
Revisiting Address Space Randomization

Zhi Wang1, Renquan Cheng2, and Debin Gao2

1 College of Information Technology and Science, Nankai University, China
2 School of Information Systems, Singapore Management University, Singapore

Abstract. Address space randomization is believed to be a strong de-
fense against memory error exploits. Many code and data objects in a
potentially vulnerable program and the system could be randomized,
including those on the stack and heap, base address of code, order of
functions, PLT, GOT, etc. Randomizing these code and data objects is
believed to be effective in obfuscating the addresses in memory to ob-
scure locations of code and data objects. However, attacking techniques
have advanced since the introduction of address space randomization. In
particular, return-oriented programming has made attacks without in-
jected code much more powerful than what they were before. Keeping
this new attacking technique in mind, in this paper, we revisit address
space randomization and analyze the effectiveness of randomizing various
code and data objects.
We show that randomizing certain code and data objects has become
much less effective. Typically, randomizing the base and order of func-
tions in shared libraries and randomizing the location and order of entries
in PLT and GOT do not introduce significant difficulty to attacks using
return-oriented programming. We propose a more general version of such
attacks than what was introduced before, and point out weaknesses of a
previously proposed fix. We argue that address space randomization was
introduced without considering such attacks and a simple fix probably
does not exist.
Keywords: Address space randomization, return-oriented pro-

gramming, software exploit

1 Introduction

Address Space Randomization (ASR) has been proposed as a technique to fight
against memory error exploits [2–4]. Most of these techniques obfuscate ad-
dresses in memory to obscure the location of code and data objects, including
those on the stack and heap, static data, PLT, GOT, and etc. An attacker would
then have a hard time finding out the addresses of code and data objects. This
in turn makes the result of invalid memory access unpredictable. For example,
randomizing the base of the stack and introducing random sized gaps between
successive stack frames could make it difficult for an attack to locate or overwrite
the return address; randomizing the locations of the PLT and GOT could make
it difficult for an attack to access system functions such as execve() after sub-
verting the program’s control flow and therefore limit what a successful exploit
could perform.

However, attacking techniques have advanced a lot since the introduction of
address space randomization. In particular, return-oriented programming [14]
has made attacks without injected code more powerful, in many cases able to
perform arbitrary computation. This raises the question of whether randomiz-
ing certain code and data objects is still as effective as what we believed. In
this paper, we show that randomizing the base and order of functions in shared
libraries and randomizing the location and order of entries in PLT and GOT
do not introduce significant difficulty to attacks using return-oriented program-
ming. In particular, we present an attack on a system in which the library base
addresses, the order of library functions, and the PLT and GOT are random-
ized. In the course of presenting the attack, we also detail a few improvements
to return-oriented programming to make our attack more effective. We continue
to show that a previously proposed fix of encrypting GOT might not work in
many cases. We argue that address space randomization was introduced without
considering such attacks, and a simple fix probably does not exist.

Note that what we study here is more than returning to randomized lib(c)
as shown in a previous work [13]. Besides the attack we propose here being
more general, i.e., we consider a system where the order of library functions
are also randomized, we strive to study the effectiveness of randomizing various
code and data objects rather than proposing a particular attack. We analyze the
root cause of attacks using return-oriented programming, point out weaknesses of
mitigation techniques in the previous work [13], and argue that randomizing such
code and data objects are just ineffective and no simple fix exists. To support
our analysis, we evaluate a number of commonly used application programs and
show that encrypting GOT is, in fact, not effective in stopping the attack, since
there are enough gadgets found in the binary program itself to exercise the attack
and returning to libc is not needed.

We caution the readers from drawing from our analysis more than what it
deserves. We are not trying to show that address space randomization is not
effective in general. On the other hand, since there are many code and data ob-
jects that can be randomized, our analysis shows that randomizing some of these
does not necessarily improve the system security because of the new attacking
technique. Address space randomization is certainly effectively in, e.g., making it
difficult for an attack to exploit a vulnerability to subvert the program’s control
flow. What we show in this paper is that after an attack manages to subvert
the program’s control flow, the difficulty of causing the program to execute in a
manner of his choosing using return-oriented programming is not much affected
by randomizing the base and order of functions or location and order of PLT
and GOT.

