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Abstract. Techniques have been proposed to find the semantic differ-
ences between two binary programs when the source code is not available.
Analyzing control flow, and in particular, intra-procedural control flow,
has become an attractive technique in the latest binary diffing tools since
it is more resistant to syntactic, but non-semantic, differences. However,
this makes such techniques vulnerable to simple function obfuscation
techniques (e.g., function inlining) attackers any malware writers could
use. In this paper, we first show function obfuscation as an attack to
such binary diffing techniques, and then propose iBinHunt which uses
deep taint and automatic input generation to find semantic differences
in inter-procedural control flows. Evaluation on comparing various ver-
sions of a http server and gzip shows that iBinHunt not only is capable
of comparing inter-procedural control flows of two programs, but offers
substantially better accuracy and efficiency in binary diffing.
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1 Introduction

Binary diffing tools for finding semantic differences between two programs have
many security applications, e.g., automatically finding security vulnerabilities
in a binary program given its patched version [17], large-scale malware indexing
with function-call graphs [20], automatically adapting trained anomaly detectors
to software patches [24], profile reuse in application development [33], etc. How-
ever, binary diffing is difficult due to different register allocation, semantically
equivalent instruction replacement, and other program obfuscation techniques
which make semantically equivalent programs syntactically different [17].

One of the latest solutions in binary diffing for finding semantic differences
is to find similarity/difference in control flow structure rather than binary in-
structions [14, 12, 17, 20]. Such tools have the advantage of being resistant to
semantically equivalent instruction replacements and other program obfuscation
techniques, and therefore are more suitable in security analysis in which pro-
grams (potentially malware) are usually intentionally produced to make analysis
difficult. An interesting aspect we analyze in this paper is whether such analysis
should be based on inter-procedural control flow or intra-procedural control flow.



Most previous work [14, 12, 17, 20] focus on the intra-procedural control flow.4

There is a good reason for this choice as the control flow comparison usually in-
volves maximum common subgraph isomorphism, an NP-complete problem [18].
Working with all basic blocks in an inter-procedural control flow graph (ICFG)
would require manipulation of graphs with thousands or tens of thousands of
nodes, where finding a graph isomorphism becomes impractical. Working with
basic blocks in an intra-procedural control flow graph (CFG), instead, is prac-
tical as the number of nodes does not usually go beyond hundreds. However,
comparing the control flow structure of basic blocks in each function is vulner-
able to function obfuscation techniques (e.g., function inlining) that could be
used in producing the binary programs under analysis. This is a serious problem
as applying some function obfuscation, e.g., function inlining, is extremely easy.

In this paper, we first demonstrate the attack of function obfuscation on
binary diffing tools that compare intra-procedural control flow. We then pro-
pose a new binary diffing technique called iBinHunt that is resistant to such an
attack. iBinHunt discards all function boundary information and compares the
inter-procedural control flow of binary programs. It uses deep taint, a novel dy-
namic taint analysis technique that assigns different taint tags to various parts
of the program input and traces the propagation of these taint tags to reduce
the number of candidates of basic block matching. With deep taint, the set of
matching candidates of each basic block changes from the set of all basic blocks
in a program (in the order of thousands or tens of thousands) to just a few basic
blocks on a particular execution trace with the same taint tag. To increase the
coverage of execution traces on basic blocks, iBinHunt automatically generates
program inputs that traverse different execute paths for the deep taint analysis.

We implemented iBinHunt and used it to compare various versions of a http

server and gzip. Results show that iBinHunt finds semantic differences by an-
alyzing the inter-procedural control flows with better accuracy, and is capable
of comparing binary programs with relatively large differences, an improvement
over previous techniques which are only shown to work on programs with small
changes. We also show that iBinHunt is more efficient and faster in finding basic
block matchings than previous techniques by a factor of two.

