹𝐴3 also monitors control-flow trans-
fers in third-party native libraries and system calls. Last but not
the least, 𝐹𝐴3 supports (efficiently) dumping memory contents and
register values for fine-grained analysis. For example, we can dump
the stack memory when a return instruction gets executed and
check whether there is a potential return-oriented programming
attack [22] by combining the control-flow transfer information we
collected. Table 1 provides a detailed comparison between 𝐹𝐴3 and
state-of-the-art analysis tools.

It is probably not surprising that the above features come at a
cost of added runtime overhead, which is likely an important reason
why existing approaches did not venture into such a comprehensive
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Table 1: Comparison of 𝐹𝐴3 with state-of-the-art analysis tools.
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TaintDroid [12] ✓ ✓ × F A × 18%
CopperDroid [25] × ✓ ✓ F N × 32%
TaintART [24] ✓ × ✓ F A × 14%
ARTist [9] ✓ × ✓ F A × 31%

DroidScope [30] × ✓ × F A N × 3400%
Ndroid [27] × ✓ ✓ F R N × 1000%
Malton [29] × ✓ ✓ F A R N × 3600%

𝐹𝐴3 ✓ ✓ ✓ F A R N ✓ 428.5%
F , A , R and N indicate that the tool can capture behaviors for framework

APIs, Java methods in the app, methods in Android Runtime, and native libraries.
Shading denotes partial/full support. For example, F A of TaintART suggests that
it can monitor partial framework behaviors and all Java methods.

solution. 𝐹𝐴3 is able to overcome this with reasonable overhead by
leveraging existing profiling mechanisms in the Android Runtime
and kernel, as well as a novel dynamic instrumentation mechanism.
We perform our on-device evaluation of 𝐹𝐴3 on Pixel 5 devices,
and report moderate overhead while all subject apps in our test run
smoothly and successfully.

𝐹𝐴3 can be used by different parties. End users can use it to
understand the behavior of an app; corporations can use it to per-
form quality-check on an app before it’s rolled out to customers or
employees. The Android Play Store can also use 𝐹𝐴3 to see whether
an app uploaded has hidden behaviors. Moreover, 𝐹𝐴3 can also be
integrated into Mobile Device Management (MDM) framework to
monitor the Android device and apps automatically.

2 RELATEDWORK AND BACKGROUND
In this section, we first discuss related work on existing dynamic
Android application analysis tools, and then cover some background
of Android Runtime (ART) and profiling system that are essential
to the design of 𝐹𝐴3, finally we discuss the attack model.

2.1 Related Work
This section focuses on the related dynamic and hybrid Android
application analysis techniques .

TaintDroid [12] performs dynamic taint analysis to detect infor-
mation leakage by modifying the Dalvik virtual machine (DVM). It
trusts the native libraries and does not capture the behaviors for
them. Although TaintDroid can track taint propagation for Dalvik
bytecode, it neither monitors the runtime behaviors nor supports
ART. In order to support ART, TaintART [24] and ARTist [9] modify
dex2oat to insert taint propagation instructions into the compiled
code. However, they only propagate taint information for Java code
and do not support the taint propagation through JNI or native
code. Moreover, they cannot handle packed applications because
such apps dynamically load the Dalvik bytecode directly without
triggering the invocation of dex2oat.

DroidScope [30] reconstructs OS-level and Java-level semantics
based on Qemu [11]. It does not monitor JNI and therefore cannot
capture the complete behaviors for Java code. CopperDroid [25]
is also built on top of Qemu and records system call invocations.

However, only a limited number of behaviors can be monitored by
it. NDroid [27] tracks information leakage in multiple layers, but it
also relies on Qemu to perform the instrumentation.

Malton [29] probably has the most similar design with our sys-
tem 𝐹𝐴3. It inspects Android malware from different system layers
— recording sensitive framework APIs and concerned methods of
malware in the framework layer, capturing stealthy behaviors such
as dynamic code loading and JNI reflection in the runtime layer, and
monitoring library APIs and system calls in the system layer. How-
ever, tracking of system calls is based on Valgrind [17], resulting
in its lack of support for on-device monitoring. Moreover, 𝐹𝐴3 can
monitor in a finer-grained manner, such as monitoring control-flow
transfers, register values, and memory content.