In summary, the paper makes the following contributions.

– Propose and implement a general attack on an address space randomization
system where the base and order of library functions and location and order
of entries in PLT and GOT are randomized.

– Propose a few improvements to the return-oriented programming to make
our attack more effective.

– Analyze limitations of the previously proposed attack mitigation technique
of encrypting GOT.

– Discuss on the effectiveness of randomizing the base and order of functions
and location and order of entries in PLT and GOT.

The rest of the paper is organized as follows. In Section 2, we outline the
background and discuss some related work in this area. Section 3 presents an
overview and intuition of our attack. We detail the implementation of our at-
tack in Section 4. Section 5 discusses the limitation of a previously proposed
attack mitigation technique and our experimental results on it, and discusses
the implications. We conclude in Section 6.

2 Background and Related Work

There are many code and data objects that can be randomized [2–4]. Table 1
presents a summary of the important ones and the specific data to be random-
ized.

Code and data objects What to randomize

Stack-resident variables
Base of stack

Gaps between stack frames

Heap-resident variables
Base of heap

Gaps between heap allocations
Static variables Order of static variables

Program code
Addresses of function call targets

Position independent code

Functions in library
Base of library

Order of functions in library
Gaps between functions in library

Entries in PLT and GOT
Locations of PLT and GOT

Order of entries in PLT and GOT
Table 1. Code and data objects to be randomized

Randomizing these code and data objects is effective in stopping some par-
ticular types of attacks or steps in some attacks. In this paper, we try to analyze
the effectiveness of randomizing some of these data in making attacks difficult. In
particular, our analysis shows that randomizing functions in library and entries
in PLT and GOT is ineffective. We support this by presenting our general attack
on an address space randomization system and analyzing an attack mitigation
technique previously proposed.

To understand how these randomization helps in making attacks difficult, we
briefly describe the two steps an attack usually needs to perform. First, it needs
to find a way to exploit the vulnerability to subvert the program’s control flow.
Second, it needs to cause the program to execute in a manner of his choosing.
Traditionally, the first step could be done by overflowing a buffer on the stack
and overwriting a return address, although many other techniques, e.g., heap [8]
and integer overflows [18] and format string vulnerabilities [16], could be used.

The second step can be done by executing injected code [12] or performing a
return-to-libc attack.

Address space randomization [2–4] and a variant of it [17] are proposed to
make both steps discussed above difficult. For example, in order to overwrite
a return address on the stack to subvert the program’s control flow, an attack
needs first to locate the return address. If the base of the stack is randomized,
the location of the return address is no longer the same on different executions of
the same program and therefore the attack will be difficult. A brief summary of
the randomizing techniques to make it difficult to subvert the program’s control
flow follows.

– Introducing shadow stack for buffer-type variables;
– Randomizing the base of the stack and heap;
– Introducing random sized gaps between successive stack frames and heap

allocations;
– Avoiding calls using absolute addresses by transforming them into function

pointers.

Address space randomization can also make it difficult for an attack to per-
form arbitrary computation after the attack subverts the program’s control flow.
For example, making memory spaces non-writable or non-executable could stop
injected code execution. Randomizing functions in the binary and shared library
could make return-to-libc attacks difficult. Here is a summary of randomizing
techniques to make this step difficult.

– Making certain memory spaces non-writable or non-executable;
– Randomizing the order of functions in the binary and shared libraries;
– Introducing random sized gaps and inaccessible pages between functions in

the binary and shared libraries;
– Randomizing the order of static variables;
– Randomizing the location of PLT and GOT;
– Randomizing the order of entries in PLT and GOT;
– Uses position independent code in the program.

In this paper, we assume that an attack has successfully subverted the vulner-
able program’s control flow (first step), and try to evaluate how effective address
space randomization is in making the second step difficult, i.e., in making it
difficult for the attack to perform arbitrary computation.