2 Existing binary diffing tools and function obfuscation

We focus on binary diffing tools for finding semantic differences instead of syn-
tactic differences. Semantic differences refer to differences in functionality (i.e.,
input-output behavior), whereas syntactic differences refer to those in instruc-
tions [17]. Therefore we do not consider binary diffing tools that base its analysis
on the binary instructions (bsdiff, bspatch, xdelta, JDiff, etc.), because they are
more vulnerable to different register allocation, basic block re-ordering, func-
tionally equivalent instruction(s), and other instruction obfuscation techniques.

4 Some of them zoom in to do intra-procedural control flow analysis first, and subse-
quently zoom out for inter-procedural control flow analysis where each procedure is
represented as a simple node with details ignored.



2.1 Existing binary diffing tools based on control-flow structure

To find semantic differences between two binaries, some latest binary diffing
techniques [14, 12, 27, 17] base their comparison on intra-procedural control-flow
structure. BinDiff [14] and its extension [12] use some heuristics (e.g., graphs with
the same number of basic blocks, edges, and caller nodes) to test if two graphs
or basic blocks are similar. BinHunt [17] compares basic blocks by symbolic ex-
ecution and theorem proving, and then compares intra-procedural control-flow
graphs to find the matchings between basic blocks. Call graphs are then com-
pared to find matchings between functions. DarunGrim2 [21, 11] relies heavily
on function boundary information due to its simplicity. For basic blocks in every
function, DarunGrim2 first generates a fingerprint to abstract the instruction
sequences and then uses that as a key to a hash table, from which fingerprint
matching is performed to find differences in the two functions. Intra-procedural
control-flow graphs have also been used frequently in malware clustering and
classification [20, 2, 5, 22] because it’s more resilient to instruction-level obfus-
cations. SMIT [20] searches for the most similar malware samples by finding a
nearest-neighbor in malware’s function-call graph database. Kruegel et al. [22]
present an approach based on the analysis of a worm’s intra-procedural control-
flow graph to identify structural similarities between different worm mutations.

2.2 Function obfuscation

Binary diffing tools based on control-flow structure are more resistant to different
register allocation, basic block re-ordering, functionally equivalent instruction(s),
and other instruction-level obfuscation techniques. However, most of them rely
heavily on function boundary information from the binary, i.e., they analyze the
intra-procedural control-flow structure of each function. We believe that this is
mainly due to efficiency of the graph comparison techniques used. The graph
comparison problem (and the subgraph isomorphism problem) is NP-complete.
Existing algorithms for subgraph isomorphism are efficient only in processing
small graphs [23, 28, 17]. Appendix A shows the number of basic blocks in dif-
ferent functions in a typical server program binary, which suggests that graph
isomorphism is practical when analyzing intra-procedural control flows.

However, function boundary information is not reliable due to well-studied
function transformation obfuscation techniques [9], which include

– Inlining functions: a function call to f is replaced with the body of f while
f itself is removed;

– Outlining functions: a new function f is created by extracting a sequence
of statements into f and replacing them with a function call to f ;

– Cloning functions: copies of the same function are created (with different
names) to make them appear as different functions;

– Interleaving functions: various function bodies are merged into one func-
tion f , while calls to these functions are replaced by calls to f .

Here we focus on function inlining and outlining because they have a large
impact on graph isomorphism as discussed in Appendix B.



3 Diffing binary programs with inter-procedural

control-flow graphs

In Section 2.2, we discuss the function obfuscation attacks which existing binary
diffing tools based on intra-procedural control-flow analysis cannot deal with.
A natural solution to such attacks is to find repetitions of code sequences and
combine them into one subroutine (to combat function inlining and cloning),
and to flatten the hierarchical structure created by functions and to simply treat
function calls as execution jumps (to combat function outlining and interleaving).
After this there is only one graph left for each binary program containing all
basic blocks and the corresponding control flows, and this graph is essentially
the inter-procedural control-flow graph (ICFG).