2.2 The ART Runtime
ART is the new runtime introduced in Android version 4.4, and it
becomes the default runtime from version 5.0 onward. ART uses
ahead-of-time (AOT) compilation, and starting in Android 7.0, it
uses a hybrid combination of AOT, just-in-time (JIT) compilation,
and profile-guided compilation. Specifically, an app is initially in-
stalled without any AOT compilation, but a new file in the OAT
format (extended ELF) is generated with only Dalvik bytecode in-
cluded. When the device is idle and charging, a compilation daemon
AOT-compiles frequently used code to native instruction based on
a profile generated during the first few runs, and inserts it into the
OAT file. 𝐹𝐴3’s capability is based on the monitoring and tracing
of these native instructions.

ART provides mechanisms to trace method executions since An-
droid 5.0, and is used by the Android Profiler tools [6]. Its original in-
tent is to assist understanding of CPU, memory, and network usage
by using the Debug class to instrument a process of a running app.
However, its working assumes availability of source code and does
not typically work for third-party apps1. It also fails on third-party
native libraries since it uses Simpleperf [4] which requires debug-
ging information embedded. 𝐹𝐴3 realizes its monitoring capability
by leveraging and modifying this embedded tracing mechanism.
We will discuss more details in Section 3.

2.3 Attack Model
The main purpose of 𝐹𝐴3 is for benign agents/users to make use
of it to understand the behavior of an application. Since 𝐹𝐴3 is
integrated into Android OS (of the end-user devices), it indicates
that a hacker cannot use it to infer private data on an end-user
device except the device is lost or stolen. Apps might detect 𝐹𝐴3

via side channels to evade the analysis.

3 ARCHITECTURE
Figure 1 illustrates the overall architecture of 𝐹𝐴3. To track exe-
cution of an Android app at multiple layers, 𝐹𝐴3 introduces four
main modules. We discuss each module in detail.

3.1 Dalvik Bytecode Tracer
The first module in our tool is responsible for tracing Java meth-
ods executed in the interpreter mode. To do this, we examine the

1https://developer.android.com/studio/profile/cpu-profiler
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Figure 1: Overview of 𝐹𝐴3 (shaded components)

different handlers in Android interpreter, and find correspond-
ing handlers that process all branch transfer instructions, includ-
ing HandleGoto, HandleIf, PACKED_SWITCH, and SPARSE_SWITCH.
𝐹𝐴3 modifies these handlers to record the source and target ad-
dresses of the branch transfer instructions. Since these native han-
dlers are executed for every branch transfer, 𝐹𝐴3’s intercepting on
them manages to achieve finer-grained Android app analysis with
good performance overhead.

Similarly, 𝐹𝐴3 modifies the handlers for iget and
iput (Dalvik’s field access instructions) to provide low-level analy-
sis on field related information, including the Java method in which
the field is accessed, the type of the field, and the value of the field.

𝐹𝐴3 additionally supports analysis of vregisters, which are stored
in the shadow stack frame memory, at method enter/exit as well as
branch transfers. Specifically, 𝐹𝐴3 first finds the shadow frame for
the method that is currently executed by walking through the stack,
and then obtains the register values by calling
ShadowFrame::GetVReg() (API provided by ART).

3.2 Quick Code Tracer
The second module tracks the execution for Java methods which
have been compiled into native instructions2 using AOT compila-
tion. When ART wants to execute such native instructions, it needs
to first locate the entrypoint which is done in the Java class linking
and OAT file loading process. 𝐹𝐴3 modifies these loading and link-
ing procedures to redirect the entrypoint of compiled Java methods
to a stub called art_quick_instrumentation_entry, which per-
forms fine-grained app analysis including logging native register
values and method invocation information (e.g, method ID) before
calling the actual compiled method. In addition, the stub sets the
value of the intended link register (lr) to the address of another
stub named art_quick_instrumentation_exit so that when the
compiled method finished its execution, the control returns to the
stub to continue the execution. 𝐹𝐴3 additionally performs native
register and method exit logging in this stub, too.

To obtain native register values, 𝐹𝐴3 saves each register (x0-x30
for arm64) onto the stack at the beginning of
art_quick_instrumentation_entry and

2We use the term “native instruction” to differentiate from native code compiled from
C/C++ code.