Our attack uses the idea of return-oriented programming [14, 6]. Return-
oriented programming fits the requirement of the attack well because it does
not need to execute any injected code. Only a large number of short instruction
sequences from either the original program or libc is to be executed in order
for the attack to perform arbitrary computation. However, our attack is more
challenging than return-oriented programming on a normal (non-randomized)
machine in that the addresses of the short instruction sequences are randomized
and unknown to the attacker. Although return-oriented programming has been
extended to a number of different environments [5, 9–11, 7], it is non-trivial how
it can be applied on address space randomization systems.

Perhaps the work to surgically return to randomized libc [13] is the closest
to our work in this paper. In this work, Roglia et al. introduced an attack on
address space randomization assuming the base of the libc library is randomized.
The attack surgically finds the address of a libc function by reading entries in
PLT and GOT using return-oriented programming. The attack we present in
this paper uses the same strategy, but differs in that it also assumes that the
order of library functions are randomized. Roglia et al. also proposed an attack
mitigation technique of encrypting the GOT. In this paper, we argue that such
a technique might not work on programs where enough gadgets are found in
the program binary itself and libc is not needed for the attack. We demonstrate
this by analyzing a few commonly used application programs and show that an
attack on them indeed does not require the use of libc. In general, this paper
is not just about introducing an attack on address space randomization, but
to study the effectiveness of randomizing certain code and data objects, and
to argue that randomizing them is ineffective to defend against attacks using
return-oriented programming, and a simple fix does not exist.

The effectiveness of address space randomization on 32-bit architectures has
been analyzed previously [15]. In this work, a brute force attack is proposed to
guess the libc text segment offset in order to perform a return-to-libc attack.
Experiments show that such an attack is effective on a 32-bit system where the
vulnerable service automatically restarts after crashing. Our attack is different
from this attack in that we derandomize the addresses in an efficient way without
brute forcing. Therefore, our attack has a wider application on systems where
counter-measures are in place to fight against brute force attacks.

3 Attack on Address Space Randomization

As shown in Section 2, there are many code and data objects that can be random-
ized to make different attacks or attack steps difficult. Although return-oriented
programming [14] has made attacks without injected code more powerful, in
many cases able to perform arbitrary computation, intuitively it does not work
well on address space randomization systems because the locations of gadgets
are randomized and hard to be found.

In this section, however, we show that randomizing the base of the library,
order of library functions, entries in PLT and GOT is ineffective in defending
against attacks using return-oriented programming. We show this by presenting
an attack on an address space randomization system where we assume that
position independent code is not in use in the binary program. This assumption
is valid in most existing computing systems because recompilation is needed to
generate position independent code. We show that our attack is able to execute
arbitrary computation after subverting the control flow of the program. This
attack uses the same strategy of the one presented by Roglia et al. [13]. However,
here we assume that the order of library functions is randomized whereas Roglia
et al. only considers the randomized base address.

In the rest of this section, we first give an intuition of the attack we propose
and an overview of the steps involved. In Section 4, we detail the implementation
of the attack and a few improvements we introduce to make return-oriented
programming more effective in our attack.

3.1 Attack intuition

As many memory pages are made non-writable or non-executable in an address
space randomization system, our attack tries to use existing code in the system
to perform arbitrary computation. A typical way of performing such an attack
is to use return-to-libc attacks to transfer control to system function execve().
Recall that we assume that the first step of the attack to subvert the control
flow of the program, see Section 2, has been done. Therefore, the most important
next step is to locate the address of a system call in existing code (e.g., in libc)
and then transfer control over there.

Randomizing base address of the library and order of library functions Ran-
domizing the base address of libc and the order of libc functions are definitely
effective in making our attack more difficult, since the address of these function
has been randomized and cannot be pre-computed in our attack.

Randomizing entries in PLT and GOT PLT (procedure linkage table) and GOT
(global offset table) play crucial roles in resolution of library functions, and
therefore is a potential target of our attack. As shown in Figure 1, GOT stores the
address of libc functions, while PLT contains entries that jump to the addresses
stored in GOT.

