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Abstract. With the advance of packing techniques, a few generic and
automatic unpackers have been proposed. These unpackers are designed
to automatically unpack packed binaries without specific knowledge of
the packing techniques used. In this paper, we present an automatic
packer with which packed malware forges spurious unpacking behaviors
that lead to a denial-of-service attack on host-based generic unpackers.
We present the design, implementation, and evaluation of the proposed
packer and malware produced using the proposed packer, and show the
success of denial-of-service attacks on host-based generic unpackers.
Keywords: generic unpacker, denial-of-service attack, spurious unpack-
ing behavior

1 Introduction

Most malware is packed in order to evade malicious content detection. It has
been reported that among 20, 000 malware samples collected in April 2008, more
than 80% were packed by packers from 150 different families [10]. This is further
complicated by the ease of obtaining and modifying the source code of various
packers. Currently, new packers are created from existing ones at a rate of 10 to
15 per month [17].

A few generic and automatic unpacking techniques have been proposed to
unpack packed binaries without specific knowledge of the packing technique used,
e.g., OmniUnpack [9], Justin [5], Renovo [8], PolyUnpack [14] and others1. A

⋆ This research was mostly done when the first three authors, Limin Liu, Jiang Ming,
and Zhi Wang, were researchers working in Singapore Management University. It
was partially supported by National Science Foundation (NSF) China under the
agreements 90718005, 70890084/G021102, and 60573015.

1 For example, OllyBonE from National Center for Biotechnology Informa-
tion, http://www.ncbi.nlm.nih.gov; Deroko, http://deroko.phearless.

org/rce.html; RL!Depacker, http://ap0x.jezgra.net/; QuickUnpack,
http://qunpack.ahteam.org/; and Universal PE Unpacker, http://www.hex-rays.
com/idapro/unpack_pe/unpacking.pdf.



difficulty that most of these generic unpackers face is to determine the end of the
unpacking routine in the execution of the packed malware, which has been proved
to be an undecidable problem [14]. Intuitively, the malware might be packed with
multiple layers of packers, which makes it difficult to differentiate the end of the
unpacking and the start of the execution of the original malware. Many generic
unpackers adopt various heuristics to handle this difficulty. However, they may
be wrong in determining the end of unpacking [9].

Using the heuristics does not necessarily expose the unpacker and its oper-
ating machine to attacks like denial-of-service attacks we propose in this paper,
especially if the unpacker runs on a controlled and protected environment, e.g.,
emulators or virtual machines. However, when the unpacker is running on a real
host machine that has to be protected by, e.g., anti-virus software, a denial-of-
service attack becomes possible.

Some of the latest and most sophisticated unpackers operate on real host
machines instead of emulators or virtual machines to improve efficiency [5, 9].
Since they do not run under a controlled and protected environment, anti-virus
software is invoked at all potential end-of-unpacking points to protect the host
machine and to detect the unpacked malware. For example, OmniUnpack [9]
invokes anti-virus software to scan the malware whenever a page is written and
then executed, and the execution involves a dangerous system call made.

Our proposed denial-of-service attack exploits the requirement of host-based
generic unpackers to invoke anti-virus software at all potential end-of-unpacking
points during the execution of the packed malware, and the fact that the anti-
virus scanning time dominates the overhead of the unpacker (see Section 2).
The idea is for the DoS-packed malware to forge a large number of spurious
unpacking routines that lead to a large number of invocations of the anti-virus
software, which costs lost of resources on the unpacker including CPU cycles,
memory, and time.

The automatic packer we propose in this paper attaches the DoS attack code
into the executable of malware. The resulting packed malware has the following
properties.

– benign: the DoS attack code we add to the malware (not including the origi-
nal malware) does no harm to the operating system, which makes the packed
malware and its partially packed version evade the anti-virus scanning.

– environment-aware: the DoS attack only targets the unpacker and is not
executed in normal machines (victims of the original malware).

– semantic-preserving: our packer does not change the semantics of the original
malware.

– light-weighted: the overhead when executing on normal machines is small.

In this paper, we present a security vulnerability of host-based generic un-
packers, and propose an automatic packer with which packed malware forges
spurious unpacking behaviors that lead to a denial-of-service attack on host-
based generic unpackers. We implement this packer and try it out on a number
of malware. Experiments show that the packed malware successfully differenti-



ates the unpacker and normal environments, and launches DoS attacks on the
target unpacker.

In the rest of this paper, we first describe the two types of unpackers available
and an analysis of the host-based unpackers (see Section 2). In Section 3, we
detail the design of our denial-of-service attack and the implementation our
automatic packer that realizes the attack. Section 4 presents the evaluation of
the proposed attack and its implementation.