1 6241| smali|com.example.hellolibs.MainActivity.onCreate(
Landroid/os/Bundle ;)V| .enter |

2 6241| native|libhello -libs.so| JNI 0x7c0

Figure 2: Example of JNI invocation analysis result

art_quick_instrumentation_exit, and passes the current stack
pointer to a function called GetRegisterValue() to read register
values from the stack.

3.3 JNI Tracer
The Android runtime allows apps to call native code (the classical
shared object file format .so extension) from Java code via JNI.
Our JNI tracer enables analysis in this Java-native interface, while
the native tracer (discussed in Section 3.4) supports analysis in the
execution of native code.

𝐹𝐴3 modifies the native library loading and address searching
process to perform JNI tracing. Specifically, ART uses function
SharedLibrary::FindSymbol() to find the address of the native
method going to be invoked through JNI. 𝐹𝐴3 can easily record the
source and target addresses for the JNI invocation by modifying the
SharedLibrary::FindSymbol() function. Figure 2 shows that the
Java method onCreate in thread 6241 calls the native method at
offset 0𝑥7𝑐0 in the third-party native library libhello-libs.so
through JNI. Once the target address for a native method is found,
𝐹𝐴3 will perform an on-demand instrumentation of control-flow
transfer instruction in the shared library to help us analyze its
behavior; see Section 3.4.

3.4 Native Tracer
Native libraries could typically make system calls and are frequently
used to implement malicious behaviors [7, 18, 23]; therefore, it is
important to include it in the multi-layer fine-grained analysis.

One possible solution of tracking the execution of native library
is to make use of process trace (ptrace). However, ptrace cannot
attach to apps with anti-debugging capability, such as apps that
provide government digital services [28].

Our idea is to replace control-transfer instructions in the native
library with system calls, so that the execution would trap into the
kernel, enabling the kernel to perform fine-grained analysis. Such
a solution works especially well on an ARM architecture due to
its RISC nature. To obtain a balanced performance, our dynamic
rewriting of control-transfer instructions is performed on-the-fly
for each basic block. The handler in the kernel performs three
main tasks — calculating the target of the control-flow transfer,
logging the control-flow transfer information, and on-the-fly binary
rewriting for the control-transfer target. To calculate the actual
target of the control transfer, 𝐹𝐴3 stores a copy of the original
native library into another read-only memory for look-up purposes.
The dynamic rewriting is performed by temporarily setting the
code page to be writable.

Figure 3 shows an example of native library liblemon.so with
three branch transfer instructions. Assuming that instruction A is
the first control-transfer instruction executed after a JNI call,A is re-
placed with a system call instruction (svc #07; 1○) and the replace-
ment is performed by our instrumented
SharedLibrary::FindSymbol() function in the JavaVMExt class.
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Figure 3: Example of native library rewriting

After the system call ( 2○), our handler in the kernel refers to the
copy of the original library to compute the actual target ( 3○), which
turns out to be a blr instruction with the actual target stored in
register x8. 𝐹𝐴3 therefore sets the program counter (PC) to the
value of x8, and sets the value of link register (lr) (which stores the
return address when a subroutine call is made) to the address of
instructionR). Meanwhile, 𝐹𝐴3 logs the source and target addresses
of this control transfer to a log buffer in the user space ( 4○). Lastly,
on-the-fly control-transfer instruction rewriting will be performed
on the next basic blocks (that pointed to by x8 and B).

3.5 User Interface
To provide a convenient experience, 𝐹𝐴3 consists of a third-party
application called AppTracer to allow end users to choose which
application to analyze. Upon selecting the application, end users are
presented with the list of third-party native libraries, classes, fields,
and registers that are present in the application code to analyze.
Once selected, they will be saved into a configuration file for 𝐹𝐴3 to
consult at runtime. Figure 4 shows a few screenshots of AppTracer3.
We plan on releasing the source of 𝐹𝐴3 after our paper publication.

4 EVALUATION
We first compare the traces collected by 𝐹𝐴3 with other existing
instrumentation tools to demonstrate that the trace collected by
𝐹𝐴3 is complete. We further evaluate 𝐹𝐴3 with two real malware
(i.e., gta3 and QR Scanner) downloaded from Koodous4 to show
its capability in detecting malicious behavior. These two types
of malware are chosen because they used packing, JNI reflection,
and obfuscation to make the analysis more difficult. Moreover,
we evaluate the performance of 𝐹𝐴3 using GeekBench-5 [3]. All
evaluations are done on unrooted Pixel 5 running Android 11. Note
that we don’t need the phone to be rooted when 𝐹𝐴3 is enabled.