However, such a simple solution has disadvantages in both accuracy and ef-
ficiency. Each basic block in one binary program will have a large number of
candidates of basic block matchings in the other binary program. Even if all
these candidates are examined, there could be multiple ones that are semanti-
cally similar that originally come from non-matching functions. However, since
function information is ignored, all these basic blocks are good candidates and
may make the result inaccurate. We also need to work on graph isomorphism of
two graphs with large number of nodes. We tried this with BinHunt [17], one of
the latest and most sophisticated binary diffing tools with graph isomorphism,
and found that after working for 6 hours on basic block comparison with a desk-
top computer with a Core2 Duo CPU of 3.0 GHz and RAM of 4 GB on a server
program thttpd, only 7% of the possible mappings had been compared.

3.1 Overview of iBinHunt

iBinHunt reduces the number of candidates of basic block matchings with a novel
technique called deep taint. Taint analysis is to dynamically trace data from
untrustworthy sources to monitor basic blocks in a program that process such
data [26, 7, 35, 31, 16, 13]. We monitor the execution of the two binary programs
under a common input and use taint analysis to record all basic blocks involved
in the processing of the input. This reduces the number of candidates of basic
block matching from all basic blocks in the binary to those tainted.

iBinHunt goes one step further to assign different taint tags to various parts
of the input, a method we call deep taint. Deep taint differentiates various parts
of the input by assigning them different taint tags, and monitors propagation of
different taint tags to basic blocks on a dynamic trace. Only basic blocks from
two binary programs that are marked with the same taint tags are considered
matching candidates. This further reduces the number of candidates of basic
block matchings by a factor of up to 74% in our experiments.

Deep taint and the taint tags help reduce the number of matching candidates.
However, only a small number of basic blocks are on the trace of the processing of
a single input, and we need to find the matching of a large number of basic blocks
(if not all) to make the graph isomorphism efficient. iBinHunt increases the



coverage of execution traces on tainted basic blocks by automatically generating
inputs that result in different execution traces in the binary program, a technique
inspired by recent advances in white-box fuzz testing [19]. We first record the
execution trace of a seeding input, and then symbolically replay the recorded
trace and collect constraints of the input that lead to the recorded trace. The
collected constraints are then negated and solved with a constraint solver to
generate a new input, which will result in a different execution trace due to
the negated constraint. A large number of inputs can be generated in this way,
making more and more basic blocks tainted with different taint tags.

Next, we present the details of deep taint and automatic input generation.

3.2 Deep taint for basic block comparison

Previous taint analysis treats taint sources as streams, e.g., byte streams from
keyboard, effectively tainting all input bytes with a single taint tag. Basic blocks
processing different parts of such input will therefore be tainted with the same
taint tag. In iBinHunt, we differentiate these basic blocks if they process different
parts of the input. For example, basic blocks that process the version field of
an http request should never match with basic blocks that process the host

field of the same http request. Differentiating these basic blocks will reduce the
number of candidates of basic block matchings.

Table 1 shows an example of the different taint tags assigned to various
parts of an http request. Each unique taint tag corresponds to a particular bit
in a binary number that allows disjunction manipulation. Deep taint works on
the protocol level with a finer granularity such that various protocol fields are
monitored with different taint tags. The process of locating different fields of the
program input can be automated with a protocol analyzer [10, 34, 4].

Input Get index.html HTTP/1.1 .

Field Method URL Version Host

Taint tags 0001 0010 0100 1000
Table 1. Program input and its taint tags

Multiple taint tags for a basic block By monitoring the dynamic execution of
an input, we can see the propagation of different taint tags to basic blocks in
the program. Note that a basic block may appear multiple times on a dynamic
execution trace due to loops. Such a basic block may record the same taint tag
in the execution (when it processes the same part of the input in a loop) or
different taint tags (when it processes different parts of the input).

Figure 1 shows an example of this in our experiment with thttpd-2.25. The
highlighted instructions in the source code is located inside a for loop, which
executes multiple times in the processing of an input and records multiple taint



tags. The dynamic execution trace we obtained recorded four different taint tags
for a basic block BB_10088, which corresponds to the highlighted instructions in
the source code. We take the disjunction of these tags to obtain the final taint
representation for the corresponding basic block.