2 Generic unpackers and their heuristics

When a packed malware is executed, it first dynamically unpacks its malware
payload and then executes the malware. Generic unpackers try to extract the
malware payload after detecting the end of unpacking. However, determining
the end of unpacking is proved to be an undecidable problem [14]. Therefore,
generic unpackers either 1) extract the malware payload after it is executed, or
2) have to introduce various heuristics to approximate the end of unpacking.
The approach adopted by an unpacker depends on its executing environment.
Some unpackers execute on emulators or virtual machines, while others execute
directly on host machines for better efficiency.

2.1 Unpackers on controlled environments

A controlled environment may use emulators (e.g., Qemu, Bochs) or virtual ma-
chines (e.g., VMware, VirtualPC). Unpackers on controlled environments first
dynamically execute the packed code for a period of time that is sufficient for
completing the unpacking, and then extract the real payload. It is usually tricky
to choose the time period which is sufficient to extract the actual payload. If the
malware payload gets executed within this time period, the executing environ-
ment of the unpacker runs into an unsafe mode. However, this is not an issue as
the controlled environment guarantees the safety of the host machine. Even if
the emulated or virtual machine is infected with viruses, it can be restored by,
e.g., previous and clean snapshots.

Examples in this category include PolyUnpack [14], which compares the exe-
cuting instructions with static disassembly code by monitoring the program’s ex-
ecution. Malware Normalizer [2], Renovo [8], Azure [13], Saffron [11], Paradyn2,
and Pandora [1] unpack the program based on the fact that the packed code has
to write the instruction in memory and then execute these instructions. Renovo
and Pandora use emulators to monitor the memory access, Saffron and Paradyn
use dynamic instrumentation, and Azure uses Intel’s VT extension. Eureka [15]
monitors two system calls, NtTerminateProcess and NtCreateProcess, to find
the malicious payload.

Using emulators and virtual machines have two challenges in general. One
is that running a program in emulators or virtual machines is much slower (up

2 Paradyn, http://pages.cs.wisc.edu/~paradyn/.



to several hundreds of times [17]) than running it on a host machine. Another
is due to the various anti-emulation and anti-vm techniques [3, 4, 12] that may
terminate the program’s execution once the existence of a controlled environment
is detected.

2.2 Host-based unpackers

Running the unpacker on a host machine improves the performance but might
leave the system in an unsafe state. Therefore, it is important for unpackers to
terminate the execution once the unpacking routine is completed and before the
malicious payload gets executed. Heuristics are introduced to approximate the
end of unpacking. Fig. 1 gives an overview of host-based generic unpackers.
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Fig. 1. Host-based unpackers

In general, the unpacker monitors memory accesses of the packed code and
detects satisfying conditions of the heuristics. Whenever the conditions are met,
the unpacker invokes anti-virus software to scan the (partially) unpacked code to
decide the end of unpacking. The calling of the anti-virus software is important
as the unpacker needs to protect its operating environment not to be infected
by the malware.

Both OmniUnpack [9] and Justin [5] monitor events when a memory page is
written and subsequently executed, although they use different heuristics. Omni-
Unpack uses a heuristic that when the malware gets executed, it needs to inter-
act with the operating system using dangerous system calls. Justin incorporates
other heuristics including unpacker memory avoidance, stack pointer checking,
and command-line argument checking. In order to improve performance, both
of them monitor memory accesses at the page level.

Note that these heuristics adopted by host-based unpackers might not be
always accurate. For example, an invocation of a dangerous system call is not a
sufficient condition to indicate end of the unpacking or execution of the malware.

2.3 Overhead of host-based unpackers

We used our implementation of a previously proposed unpacker (see Section 4)
to unpack a number of packed malware (Amanda, BirdWatcher, Aimbot, Arus,
BlackEyes, Adroar, Aidid and DenisBee) and analyzed the breakdown of the



time spent. Fig. 2 shows the average time spent in each stage of the unpacking.
It shows that the time taken by the anti-virus software dominates the overhead
of the unpacker. This result is consistent with another report on the time spent
by anti-virus software [6], in which it was reported that scanning a binary or
system file of 1 Mbytes takes at least 0.02 seconds for more than 40 AV-scanners
(the average size of the malware we tested is 61 Kbytes, which corresponds to
0.01953 second per Mbytes).
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Fig. 2. Overhead of host-based unpackers

Inspired by this analysis, we designed packed malware that results in a large
number of invocations of the anti-virus software in order to make effective denial-
of-service attacks on host-based unpackers.