3More screenshots can be found in https://www.dropbox.com/s/82nn2p1bsgc9poi/
AppTracer.jpg?dl=0
4https://koodous.com/

Figure 4: Screenshot of AppTracer

4.1 Completeness of 𝐹𝐴3

We downloaded 11 open-source applications from F-Droid 5 across
different categories, and compared the traces of Java methods col-
lected using the AspectJ instrumentation framework [2] and 𝐹𝐴3.
AspectJ is an Aspect-Oriented Programming (AOP) extension for
Java and can be used in Android for instrumenting mobile applica-
tions [8]. We choose AspectJ, a source-level instrumentation tool,
to ensure that the basis of comparison is complete and correct.

The details about these apps and the comparison result can be
found in Table 2. Result shows that the Java methods collected by
ApsectJ are 100% present in traces from 𝐹𝐴3 when obfuscation is dis-
abled in compiling the apps. One interesting thing we notice is that
𝐹𝐴3 captures the execution of all Java methods including construc-
tors, while ApsectJ cannot. For ProGuard obfuscated applications
and methods, e.g., GreenTooth, AspectJ reports the original method
names before obfuscation while 𝐹𝐴3 outputs the obfuscated method
names. This is because 𝐹𝐴3 works on the apk without source-level
information; nevertheless, the one-to-one correspondence in the
trace comparison shows that 𝐹𝐴3’s output is complete.

4.2 Malicious Behavior Detection
(1) gta36 is a malicious app that sends SMSmessages in a stealthy

manner, which adopts Java/JNI reflection to hide its malicious be-
haviors with the class and method names obfuscated/encrypted. At
runtime, instead of calling the methods directly, it takes a string
previously encrypted and decrypts it using a lookup table before
using reflection to find the method that bear the decrypted name.

We use the Dalvik bytecode tracer and quick code tracer compo-
nents in 𝐹𝐴3 to trace the invocations of framework APIs and Java
5https://f-droid.org/
6MD5: dd40531493f53456c3b22ed0bf3e20ef

https://www.dropbox.com/s/82nn2p1bsgc9poi/AppTracer.jpg?dl=0
https://www.dropbox.com/s/82nn2p1bsgc9poi/AppTracer.jpg?dl=0
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Table 2: Comparison results for 𝐹𝐴3 and AspectJ
App’s Name Description Result

A Photo Manager Manage local photos Y
Specie Currency conversion Y

Compass Compass with a range of styles Y
Neidum Read Medium articles without limits Y

Smart EggTimer Cook egg timer Y
Baby Phone Pretend phone app for little people Y
Metronome Metronome with presets and tap tempo Y

SimpleTextEditor Simple Text Editor Y
QR Scanner Privacy Friendly QR Scanner Y
HashEasily Calculate hash checksums of files Y
GreenTooth Automatic Bluetooth disabler N

Y means 𝐹𝐴3 can capture all method executions obtained by AspectJ
N means the captured method executions in 𝐹𝐴3 and AspectJ are different

Figure 5: 𝐹𝐴3 detects Java reflection of the gta3 malware. Ellipses
refer to framework method. Round corner rectangles represent data.
Other rectangles indicate method in the app.

methods in the app. As shown in Figure 5, the string used in the re-
flection call is encrypted and needs to be decrypted by calling func-
tion gdadbjrj.gdadbjrj. 𝐹𝐴3 reveals that the malware obtains
the object of android.telephony.SmsManager class through Java
reflection method Class.forName() by using the decrypted result
android.telephony.SmsManager as the input. It then retrieves
the method object of sendTextMessage() using Java reflection
method Class.getMethod(). Finally, it calls the framework API
sendTextMessage() by sending message
“7012394196732588741192" to number 2858. Since we also record the
register values, we can easily find out the content of the message.