Dynamic  Trace Basic Blocks

Mapping  To ICFG

BB_364: taint  tag  0001

BB_388: taintt tag  0010

BB_436: taintt tag  0100

BB_1189: taintt tag  1000

Basic Block in ICFG

BB_10088

mov    0x8(%ebp),%eax

mov    0x94(%eax),%eax

cmpb   $0xa,-0x1(%ebp)

je     0x80530e5

BB_10088:

Tags: 1111

bufgets:

 for ( i = hc->checked_idx; hc->checked_idx < hc->read_idx; ++hc->checked_idx ){

c = hc->read_buf[hc->checked_idx];

if ( c == '\012' || c == '\015' )

    {   } }

Mapping Mapping

Fig. 1. Multiple taint tags

Basic block comparison As mentioned in Section 3.1, basic blocks from the two
binary programs that have the same taint representation will be candidates
for matching. We compare these candidate basic blocks by applying the same
algorithm as BinHunt [17], in which symbolic execution is used to represent the
outputs of a basic block in terms of its symbolic inputs, and a theorem prover is
used to test if the outputs from the two basic blocks are semantically equivalent.
Although this basic block comparison might take relatively long time to converge
(due to the use of a theorem prover), the number of comparisons is limited to
the small number of blocks with the same taint representation, and therefore
iBinHunt is more efficient (see Section 4 for our evaluation results).

Basic block matching There are two other groups of blocks we need to consider
for finding matched blocks. One group consists of blocks that are not semanti-
cally equivalent but have the same taint representation. They could very likely
represent the differences between the two programs that iBinHunt is trying to
locate. Another group consists of blocks that are not tainted but are on the
dynamic execution trace. These blocks are not tainted due to various reasons,
including limitations of taint analysis to avoid taint explosion [6, 29], not directly
processing program inputs (e.g., signal processing), etc. However, they are also
very likely to match with one another as they are on the dynamic trace of pro-
cessing the same input. Appendix C shows an example of these two groups of
blocks in thttpd-2.19 and thttpd-2.25.

One way of dealing with these two groups of blocks is to define a matching
strength for basic block comparison, and consider two blocks matching when the



matching strength exceeds certain threshold; an approach used in BinHunt [17].
We do not use this approach because 1) iBinHunt emphasizes using control-flow
structural information rather than comparing binary instructions in basic blocks,
and 2) the setting of such a threshold is difficult and different settings may lead
to different results. Instead, we apply a more stringent requirement that basic
blocks b1 and b2 are considered matched to one another if b1 and b2 have the
same taint representation (possibly both non-tainted) and

– b1 and b2 are semantically equivalent (evaluated by symbolic execution and
theorem proving as explained above); or

– a predecessor of b1 and a predecessor of b2 match; or
– a successor of b1 and a successor of b2 match.

We want to see how far we can go with such a stringent definition of matching.
Note that it is possible that some matching blocks are not found unless a relaxed
definition is used, which can be easily applied in iBinHunt for practical usage.

3.3 Automatic generation of program inputs

Although deep taint reduces the number of matching candidates in basic block
comparison, it only helps finding the matchings for basic blocks on the corre-
sponding execution trace. Therefore, deep taint applied to more program inputs
is needed. However, random inputs are not the most desired because they may
result in the same execution paths. We need to find inputs that traverse different
paths in the binary program, which is a similar requirement to those in program
testing where test cases are needed to cover more program execution paths.

White-box exploration on binary files has been used in many previous work [3,
25, 19]. We apply the same idea to generate execution traces in an iterative pro-
cess that incrementally explores new execution paths. In each iteration, we first
monitor and record an execution trace. We then use a constraint collector [30]
to run symbolic execution on the recorded trace and gather the constraints on
inputs on every branching conditions. These constraints capture how the input
was processed in the corresponding dynamic execution. We then negate one of
these constraints collected to obtain the input constraints that would result in
a different execution path, and solve these constraints with the theorem prover
to obtain a corresponding real input for deep taint in the next iteration.