3 Denial-of-service attack and its implementation

Fig. 3 shows an overview of our denial-of-service attack on a particular host-based
generic unpacker, OmniUnpack. The packed malware first detects the existence
of the unpacker in the executing environment (see Section 3.1), then forges (a
loop of) spurious behavior if an unpacker is detected or executes the original
malware otherwise. Each iteration of the spurious behavior tries to satisfy the
heuristic condition of the unpacker, which, for example, includes writing to a
memory page, executing the memory page, and making a dangerous system call.

The spurious behavior satisfying the heuristic conditions of the unpacker will
result in an invocation of the anti-virus software to scan for viruses. TW , TE , and
TS represent the overhead introduced by monitoring write behavior, execute
behavior, and scanning for malware by the anti-virus software, respectively.

Designing this denial-of-service attack in a packed malware with all the prop-
erties shown in Section 1 has a few challenges. First, the packed malware needs
to be able to detect the existence of an unpacker. This ensures that the original
malware will be executed when the packed code is run on a normal machine (the
victim of the original malware). Second, the code that facilitates the denial-of-
service attack, including the forged spurious behavior, should not be flagged as
a virus by the anti-virus software. If it is, it will be detected the first time the
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Fig. 3. Overview of the DoS attack on OmniUnpack

anti-virus software is triggered, which in term will result in the success of the
unpacker in detecting the malware, and the denial-of-service attack will fail. On
the other hand, as long as this code is benign, the anti-virus software will have
to be invoked for every iteration of the spurious behaviors, which forms the base
of our denial-of-service attack.

3.1 Detecting the existence of an unpacker

Generic unpackers introduce overhead in, e.g., monitoring memory access and in-
voking anti-virus software. To distinguish between executing environments with
and without a generic unpacker, we monitor the time-stamp counter of the pro-
cessor (TSC) to measure the number of CPU clock cycles in executing spurious
unpacking routines. Figure 4 shows the details of such a measurement.
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Fig. 4. Measuring CPU cycles to detect the existence of an unpacker

To implement this checking, we used the RDTSC instruction to measure the
number of CPU cycles. We measure T (the difference between T2 and T1) many
times (each of which consists of 5 iterations of the execution of a spurious un-
packing routine to reduce the cache warm-up effect) to find its upper bound.
By applying standard statistical techniques to our experiments, we arrived at a
threshold value of 5, 000 clock cycles, i.e., if T exceeds 5, 000, it is most likely
that the process is being executed with an unpacker. Please refer to Section 3.4
for some implementation details.



One possible way for the unpacker to confuse this measurement is to fake the
RDTSC instruction by hooking the Interrupt Descriptor Table (IDT)3. However
this needs a driver to be executed in supervisor mode (ring 0) and may affect
the system stability. Dealing with this issue is beyond the scope of this paper.

3.2 Spurious unpacking behavior

As mentioned in Section 2.2, host-based generic unpackers adopt various heuris-
tics to approximate the end of unpacking. These heuristics help identifying the
potential points in the execution of the packed code that are likely to be the
end of unpacking. However, these potential points in the execution of the packed
code might not be the correct ones. The host-based generic unpackers under-
stand the potential inaccuracy and invoke the anti-virus software at all these
potential points of execution. Our denial-of-service attack forges a large number
of the spurious unpacking behaviors so that the unpacker invokes the anti-virus
software many times.

To make the discussion more concrete, here we take OmniUnpack as an exam-
ple. As discussed in Section 2.2, OmniUnpack monitors events when a memory
page is written and subsequently executed, and uses a heuristic that when the
malware gets executed, it needs to interact with the operating system using dan-
gerous system calls. Our denial-of-service attack first writes a memory page p

with predefined instructions which do no meaningful operation (e.g., nop), and
then executes instructions in p. After that, it invokes a dangerous system call.
Note that as discussed at the beginning of Section 3, the forged spurious behav-
ior should not be flagged as a virus by the anti-virus software. To satisfy this
requirement, we choose to first create a file and then invoke the dangerous sys-
tem call NtDeleteFile to delete it. We tested this with a number of anti-virus
software and found that none of them flags such behavior as malicious.

3.3 Our automatic packer

To implement a packer that takes as input unpacked malware and outputs packed
code that performs our denial-of-service attack on a host-based generic unpacker,
we took a packer from aPLib4 and modified its compressor engine. Our modified
packer is not very different from the original one in their construction of packed
code, i.e., both will first load the original malware binary into memory, compress
the data from different sections (e.g., .text, .data and .rsrc), and obfuscate
the import table to make reverse engineering difficult, and then add the code
needed for unpacking (decompressing the packed code and rebuilding the import
table). The difference is that our modified packer also inserts the DoS attack
stub, which gets executed before the original binary is decompressed. Fig. 5
presents the structure of the packed code produced by our automatic packer.

