
On the Effectiveness of Code-reuse-based

Android Application Obfuscation

Xiaoxiao Tang1, Yu Liang2, Xinjie Ma3, Yan Lin1, and Debin Gao1

1 Singapore Management University, Singapore, Singapore
{xxtang.2013, yanlin.2016, dbgao}@smu.edu.sg

2 Wuhan University, Wuhan, China
liangyu@whu.edu.cn

3 Nankai University, Tianjin, China
mxjnkcs@nankai.edu.cn

Abstract. Attackers use reverse engineering techniques to gain detailed
understanding of executable for malicious purposes, such as re-packaging
an Android app to inject malicious code or advertising components. To
make reverse engineering more difficult, researchers have proposed var-
ious code obfuscation techniques to conceal purposes or logic of code
segments. One interesting idea of code obfuscation is to apply code-
reuse techniques (e.g., Return-Oriented Programming) to (re-)distribute
essential code segments before they are reconstructed at runtime. Such
techniques are well understood on x86 platform, but relatively less ex-
plored on Android. In this paper, we present an evaluation on the extent
to which code-reuse-based techniques can be applied to obfuscate An-
droid apps. Moreover, we extend code-reuse-based obfuscation to the
Android platform by proposing an obfuscation mechanism for both Java
and native code. Results show that 835 gadgets are found in the C stan-
dard library (libc.so) which cover the entire Turing complete set. Fur-
thermore, we implement a semi-automatic tool named AndroidCubo and
show that it protects both Java and native code with comparable security
to those obfuscated with Java reflection at a small runtime overhead.

Keywords: Obfuscation, Android application, Code reuse, Java Native Inter-
face

1 Introduction

Android is now the most popular mobile operating system with more than 80%
market share. The number of apps available on Google Play has climbed to more
than 2 million. The popularity of Android operating system and applications
also invites lots of pirated apps. In order to produce pirated apps, adversaries
typically analyze benign apps with reverse engineering tools [1–3], modify the
app to bypass verification algorithms, if any, and then re-package the apps with
injected malicious code or advertising components.

2 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

To make such attacks more difficult, app developers apply code obfusca-
tion techniques. Google recommends developers to use Proguard [4] to obfuscate
sensitive code in Android. However, this tool only obfuscates Java code and
leaves native code as easy targets of attackers. Moreover, Proguard, like many
traditional Java obfuscation techniques [5–7], only applies relatively simple ob-
fuscation techniques, e.g., rename identifiers and remove debugging information.
Although identifiers of classes and methods are no longer understandable after
the obfuscation, names of the system APIs and the control flow of the program
still enable reverse engineering to a great extent. For example, it is easy to figure
out important functionality of an app by analyzing the system APIs invoked.

Return-Oriented Programming (ROP), which belongs to the bigger family
of code-reuse-based techniques, was recently proposed as an attacking technique
to exploit vulnerable programs [8–12]. It was subsequently used for code protec-
tion [13–15] and to provide program steganography, e.g., RopSteg [14]. The main
idea of code-reuse-based obfuscation is to replace essential code with small code
pieces distributed in the app and to reconstruct the essential code dynamically.
These small code pieces, typically ending with return/return-like instructions,
are called gadgets. Then, a payload, which contains addresses of the gadgets
and parameters needed by them, is generated for code reusing. This payload is
typically used to trigger some vulnerability (e.g., buffer overflow) and to invoke
the hidden code by executing the selected gadgets one by one. With this tech-
nique, the semantics of the essential code in the original program are hidden in
the payload. As part of the data in an app, payload is safer than the original
code under the disclosure of reverse engineering tools. The hidden code can be
further protected through dynamically downloading the payload from a trusted
remote server. In addition to protecting benign code, this technique can also be
used for hiding malicious behaviors by adversaries.

However, RopSteg and other code-reuse-based techniques cannot be directly
applied to Android applications. First, Android apps are mainly developed in
Jave, while code-reuse-based techniques are based on native binaries typically
compiled from C/C++. Second, Android devices are built on ARM architecture
on which registers are used for parsing function parameters and saving return
addresses [16], as opposed to x86 which is more dependent on the stack.

In this paper, we present the first evaluation on the extent to which code-
reuse-based techniques can be applied on Android application obfuscation. More-
over, we propose an effective code-reuse-based obfuscation mechanism for An-
droid apps. This mechanism helps developers to obfuscate small pieces of sen-
sitive code, including both Java and native code. We evaluate gadgets found in
binaries of Android apps and calculate the amount of gadgets in several common
native libraries used by Android apps. Results show that 835 gadgets in the C
standard library (libc.so) cover a Turing complete gadget set. We implement
this idea in a tool called AndroidCubo (Android Code-reuse Based Obfuscation)
and successfully apply it on real examples to protect both Java and native code
with a small overhead. We show that the security of our obfuscated code is
comparable to that obfuscated with Java reflection.