There are typically many branching locations on an execution trace. We
pick one that may result in the largest number of new basic blocks explored by
counting all the uncovered basic blocks of the corresponding sub-tree.

4 Implementation and evaluation

4.1 Implementation of iBinHunt

Figure 2 shows the architecture of iBinHunt. In the rest of this subsection, we
briefly describe how each component of iBinHunt was implemented.
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Fig. 2. Architecture of iBinHunt

Static analyzer iBinHunt uses the same static analyzer as in BinHunt [17]. It
first disassembles the two binary programs to obtain the x86 instructions, and
then converts the x86 instructions into an intermediate representation (IR) for
further analysis. The IR we use is the same as in BinHunt and BitBlaze [1, 30],
which consists of roughly a dozen different statements. Control flow is analyzed
on the IR of the two binary programs to obtain the inter-procedural control-flow
graph (ICFG), where nodes correspond to basic blocks in the program and edges
correspond to transitions among the basic blocks.

Protocol analyzer We assume that the protocol specifications are known, and
therefore a protocol analyzer is not needed. In case the protocol specification is
not known, any automatic protocol analyzer [10, 34, 4] can be used.

Deep taint Deep taint was based on TEMU [36] and QEMU5. TEMU uses a
shadow memory to store the taint status. We modify the shadow memory and
add a small data structure for each taint byte to store its corresponding taint
tag. Currently deep taint supports up to 64 different tags.

Basic block comparison The dynamic traces from deep taint are first mapped to
the ICFG. This mapping is simple as the eip value recorded in deep taint and
the program counter value in ICFG differ by the length of the corresponding
instruction. Once this mapping is obtained, comparison of two basic blocks from
the two binary programs is carried out if they have the same taint representation
and are on dynamic traces recorded given the same program input.

We use the same basic block comparison technique as in BinHunt [17], i.e.,
symbolic execution is first used to represent outputs of the basic blocks with
their input symbols, and a theorem prover (STP [15]) is then used to check if
the outputs from the two basic block are semantically equivalent. Note that the
basic block comparison performed here is slightly different from BinHunt in that
here the comparison is context aware, i.e., the permutation of outputs of the
equivalent basic blocks is the permutation of inputs of the successor blocks. This
is because the basic blocks to be compared here are on a particular execution
path, where there is always a unique predecessor and a unique successor.

5 QEMU, www.qemu.org



Graph isomorphism iBinHunt also uses the same (customized) backtracking
technique to find the maximum isomorphic subgraph as in BinHunt [17].

Difference from BinHunt Although some components of iBinHunt are very sim-
ilar to those in BinHunt as explained above, there is a major difference between
the two, namely iBinHunt uses a dynamic component of deep taint while Bin-
Hunt bases purely on static analysis of the binary programs.

Input generator Path constraints are collected as in appreplay [30]. We use
STP [15] to find a new input that satisfies the negated constraints.

4.2 Evaluation

We applied iBinHunt to find semantic differences in several versions of thttpd
and gzip. We chose to work on thttpd and gzip for two main reasons. First,
they were commonly used programs for which we could find various older versions
that are substantially different from the latest one, an evaluation criteria we have
for iBinHunt. Second, both thttpd and gzip had known vulnerabilities in their
earlier versions, which is a typical application scenario of iBinHunt.

To evaluate iBinHunt in its resistance to function obfuscation, we simply
use iBinHunt to analyze the inter-procedural control-flow graphs instead of enu-
merating different obfuscation techniques. As discussed in Section 3, iBinHunt
removes repetitions and flattens function structures, which will result in the
same ICFG no matter what function obfuscation techniques are used.

There are two main aspects on which we want to evaluate. First, we want to
see how many basic blocks can be matched, how many matchings are identified
by deep taint, and how long it takes to find these matchings. Second, we want
to take a closer look at the differences found, and confirm these differences by
comparing them to the ground truth (program source code).