3 Fake RDTSC, ARTeam, http://deroko.phearless.org/ring0.html.
4 aPLib compression library, http://www.ibsensoftware.com/.
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Fig. 5. Structure of the packed code

At load time the DoS attack stub is first executed to detect whether a host-
based generic unpacker exists. If an unpacker does not exist, the code starts
decompressing the packed malware and rebuilding the original imports using
addresses obtained from APIs LoadLibrary and GetProcAddress. Control is
then transferred to the entry point of the decompressed code, and the original
malware binary gets executed. If an unpacker exists, the DoS attack code starts
iterations of the spurious behavior.

3.4 Implementation details

In order to make our measurement of TSC more accurate, we took into consider-
ation several issues. First, because Intel CPU supports out-of-order execution, we
flush the instruction pipeline to prevent early termination of the measurement.
The CPUID instruction is used for serializing execution [7]. We also subtract the
overhead of instructions RDTSC and CPUID from our results (350 to 400 clock
cycles). Second, cache effect might bias our results. It takes a large number of
cycles to load data and code into the cache when execution starts. To reduce
the cache warm-up effect, we repeat the measurement at least five times and
discount the first measurement. Third, time-stamp counters on different cores
may not be synchronized with each other. Instruction SetThreadAffinityMask

is used to force execution on only one core.

Context switch and memory page swapping sometimes confuse our detection
of the existence of an unpacker, because they introduce big overhead even if an
unpacker does not exist. In order to reduce the false-positive rate of detecting an
unpacker, we choose to detect the existence of an unpacker every time the spuri-
ous unpacking behavior is generated. The overhead introduced by this checking
is very small compared to the overhead of the spurious behavior generated, but
it lowers the false-positive rate significantly. In our experiments, our packed mal-
ware always manages to detect the existence of an unpacker correctly with at
most two rounds of spurious behaviors.



4 Evaluation

In order to evaluate our proposed denial-of-service attack and the packer we im-
plemented, we chose one of the latest and most sophisticated host-based generic
unpackers, OmniUnpack [9], as the target. Since we do not have the OmniUn-
pack source code from the authors, we implemented it ourselves based on the
descriptions from the paper and some help from the OmniUnpack authors on
a computer with an Intel CPU of 3 GHz and 1 Gbytes of memory running
Windows XP SP3.

There are three parts in our evaluation. First, we use anti-virus software to
scan a few pieces of malware packed using existing packers and our packer. Sec-
ond, we execute malware packed using our packer on normal computers without
unpackers. Third, we execute malware packed using our packer on machines with
our implementation of the OmniUnpack.

4.1 Anti-virus software detection

This part of the evaluation tries to see if the code added by our packer can escape
detection by various anti-virus software. As described in Section 3.3, our packer
is implemented by adding our denial-of-service attack code to an existing packer
from aPLib. We first measure the size of the packed code with the original packer
from aPLib and the one with our packer. Results are shown in Table 1. We find
that our packer adds roughly 0.843% overhead compared to packed code with
the original packer.

Amanda BirdWatcher Aimbot Arus BlackEyes Adroar Aidid DenisBee

Original packer 40,960 77,824 20,480 186,368 20,480 77,824 20,480 41,472

Our packer 41,472 78,336 20,992 186,880 20,992 78,336 20,992 41,984

Table 1. Size of the packed code (bytes)

In order to find whether the original packer from aPLib or our denial-of-
service attack code contributes to anti-virus detection, we use anti-virus software
to scan both the malware packed using the original packer from aPLib and
packed using our packer. Table 2 shows the result.

Columns and rows in Table 2 show different malware samples and anti-virus
software we have tested, respectively. Results show that the denial-of-service
attack code introduced by our packer does not contribute to the detection by
anti-virus software, because in all the eight cases where malware packed with
our packer is detected, the same malware packed using the original packer is
also detected. Also note that there are a few cases where malware packed using
the original packer is detected, while the one packed with ours is not.