(2) QR Scanner7 is a malicious app that checks the simcard op-
erator code and visits a site to subscribe for a premium service.
It is packed by Tencent’s Legu [1] and the malicious activities
are performed in the background without the user’s knowledge
by downloading three different payloads. In this experiment, we
configure 𝐹𝐴3 to enable the method invocation and register value
tracing in Dalvik bytecode tracer and quick code tracer, JNI tracer,
and control-flow transfer tracing in native tracer to gain a compre-
hensive understanding of the malware. The JNI tracer reveals that
the Java code uses the native code in the third-party native library
to load the real Dalvik bytecode that is encrypted by the packer.
The native tracer records how the native code decrypts and loads
the real Dalvik bytecode into the memory.

Figure 6 shows the log file generated by 𝐹𝐴3 in monitoring exe-
cution of the packed malware.8 Once the malware is started, class
com.easyqr.scannertool.MyWrapperProxyApplication is loaded
7MD5: 3bbf45eab9796a2781e640393fae7423
8A more complete version can be found in https://www.dropbox.com/s/
j04nnx4vmwz2am1/packer_tracing.png?dl=0

for preparing the real payload (Line 1). Then, the Android frame-
work API android.app.Application.attach() is invoked (Line
4) to set the property of the app context. After that, the malware
calls the Java method System.loadLibrary() to load its native
component libshell-super.2019.so at Line 6. After initializa-
tion, the JNI tracer finds that the malware calls the JNI method
JNI_OnLoad() to decrypt and load the hidden Dalvik bytecode
that is encrypted into memory. More specifically, the control-flow
transfer tracing in the native tracer finds that it opens the file
0OO00l111l1l that has the encryptedDalvik bytecode and decrypts
it (Line 9-11). Java method installDexes() is called through JNI
reflection by the native code to create a new Dex file and the de-
crypted Dalvik bytecode is written into it using memcpy (Line 12-18).
Finally, the Dalvik bytecode tracer finds that the app loads and
initializes the class com.kitkats.mike.MainActivity (Line 20),
following which the malicious behavior gets executed, including
the downloading of three Dex files and invoking sensitive APIs.

The result demonstrates that 𝐹𝐴3 has the capability to detect
malware with powerful attacking techniques due to the fine-grained
and multiple-layer tracing.

4.3 Performance Overhead
To understand the overhead introduced by 𝐹𝐴3, we run the bench-
mark tool GeekBench-5 [3] 15 times under a number of setting:

• stock Android with 𝐹𝐴3 disabled (Base);
• 𝐹𝐴3 enabled to monitor Java method invocations, with (MR)
and without (M) register values recording;

• 𝐹𝐴3 enabled to monitor method invocations and branch
transfers for Java code, with (MBR) andwithout (MB) register
values recording;

• 𝐹𝐴3 enabled to monitor field access (MF);
• 𝐹𝐴3 enabled to monitor method invocations and branch
transfers for Java and third-party native libraries, with (MBNR)
and without (MBN) register values recording.

The overall result is shown in Figure 7. The y-axis is the running
score of GeekBench-5. Specifically, GeekBench runs a series of tests
on a processor and times how long the processor takes to complete
the tasks. The quicker the CPU completes the tests, the higher the
GeekBench score is.

The results show that 𝐹𝐴3 introduces between 21.4% and 34.3%
slowdown when monitoring Java method invocation, while mon-
itoring branch transfers result in an additional 5.5% slowdown.
Higher runtime overhead comes from the control-flow transfer
tracing for third-party native libraries at around 48.2% slowdown
compared with stock Android. Note that these results are obtained
by monitoring all method invocations and control-flow transfers;
while in more realistic application scenarios, 𝐹𝐴3 can be configured
to monitor specific methods only with smaller overhead.

We also measured the overall system performance overhead in-
troduced by 𝐹𝐴3 by using a macrobenchmark that exercises 1,000
top-downloaded apps from the Google Play Store via the Android
UI/Application Exerciser Monkey9. We configured Monkey to exer-
cise apps and generate the exact same sequence of events on the