Table 2 and Table 3 show the simple statistics of the various versions of
thttpd and gzip, respectively. Note that in some cases, the differences account
to nearly 40% of the source code, which we consider very big changes between
the two versions. Due to the space limitation, we do not detail all these changes,
most of which are due to bug fixing and new features added.

thttpd- 2.20 2.20c 2.21 2.25

2.19 252/6029 254/5843 1483/6641 2908/7271

Table 2. Different versions of thttpd (number of lines changed / total number of lines)

We performed our experiments on two machines, one with a Core2 Duo CPU
of 2.6 GHz and RAM of 4 GB (for deep tainting) and another with a Core2 Duo
CPU of 3.0 GHz and RAM of 4 GB (for all other components).

Figure 3 and Figure 4 show the results of thttpd and gzip, respectively.
Each graph shows six different types of information.



gzip- 1.3.12 1.3.13 1.40

1.2.4 1317/4959 1351/4929 1446/4841

Table 3. Different versions of gzip (number of lines changed / total number of lines)

– Shaded areas: the three shaded areas show the number of matched blocks
according to our definition of matching in Section 3.2. The horizontal shaded
area corresponds to matched basic blocks that are semantically the same;
the 135-degree shaded area corresponds to matched ones that are not se-
mantically equivalent but have both a predecessor and a successor matched;
and the vertical shaded area corresponds to those that are not semantically
equivalent but have either a predecessor or a successor matched.

– Lines: the lower slanted line indicates the time taken for input generation
and deep taint; the upper slanted line indicates the total time spent; and the
horizontal line shows the total number of basic blocks in the binary program;
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Fig. 4. Evaluation on different versions of gzip

Matching basic blocks Although we use a relatively stringent definition of match-
ing (see Section 3.2), iBinHunt manages to find most of the matching blocks.
For example, Figure 4 shows that about 90% of the basic blocks are matched
in comparing gzip-1.2.4 and gzip-1.3.12, which have over 25% of the lines
of code changed. We also study the matchings found, and confirm that they
are correct. Most differences are reflected in these matchings, too, with some
differences not found; see Section 4.3 for more discussions.

Effectiveness of deep taint Among successfully matched basic blocks, we count
the number of them that actually contain the same taint representation (the rest
are not tainted). Results (see Table 4 and Table 5) show that more than 34% and
67% of the matched basic blocks in thttpd and gzip, respectively, contain the
same taint representation. This shows that 1) deep taint is effective in helping
to identify basic block matchings since a large number of these matchings do
contain the same taint representation; 2) even though many basic blocks are not
tainted by our limited number of program inputs, their neighbors are tainted in
most cases and the tainted neighbors help matchings to be identified.



thttpd- 2.20 2.20c 2.21 2.25

2.19 34.8% 38.2% 39.9% 37.4%

Table 4. Matched basic blocks with the same taint representation (thttpd)

gzip- 1.3.12 1.3.13 1.40

1.2.4 67.9% 72.2% 72.6%

Table 5. Matched basic blocks with the same taint representation (gzip)

Accuracy iBinHunt has better accuracy in basic block matching because deep
taint reduces the number of matching candidates. Typically, the number of can-
didate matchings is 8% and 5% of total basic block pairs in our experiments
with thttpd and gzip. Refer to Appendix D for another example of accuracy
improvement of iBinHunt.

Handling binary programs with big differences The results clearly show that
iBinHunt is good in handling binary programs with big differences, a property
previous tools for finding semantic differences [17] do not have. These can be seen
from the percentage of basic block matched (all shaded areas), which does not
decay significantly when dealing with binary programs with larger differences.

Time taken in the analysis From Figure 3 and Figure 4, we see that when more
traces are used, more basic blocks are matched until a steady state is reached.
85 and 50 inputs were needed before the number of matched basic blocks stops
increasing for thttpd and gzip, respectively. These 85 or 50 input generations
and deep taint analysis are incremental and cannot be parallelized. However, the
basic block comparison can be easily parallelized to shorten the time needed. Also
note that our implementation is an un-optimized one and there are rooms for
improvements. That said, we still see more than a factor of 2 improvement when
compared to BinHunt [17] (see Table 6 and Table 7). The starting percentage
corresponds to basic blocks that are syntactically the same.