Fig. 1. PLT and GOT in a dynamically linked ELF executable

The dependency between randomizing PLT/GOT and randomizing library
base address and functions was well documented — if an attacker knows the
location and offsets of PLT, then the address of libc functions can be found even
if the base address of libc and order of libc functions are randomized [4].

We have seen the dependency between randomizing libc and randomizing
PLT/GOT because addresses of libc functions are used in PLT/GOT. By the
same token, entries of PLT/GOT are used by other parts of the program, in
particular, by call instructions in the code segment. If an attack can locate
such call instructions in the program, theoretically the target of the call would
reveal the location and offset in PLT/GOT, too. This analogy can also be seen
from Figure 1.

Another way to look at such an attack is that no matter how well code
and data objects are randomized, the randomized object would need to be ac-
cessible by the original program anyway to enable execution of the program.
Addresses of libc functions are randomized, but the randomized addresses are
used in PLT/GOT to allow libc functions to be called; by the same token, PLT
and GOT can be randomized, but the randomized addresses are used in call

instructions to allow functions to be called, too. If our attack is able to locate
the call instructions and find out the target of the call, we can find the address
of libc functions indirectly.

3.2 Attack overview

To demonstrate the chain of dependencies, we propose our attack to perform
arbitrary computation when the binary program does not make use of position
independent code, i.e., when the attacker has access to the vulnerable program
for static analysis. In such a scenario, the attacker can easily locate the call

instructions by disassembling the code segment. However, finding out the (ran-
domized) target of the call still remains nontrivial since it requires a memory
read operation to be executed. Recall that 1) we assume that memory pages are
non-writable or non-executable, and therefore executing injected code is not an
option; 2) libc function addresses have not been found, and therefore return-to-
libc is not an option either.

However, with the advances of return-oriented programming [14], such an
attack becomes possible. Return-oriented programming fits the requirement of
the attack well because it does not need to execute any injected code. Instead, it
can make use of short instruction sequences from the original program (not the
libc since the randomized libc addresses have not been found yet) to perform
the read operation (and some others; see Section 4). Figure 2 shows the steps
involved in our attack.

After the control flow of the program is subverted (our assumption), our
return-oriented programming code will first read the target of a call instruction
whose address is known by static analysis of the vulnerable program. After that,
we locate the address and offset through PLT and GOT. Once the entry in
PLT and GOT is located, we read the entry to find out the corresponding libc
function, and eventually we can use the short code sequences inside libc. In the
end, the address of the libc function can be used to obtain a shell for arbitrary
computation by making a system call. Note that our attack works well when
the order of library functions is randomized, which a previously proposed attack
does not consider [13].

Static analysis to locate the
address of a call instruction

Read the target address of
the call instruction

Read the target address
in PLT

Read the target address
in GOT

Transfer conrol to execve()
in libc to obtain a shell

Fig. 2. Overview of our attack

4 Attack Implementation

As discussed in Section 3.2, there are a few steps involved in a successful attack,
and each step requires some instructions to be executed. In this section, we
first explain in more details what instructions are needed in each step, and then
present a realization of executing these instructions using a few improvements to
the return-oriented programming. We demonstrate our attack with an example
on apache-2.2.15.

4.1 Instructions needed to be executed in our attack

The first step in our attack is to find the static address of a useful call instruction
in the code segment of the vulnerable program. There are typically many call

instructions in the code segment, and what we need is 1) one that calls a libc
function; and 2) the corresponding libc function makes a system call. We need
the second requirement in order to make sure that we can later make use of
the system call to execute execve() for arbitrary computation. The one that
we choose is call geteuid at 0x80b85af in apache-2.2.15 (see Figure 3). Note
that many other call instructions could be used.

080b85a8 <set_group_privs>:
80b85a8: 55 push %ebp
80b85a9: 89 e5 mov %esp,%ebp
80b85ab: 53 push %ebx
80b85ac: 83 ec 34 sub $0x34,%esp
80b85af: e8 54 ff fa ff call 8068508 <geteuid@plt>
80b85b4: ...