Amanda BirdWatcher Aimbot Arus BlackEyes Adroar Aidid DenisBee

Kaspersky

ClamAV

Mcafee ⊗ ⊗ ⊗ ⊗ ⊠ ⊗ ⊠ ⊗ ⊠

Microsoft ⊗ ⊗ ⊗ ⊗
Protection

NOD32 ⊗ ⊗ ⊠ ⊗ ⊗ ⊗ ⊗

Norman ⊗

TrendMicro ⊗ ⊠

nProtect ⊗ ⊠ ⊗ ⊗ ⊠ ⊗ ⊠

⊗: malware packed with the original packer is detected
⊠: malware packed with our packer is detected

Table 2. Packed malware escaping detection of anti-virus software

4.2 Executing our packed malware

In this part of the evaluation, we executed malware packed using our packer
on two different environments, one with an unpacker (our implementation of
OmniUnpack) and one without an unpacker (victim of the malware). We used the
same anti-virus software OmniUnpack uses, i.e., ClamAV5. OmniUnpack claims
that it only scans modified pages since the last dangerous system call. However
according to a later report [5], this scanning strategy is not compatible with most
existing commercial AV-scanners. Instead, we dumped the whole memory image
and scan it with ClamAV just as what Justin [5] does. We also instrumented our
implementation of the OmniUnpack to record TW , TE , and TS in every spurious
unpacking behavior found.

We ran eight malware samples (the same as those reported in Table 2) packed
with our packer. Fig. 6 and Fig. 7 show our observations of the execution of these
eight malware samples with and without OmniUnpack in the executing environ-
ment, respectively. Numbers shown in the figures are number of CPU cycles. We
found that all eight packed malware samples succeeded in the denial-of-service
attack on OmniUnpack by forging a large number of spurious unpacking behav-
iors (Fig. 7). At the same time, they all managed to unpack the original malware
with only five spurious unpacking iterations on a normal executing environment
(Fig. 6 only shows the last spurious iteration, and the first four are used to
reduce the cache warm-up effect, see Section 3.1).

A closer look at Fig. 6 reveals that only about 1, 000 CPU cycles were spent
in the first spurious unpacking iteration, which is well below the threshold used
in detecting the executing environment (see Section 3.1). However, this number
is several order of magnitude larger in the presence of OmniUnpack (see Fig. 6).
This result verifies that our packed malware detects the existence of a host-based
generic unpacker correctly.

5 Clam AntiVirus, http://www.clamav.net/.
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4.3 Applicability of our attack and limitations

Unpackers like OmniUnpack could introduce a counter to monitor the number of
spurious unpacking behaviors and use a threshold to fight against our denial-of-
service attack. However, this does not solve the problem as it is hard to set such
a threshold and it comes with the price of failure in unpacking many packed
code. This is because the idea of our attack is based on 1) end of unpacking
is undecidable and heuristics have to be used for approximation; and 2) host-
based generic unpackers need to protect itself by invoking anti-virus software in
all potential execution points of the end of unpacking. We do not believe a simple
solution exists for practical host-based generic unpackers in fighting against our
denial-of-service attack.

However, our attack is not applicable to the unpackers which adopt very dif-
ferent heuristics. For example, Eureka [15] introduces statistical n-gram analysis
to help find the end of unpacking. Hump-and-dump [18] creates a histogram of
the addresses of executed instructions ordered by the last time the address is
executed. Our attack will not work on these unpackers.

5 Related Work

Ferrie introduced various anti-unpacking tricks, including anti-dumping, anti-
debugging, anti-emulating, and anti-intercepting techniques [4]. Since the real



payload will eventually be unpacked to the memory, unpackers dump the mem-
ory when they detect the existence of the payload. Anti-dumping techniques are
designed to prevent the unpacker from dumping the process memory. Several un-
packers make use of a debugger or emulator to monitor the unpacking behavior.
Anti-debugging and anti-emulating tricks are used to circumvent the unpacking
whenever there is a debugger or an emulator running. Some unpackers use page
intercepter to monitor memory page accesses. Anti-intercepting techniques are
used to detect the existence of an interceptor and evade it.

There have also been works to detect the existence of an emulator [3, 12],
including CPU bugs, model-specific registers, and alignment checking. These
techniques can be adopted to evade emulator-based unpackers.

Dual-mapping is used to evade unpackers which dynamically unpack the pro-
gram by detecting memory execution [16]. In this work, physical memory regions
are mapped into two virtual ones, one for written and another for execution.

Our work is different from these previous work in that we use timing infor-
mation for detecting the existence of an unpacker.

6 Conclusion

In this paper, we present a denial-of-service attack on host-based generic unpack-
ers. Malware samples packed using our automatic packer detects the existence
of a host-based generic unpacker and forges spurious unpacking behaviors, and
these spurious unpacking behaviors result in a denial-of-service attack on the
unpacker. Our experimental evaluation demonstrates the effectiveness of this
attack.
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