Percentage of basic blocks matched Time
Starting Ending Progress made spent

BinHunt 31% 38% 7% 6 hours

iBinHunt 31% 47% 18% 6 hours
Table 6. Progress made in comparing thttpd-2.19 and thttpd-2.25

Note that results in Table 6 and Table 7 are obtained without parallelizing
basic block comparison for a fair comparison. Parallelizing the comparison could
speed up the process a lot to make iBinHunt practical in analyzing real programs.



Percentage of basic blocks matched Time
Starting Ending Progress made spent

BinHunt 11% 16% 5% 3 hours

iBinHunt 11% 25% 14% 3 hours
Table 7. Progress made in comparing gzip-1.24 and gzip-1.40

4.3 Discussions

Although we focus on analyzing the inter-procedural control-flow graph in demon-
strating the advantages of iBinHunt in this paper, iBinHunt is also resistant to
other types of program obfuscations, e.g., control flow flattening [32, 8], that ex-
isting binary diffing tools cannot handle. This is mainly due to the deep taint
analysis we employ, which is a dynamic analysis approach.

The power of iBinHunt is limited by the non-perfect basic block coverage.
This is mainly due to limitations of white box exploration technique [19], e.g.,
path explosion and imperfect symbolic execution to system calls.

Since iBinHunt uses deep taint, it also suffers from some limitations of taint
analysis in general, e.g., control dependence, pointer indirection, and implicit
information flow evasions [6, 29].

We performed our evaluation and analysis by comparing iBinHunt with an-
other state-of-the-art binary diffing tool BinHunt [17]. We could have made
compassion with other binary diffing tools, e.g., BinDiff. However, due to the
many heuristics BinDiff and other binary diffing tools use, it is hard to have a
fair comparison with iBinHunt, in which such heuristics are not used. We leave
it as future work to compare with other binary diffing tools.

5 Conclusion

In this paper, we first introduce function obfuscation attacks in existing binary
diffing tools that analyze intra-procedural control flow of programs. We propose
a novel binary diffing tool called iBinHunt which, instead, analyzes the inter-
procedural control flow. iBinHunt makes use of a novel technique called deep
taint which assigns different taint tags to various parts of the program input
and traces the propagation of these taint tags in program execution. iBinHunt
automatically generates program inputs to improve basic block coverage. Eval-
uations on comparing various versions of thttpd and gzip show that iBinHunt
offers better accuracy and efficiency than existing binary diffing tools.
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A Size of different functions in thttpd

Figure 5 shows the cumulative histogram of functions with different number of
basic blocks in thttpd, an http server. It can be seen that 96% of the 459 non-



empty functions have fewer than 30 basic blocks. Only 7 functions have more
than 50 basic blocks. This makes the graph comparison simple, as in most cases
we only need to deal with graphs of fewer than 30 nodes. Graph isomorphism is
therefore practical in analyzing programs like thttpd.
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Fig. 5. Number of basic blocks in different functions (cumulative histogram)

B Function inlining and outlining

Figure 6 shows the basic idea of function inlining and outlining transformations.
Such simple attacks are effective in confusing existing binary diffing tools be-
cause inlining and outlining can arbitrarily increase or decrease the size of any
functions. The intra-procedural control-flow graph may contain unreliable infor-
mation, resulting in a small maximum common subgraph (as in many binary
diffing tools, e.g., [14, 12, 27, 17]) or complete failure when the whole program
contains only a single function (as in some malware analysis tools, e.g., [20]).
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C Example of potential matching blocks

Figure 7 shows an example of these two groups of blocks in thttpd-2.19 and
thttpd-2.25. In Figure 7(a), BB_13232 and BB_16184 are not semantically
equivalent, but they have the same taint representation (0011). They both origi-
nally come from function find_hash() corresponding to a difference in the hash
algorithm used in the two versions of thttpd. In Figure 7(b), the four dashed
blocks are not tainted. A closer look into the corresponding source shows that
these blocks are part of the function tmr_create(), which does some simple
time routine and therefore are not tainted.