Fig. 3. call instruction in the code segment

Finding target address of the call instruction As shown in Figure 3, the target
address of the call instruction is represented as an offset (0xfffaff54) of the
address of the next instruction (0x080b85b4). Therefore, in order to obtain the
target address of the call instruction (0x08068508), our attack needs two in-
structions, i.e., a memory read instruction (at an address of our choosing) to
read the offset, and an add instruction to add the offset to the address of the
next instruction (static).

Finding jump target address in PLT Every entry in PLT has 3 instructions that
correspond to 16 bytes; see Figure 4. What we are interested in the jump target
in is the first instruction, assuming that the program has been executing for a
while and lazy linking has already initialized the address of the GOT entry in
the first instruction. To find the jump target (0x08d06b90), we need another add
instruction to find the address of the jump target (offset of 2 bytes at 0806850a)
and another memory read instruction to read the jump target address.

08068508 <geteuid@plt>:
8068508: ff 25 90 6b 0d 08 jmp *0x80d6b90
806850e: 68 20 17 00 00 push $0x1720
8068513: e9 a0 d1 ff ff jmp 80656e0 <_init+0x30>

Fig. 4. Entry in PLT

Finding the address of the libc function in GOT This step is simple, as the
jump target found in PLT contains exactly the address of the libc function; see
Figure 5. Therefore, we need only a memory read instruction here.

080d6b90 <_GLOBAL_OFFSET_TABLE_+2972>: e0 8a 09 00

Fig. 5. Entry in GOT

Making a system call Once the address of the libc function (geteuid) is found,
we can make a system call by transferring control to an instruction inside the
libc function. Figure 6 shows the instructions inside geteuid, in which the fourth
instruction call %gs:0x10 is the new system call instruction in Linux. We first
initialize four register values (eax, ebx, ecx, edx) and then transfer control
to this instruction. So our attack in this step simply needs register initiation
instructions.

00098ae0 <geteuid>:
98ae0: 55 push %ebp
98ae1: 89 e5 mov %esp,%ebp
98ae3: b8 c9 00 00 00 mov $0xc9,%eax
98ae8: 65 ff 15 10 00 00 00 call *%gs:0x10
98aef: 5d pop %ebp
98af0: c3 ret

Fig. 6. System call in libc

4.2 Finding gadgets to realize the instructions needed

In this subsection, we outline how the instructions needed in our attack are real-
ized by return-oriented programming [14]. The idea of return-oriented program-
ming is to use gadgets (short code sequences ended by ret, or by jmp <reg> [6]).
Note that in our attack, these gadgets have to be found in the vulnerable pro-
gram except in the last step after the libc function address has been found. This
makes our attack more challenging than return-oriented programming in general
where useful gadgets can be easily found in the large libc library.

Since the vulnerable program is usually relatively small when compared to
the libc library, we might not be able to locate the gadgets we want. We propose
and use a few techniques to expand the set of useful candidate gadgets. We do not
further discuss how the last step of our attack can be implemented by finding
useful gadgets in libc since it has been well discussed in the return-oriented
programming paper [14].

Alternative instructions There could be multiple different instructions that serve
what we need in the operations. Table 2 shows some candidate gadgets of dif-
ferent instructions for the same purpose needed in our attack. Note that they
are just some examples, and each of them could have different variations, e.g.,
by using different registers.

Operations Useful gadgets

Memory reading <mov (%eax), %eax; ret;>

Addition
<add %ebp, %ebx; ret;>

<lea (%eax, %ecx, 1), %eax; ret;>

Register writing
<pop %eax; ret;>

<xchg %eax, %edx; ret;>

Table 2. Useful gadgets with alternative instructions

Combination of instructions Besides using gadgets of different instructions, we
can also combine different instructions (their corresponding gadgets) together
to realize the intended operation. For example, <or (%eax), %ebx; ret;> or’s
the value at a memory address (specified by eax) with another register (ebx). It
serves the purpose of memory reading if ebx happens to be zero. Even if ebx is

not zero, this gadget can be combined with a register writing to set ebx to be
zero first. Table 3 gives some examples of such combinations.