9https://developer.android.com/studio/test/monkey.html

https://www.dropbox.com/s/j04nnx4vmwz2am1/packer_tracing.png?dl=0
https://www.dropbox.com/s/j04nnx4vmwz2am1/packer_tracing.png?dl=0
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1 java.lang.ClassLoader.loadClass("com.easyqr.scannertool.MyWrapperProxyApplication")
2 com.easyqr.scannertool.MyWrapperProxyApplication.<init >()
3 com.wrapper.proxyapplication.WrapperProxyApplication.<init >()
4 android.app.Application.attach () // Internal framework API
5 android.content.ContextWrapper.attachBaseContext () // Set the base context for this ContextWrapper.
6 System.loadLibrary("shell -super .2019") // Load native library libshell -super .2019. so
7 /* JNI invocation: decrypt the actual dex file in the assets */
8 JNI_OnLoad ()
9 0x2613c () // Open the real Dex file and decrypt it.
10 open("0OO00l111l1l",0x2) // Open real Dex file
11 mmap()
12 0x6a44()
13 /* JNI reflection , create a new Dex file */
14 com.wrapper.proxyapplication.MultiDexForTinker.installDexes ()
15 0x17a38 ()
16 do{
17 memcpy () // Copy the decrypted Dalvik bytecode into the memory
18 }while
19 /* Initialize the new activity arg: Activity ="com.kitkats.mike.MainActivity" */
20 android.app.Instrumentation.newActivity ()
21 /* hidden Dex file loading */
22 dalvik.system.DexClassLoader.<init >("/data/user /0/com.easyqr.scannertool/files/xia", , ,)
23 dalvik.system.DexClassLoader.<init >("/data/user /0/com.easyqr.scannertool/files/changeone", , )
24 dalvik.system.DexClassLoader.<init >("/data/user /0/com.easyqr.scannertool/files/kakghkg", , ,)
25 /* hidden behavior */
26 android.telephony.TelephonyManager.getSimOperator ()
27 android.telephony.TelephonyManager.getSimOperatorNumeric ()
28 android.telephony.TelephonyManager.getLine1Number () // Returns the phone number string
29 android.telephony.TelephonyManager.getSubId ()

Figure 6: Method invocation collected by 𝐹𝐴3. We only show the arguments that can help to understand the behavior due to space limitation.
Note that these argument values are obtained by logging the vregister values.

Figure 7: Performance overhead of 𝐹𝐴3

Pixel 5 smartphone when running both the stock Android OS and
the modified version of Android with 𝐹𝐴3 enabled.

The experimental results show that the average recorded system-
wide performance overhead is 428.5% when measuring the addi-
tional time required by 𝐹𝐴3 to collect all class (method) executions.
That said, the minimal overhead is only around 2.4% and the maxi-
mum overhead is about 11540.0%.We comment that: (1) all exercises
run successfully on 𝐹𝐴3 without any events severely delayed or
blocked due to the overhead, which makes 𝐹𝐴3 suitable for reli-
ably monitoring and tracing of Android apps; and (2) the overhead
could be substantially reduced when the monitoring is configured
to focus on specific classes and methods.

5 DISCUSSION
The current implementation of 𝐹𝐴3 focuses on monitoring the
execution of Java Code, native code, native libraries, and the JNI
invocation to enable fine-grained understanding of the apps’ exe-
cution. 𝐹𝐴3 is not designed to draw a line between malicious and
benign software. We further discuss the limitations of 𝐹𝐴3.

First, the code coverage is a concern for all dynamic analysis
platforms, including 𝐹𝐴3. To address this, we can use Monkey [5]
or other UI automation frameworks [14] to generate events with a
better code coverage.

Second, 𝐹𝐴3 does not support native libraries involving self-
modifying code at the moment. In order to address it, we can check
whether the memory content is changed once the control-flow traps
into the kernel by looking up the 𝑣𝑚_𝑎𝑟𝑒𝑎_𝑠𝑡𝑟𝑢𝑐𝑡 structure.

Last but not the least, hybrid apps leverage the advantages of both
traditional apps written in Java and web apps using various web
techniques (e.g., JavaScript, HTML) to speed up the development
for multiple platforms. 𝐹𝐴3 currently does not support tracking
information flows going through the JavaScript context switch.

6 CONCLUSION
We propose 𝐹𝐴3, a novel on-device, non-invasive, and fine-grained
analysis platform to capture application execution on multiple lay-
ers at a fine-grained manner. 𝐹𝐴3 generates logs containing the
information of method invocations and control-flow transfer for
Java and native code. We have implemented a prototype of 𝐹𝐴3 and
evaluated it with real-world malware samples and benign applica-
tions. The experimental results show that 𝐹𝐴3 successfully analyzes
them and provides a comprehensive view of their behaviors.
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