BB_13229:

je     0x8056272

BB_13232:

cjmp( 0x1f:reg8_t == 0:reg8_t ,

 name(L_1270), name(L_1269));

BB_13240:

BB_16181:

je    0x805894d

BB_16184:

mov    0x80608d0,%eax

and    %edx,%eax

mov    %eax,-0xc(%ebp)

jmp    0x80588cf

BB_13185:

cjmp( 2:reg8_t == 0:reg8_t , 

name(L_1261), name(L_1260));

BB_16137 :

cjmp( 2:reg8_t == 0:reg8_t , 

name(L_1651), name(L_1650));

P1 P2

Matched

Matched

Not matched

 but with 

the same tag 

(a) Blocks with same taint representation

BB_13337:

jmp    0x8056389

BB_13358:

mov    %ecx,%eax

sar    $0x1f,%eax

cjmp( 0x1f:reg8_t == 0:reg8_t 

, name(L_1285), 

name(L_1284));

BB_16528:

jmp    0x8058d5b

BB_16549:

mov    %ecx,%eax

sar    $0x1f,%eax

cjmp( 0x1f:reg8_t == 0:reg8_t 

, name(L_1695), 

name(L_1694));

BB_13362:

cjmp( 6:reg8_t == 0:reg8_t , 

name(L_1287),

name(L_1286));

BB_16553:

cjmp( 6:reg8_t == 0:reg8_t , 

name(L_1697),

name(L_1696));

Matched

Matched

Matched

P1 P2

(b) Blocks not tainted

Fig. 7. Potential matching blocks

D Improved accuracy of iBinHunt

Figure 8 shows an example in which iBinHunt outputs basic block matching
with improved accuracy.

In this example, BB_1371 from thttpd-2.25 should match with BB_1689 in
thttpd-2.19, both of which deal with the “-i” argument. However, BB_1687
in thttpd-2.19 also contains the same (type of) instructions, which confuses
the binary diffing tool in the matching. We tried BinHunt [17] and found that
BinHunt, in fact, finds the wrong matching in this case.

On the other hand, iBinHunt easily avoids such errors because the different
taint representation BB_1687 has, and therefore BB_1687 is not even on the list
of matching candidates of BB_1371.

Besides confirming that the differences found by iBinHunt correspond to
semantic differences in the source code, we also verified that these differences in-
clude many patches to vulnerabilities in the earlier version. Therefore, iBinHunt



            thttpd-2.19

parse_args:

else if ( strcmp( argv[argn], "-nov" ) == 0 )

    do_vhost = 0;

else if ( strcmp( argv[argn], "-i" ) == 0 && 

argn + 1 < argc )

          thttpd-2.25

parse_args:

else if ( strcmp( argv[argn], "-nov" ) == 0 )

    do_vhost = 0;

else if ( strcmp( argv[argn], "-g" ) == 0 )

    do_global_passwd = 1;

else if ( strcmp( argv[argn], "-nog" ) == 0 )

    do_global_passwd = 0;

else if ( strcmp( argv[argn], "-i" ) == 0 && argn + 1 

< argc )

BB_1371: Taint Tags: 00000011

mov [esp+18h+var_14],offset_s_-i;

Jnz short loc_804B023

BB_1689: Taint Tags: 00000011

mov [esp+18h+var_14],offset_s_-i;

Jnz short loc_804B651

BB_1687: Taint Tag: 00000111

mov [esp+18h+var_14],offset_s_-g;

Jnz short loc_804B5E0

BB_1688: Taint Tags: 00000111

mov [esp+18h+var_14],offset_s_-nog;

Jnz short loc_804B60E

BinHunt

inaccurate match

iBinHunt

accurate match

Fig. 8. Accuracy improvement

can be used to automatically find vulnerabilities by comparing different ver-
sions of a program for automatic vulnerability discovery, which is an important
security application.