Operations Useful gadgets

Memory reading
<register writing>

<or (%eax), %ebx; ret;>

Addition loop: <inc %eax; ret;>

Register writing
<mov $const, %eax; ret;>

<lea ($const), %eax; ret;>
<addition>

Table 3. Useful gadgets by combining instructions

Instructions with side-effects Some instructions in a gadget might have no ef-
fect in the execution context or might have side effects that can be reversed
by other gadgets. Although these instructions (and the corresponding gadgets)
make our analysis more complicated, taking them into consideration helps us
find more useful gadgets. For example, in searching for gadgets to pop data
from the stack to a register, we only managed to find <pop eax; ret;> and
<pop ecx; ret;> directly from apache-2.2.15. After analyzing instructions
with some side-effects, we managed to find <pop ebx; pop ebp; ret;> and
<pop edx; push eax; std; dec ecx; ret;> with one and three instructions
with side-effects in the middle, respectively.

4.3 Attacks on apache and other programs

With the techniques discussed in Section 4.2, we search the binary code of
apache-2.2.15 and other programs to see if gadgets needed could be found
using the Galileo algorithm [14]. The number of gadgets found for different op-
erations are presented in Table 4.

Programs Memory reading Addition Register writing

apache-2.2.15 (695 KB) 2 7 34
vsftpd-2.2.2 (116 KB) 1 3 47
bind-9.7.0 (486 KB) 3 1 17
sendmail-8.14.3 (806 KB) 1 4 14
mplayer-1.0~rc3 (4 MB) 5 19 117
firefox-3.6.3 (50 KB) 0 1 13

Table 4. Number of gadgets found

Table 4 shows that we manage find the needed gadgets from apache, vsftpd,
bind, sendmail, and mplayer, while relatively small programs, e.g., firefox3,
may not provide enough useful gadgets.

3 Firefox is a large program, but its binary file, /usr/lib/firefox-3.6.3/firefox-bin (under
Ubuntu-10.04), is only of 50 KB as most functionality is provided in libraries.

To try out our attack on apache-2.2.15 on a real system, we downloaded the
address space randomization proposed by Bhatkar et al. and migrated the code
to a PAX-enabled Ubuntu 10.04 desktop computer. We configure the system
such that base address of the library, order of library functions, PLT and GOT
are randomized. We then use gdb to overflow a buffer of apache-2.2.15 on the
stack with our attack code. The attack successfully creates a shell for arbitrary
computation. Appendix A shows the shell code that we use in this attack. Since
it is possible to find the needed gadgets from various programs as shown in
Table 4, we believe that our attack can be generalized to be applied on other
vulnerable programs. We leave this as our future work.

4.4 Discussions of our attack

What we propose is a more general attack which works even when the order of
library functions is randomized, which is different from a previously proposed
attack [13].

Other considerations of our attack In the discussions above, we have not consid-
ered a level of indirection address space randomization might have introduced,
namely converting direct function calls to indirect ones with function pointers.
Our attack works in the same way when function pointers are used; in fact, the
attack could even be simplified in some cases because offsets might not be used
in indirect calls.

Limitations of our attack There are a few limitations of our attack. First, we
assume that the control flow of the vulnerable program can be subverted. This
might not be true as address space randomization could make such subverting
very difficult. However, this assumption does not hinder our analysis less impor-
tant because a security system should not rely on the single point of protection
and should try to make attacks difficult even when the first line of defense fails.
Second, we assume that the attacker has access to the vulnerable program to
do static analysis and position independent code is not in use. Our attack relies
on this assumption because we wouldn’t be able to locate the call instruction
should this assumption be invalid. Third, we might not be able to find enough
useful gadgets from the vulnerable program. Although we have shown programs
meeting our attack requirement, it remains future work to study other ways of
finding useful gadgets to generalize our attack.

Extension of our attack The idea of our attack could be extended to make stack
randomization ineffective, if instructions like mov eax, esp could be found by
using return-oriented programming. We tried using the Galileo algorithm [14]
to search for it, but could not find one in our experiments. Theoretically, this
is possible especially when searching on various sections that are marked ex-
ecutable, e.g., .plt, .text, .fini, .rodata, .eh_frame_hdr, and .eh_frame.
We leave this as future work.

5 Possible Mitigation Techniques and Discussions

Roglia et al. proposed a few mitigation techniques to defend against attacks that
dereference and overwrite GOT [13], which include using position independent
code, self-randomization of the program, and encrypting GOT. Although such
techniques could defend against our attack presented as well, we try to ask a
deeper question: is address space randomization weak in randomizing GOT only
and therefore becomes effective once the mitigation techniques are in place, or is
it true that randomizing some of the code and data objects (e.g., base and order
of library functions) is simply ineffective when return-oriented programming is
used in an attack?

Before we try to answer this question, we first revisit our attack presented
in Section 3 and Section 4 and see if exploiting GOT is the only way for the
attack to succeed. The answer is definitely not. We try to derandomize the
address of libc functions simply because the library has a larger code base which
could be analyzed offline and usually contains more useful gadgets for return-
oriented programming. However, in many cases, all an attack wants is simply
to be able to make a system call (with values of the attacker’s choice on a
few registers), which might be possible with only gadgets from the vulnerable
program itself without making use of the library. We perform an analysis on
some commonly used application programs by using the Galileo algorithm [14]
and our improvements on it (see Section 4.2) to search for gadgets that allow an
attack to make a system call. Results (see Table 5) show that some programs,
such as the vulnerable version of Ghostscript [1], could be attacked by only
gadgets from the program.

In an attack using return-oriented programming with gadgets in the pro-
gram binary only, even fewer gadgets could be required. For example, to execute
the execve() system call, we only need to write four registers (eax, ebx, ecx,
edx) and then execute the system call instruction. Only these two categories
of instructions (and the corresponding gadgets) are needed. Table 5 shows the
number of gadgets found for a few application programs.

Programs Register writing syscall (int80 or call *%gfs:0x10)

gs-8.61 (11 MB) 34 130
mencoder-4.3.2 (8.7 MB) 47 5
emacs-23 (11 MB) 143 15
qemu-0.11.1 (2.1 MB) 23 10
qmake 2.01a (3.8 MB) 27 4

Table 5. Number of gadgets found in some large programs

This shows that GOT is actually not the most important weaknesses in ad-
dress space randomization in view of attacks using return-oriented programming.
Rather, because address space randomization was proposed well before return-
oriented programming was introduced, it was not designed to defend against
return-oriented programming and therefore it is not surprising that the random-

ization of some of the code and data objects is simply not effective to defend
against return-oriented programming. We argue that the randomization of base
and order of library functions and the location and order of entries in PLT
and GOT are typical examples. Mitigation techniques like encrypting GOT does
not actually make address space randomization secure against return-oriented
programming.

6 Conclusion

In this paper, we demonstrate our attack on randomizing the base address of
library, order of library functions, and entries in PLT and GOT with return-
oriented programming under the assumption that the attacker has a copy of the
vulnerable program for static analysis. Besides introducing this more general
attack and proposing improvements to return-oriented programming to make
the attack more effective, we also evaluate an attack mitigation technique previ-
ously proposed. Results show that dereferencing GOT is actually not a necessary
step in the attack, and therefore encrypting GOT does not make address space
randomization secure against return-oriented programming.

References

1. CVE-2008-0411, “Ghostscript (8.61 and earlier) zseticcspace() Stack-based Buffer
Overflow Vulnerability”.

2. PaX. http://pax.grsecurity.net, 2001.

3. S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfuscation: an efficient ap-
proach to combat a broad range of memory error exploits. In Proceedings of the
12th USENIX Security Symposium (USENIX Security 2003), 2003.

4. S. Bhatkar, R. Sekar, and D. C. DuVarney. Efficient techniques for comprehensive
protection from memory error exploits. In Proceedings of the 14th USENIX Security
Symposium (USENIX Security 2005), 2005.

5. E. Buchanan, R. Roemer, H. Shacham, and S. Savage. When good instructions go
bad: generalizing return-oriented programming to risc. In Proceedings of the 15th
ACM conference on Computer and communications security (CCS 2008), 2008.

6. S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and
M. Winandy. Return-oriented programming without returns. In Proceedings of the
17th ACM conference on Computer and Communications Security (CCS), 2010.

7. S. Checkoway, A. J. Feldman, B. Kantor, J. A. Halderman, E. W. Felten, and
H. Shacham. Can dres provide long-lasting security? the case of return-oriented
programming and the avc advantage. In Proceedings of the 2009 Electronic Vot-
ing Technology Workshop/Workshop on Trustworthy Elections (EVT/WOTE09),
2009.

8. Solar Designer. JPEG COM marker processing vulnerability. 2000. http://www.

openwall.com/articles/JPEG-COM-Marker-Vulnerability.

9. A. Francillon and C. Castelluccia. Code injection attacks on harvard-architecture
devices. In Proceedings of the 15th ACM conference on Computer and Communi-
cations Security (CCS 2008), 2008.

10. R. Hund, T. Holz, and F. C. Freiling. Returnoriented rootkits: Bypassing kernel
code integrity protection mechanisms. In Proceedings of the 18th USENIX Security
Symposium (USENIX Security 2009), 2009.

11. T. Kornau. Return oriented programming for the arm architecture. Master’s thesis,
Ruhr-University Bochum, Germany, 2009.

12. Aleph One. Smashing the stack for fun and profit. Phrack magazine, 1996. http:
//www.phrack.com/issues.html?issue=49&id=14.

13. G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to
randomized lib(c). In Proceedings of the 25th Annual Computer Security Applica-
tions Conference (ACSAC 2009), 2009.

14. H. Shacham. The geometry of innocent flesh on the bone: return-into-libc with-
out function calls (on the x86). In Proceedings of the 14th ACM conference on
Computer and Communications Security (CCS 2007), 2007.

15. H. Shacham, M. Page, B. Pfaff, E. Goh, N. Modadugu, and D. Boneh. On the
effectiveness of address-space randomization. In Proceedings of the 11th ACM
conference on Computer and Communications Security (CCS 2004), 2004.

16. Scut/team teso. Exploiting format string vulnerabilities. 2001. http://team-teso.
net.

17. J. Xu, Z. Kalbarczyk, and R. K. Iyer. Transparent runtime randomization for
security. In Symposium on Reliable and Distributed Systems (SRDS), 2003.

18. M. Zalewski. Remote vulnerability in ssh daemon crc32 compensation attack de-
tector. 2001. Bindview.

A Shell Code of our Attack

00000000 e8 01 05 08 d0 85 0b 08 3d fe 06 08 bf bf bf bf

00000010 3d fe 06 08 bf bf bf bf ac c6 0c 08 ac c6 0c 08

00000020 3d fe 06 08 bf bf bf bf 3d fe 06 08 bf bf bf bf

00000030 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08

00000040 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08 ac c6 0c 08

00000050 51 63 0a 08 e8 01 05 08 58 f4 ff bf 51 63 0a 08

00000060 66 b4 08 08 bf bf bf bf e8 01 05 08 08 80 04 08

00000070 3d fe 06 08 bf bf bf bf 51 63 0a 08 e8 01 05 08

00000080 60 f4 ff bf 51 63 0a 08 66 b4 08 08 bf bf bf bf

00000090 e8 01 05 08 60 f4 ff bf 51 63 0a 08 a8 02 05 08

000000a0 5c f4 ff bf c2 85 06 08 64 f4 ff bf bf bf bf bf

000000b0 e8 01 05 08 5c 82 04 08 3d fe 06 08 bf bf bf bf

000000c0 bf bf bf bf 64 f4 ff bf bf bf bf bf 2f 62 69 6e

000000d0 2f 73 68 00