On the Effectiveness of Code-reuse-based Android Application Obfuscation 3

2 Overview

Android app obfuscation focuses on preventing reverse engineering by adver-
saries. We assume a threat model in which an adversary reveals essential code in
Android apps with reverse engineering tools, such as Apktool and APKstudio.
These tools help adversaries decompile Android APK and disassemble the re-
sources to Jave or assembly code. Then, adversaries can tamper the decompiled
app and repackage it to perform malicious behaviors. Obviously, we assume that
source code of the Android app is not available to the adversary.

An effective obfuscation technique has to achieve two goals when targeting
Android applications. First, it should protect the compiled essential code from
being reverse engineered to a human understandable format. Second, it should
be generally applicable to any code segments to be hidden on any Android appli-
cations. In the context of code-reuse-based techniques, this means that a Turing
complete gadget set that consists of frequently appeared gadgets is needed.

Fig 1 gives an overview of our code-reuse-based technique in obfuscating the
essential code in an Android app. First, the essential code is replaced with a
gadget sequence based on the Turing complete gadget set. The gadget sequence
represents the semantics of the essential code and is also regarded as the code
reuse program. Next, we prepare a payload according to the gadget sequence.
After that, a segment of trigger code is embedded in the app to invoke the
protected code at runtime. At last, when the protected app is running, the
payload will be loaded into the memory of the app and passed to the trigger
code for invoking the protected code.

Essential code

(Java/native)

Trigger Code

for Code

Reusing

Turing

Complete

Gadget Set

Payload
Protected

Application

Gadget Searching Tool

Gadget 1

Gadget 2

...

Gadget n

Native Code Java Code

Other

Resources

Fig. 1: An overview of our code-reuse-based obfuscation technique for Android
apps.

The Turing complete gadget set is a fundamental requirement in this tech-
nique for providing enough gadgets to substitute the essential code. In the fol-
lowing sections, we first present our analysis of gadgets on ARM and then discuss
the details of the code obfuscation mechanism.

4 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

3 Turing Complete Gadget Set

As we discuss in the earlier section, having a Turing complete gadget set is a
necessary condition for a code-reuse-based obfuscation technique to be generally
applicable to most Android applications. In this section, we present a Turing
complete gadget set found available for code reuse obfuscation on ARM archi-
tecture. We also analyze the number of gadgets in each category. We focus our
analysis on Android 4.4 on a Nexus 5 handset. In the following description,
Ra-Rd and Rx-Ry denote different registers of ARM.

Previous studies [12, 17] applied gadgets ending with BLX Ra in their code-
reuse techniques. BLX Ra is an indirect jump instruction whose jump destination
is specified by register Ra. Unlike return instructions, BLX cannot fetch gadget ad-
dresses from memory. Thus, a specific kind of gadget, called update-load-branch
(ULB) gadget, is used to sequentially fetch gadget addresses to registers and
chain the gadgets together. However, the ULB gadget is very hard to find in
native libraries [12]. Besides that, this strategy doubles the length of the gadget
sequence, which makes code-reuse-based obfuscation techniques more compli-
cated and slows down the program. Hence, we explore the possibility in using
another type of gadgets that ends with POP {Rx-Ry, PC}. This POP instruction
loads an address from the stack to the program counter register PC directly. It
always appears in the epilogue of a function and is more commonly found in
native libraries than the BLX instruction.

Our gadget searching strategy is to look for basic blocks (instruction se-
quences that do not contain branches) ending with a POP {Rx-Ry, PC} instruc-
tion to minimize the effort needed to handle branches in instruction sequences
and payload generation. We implement this strategy into a gadget searching tool
in python. This tool searches for all available gadgets and their relative addresses
in native libraries. It also categorizes the available gadgets to different classes
according to their functionality.

We apply our gadget searching tool on several commonly used native libraries
used by Android apps and compare the number of gadgets in our gadgets set
with that in the gadget set proposed by Davi et al. [12], see Table 1. The results
show that number of gadgets in our gadget set is much larger than that used by
Davi et al. [12]. This is because POP {Rx-Ry, PC} is more frequently used than
BLX Ra in the native libraries. With the larger number of gadgets, the probability
of finding all gadgets needed in the Turing complete gadget set is higher. Besides
that, the more gadgets we find, the more flexibility we have for essential code
replacement.

Table 1: Number of gadgets found in different gadget sets.
Native Libraries libc libruntime libunity libvideo libcocos2d

of Gadgets (Our Gadget Set) 835 2,244 21,483 317 12,913
of Gadgets (Gadget Set in [12]) 77 1,326 10,734 148 6,126

On the Effectiveness of Code-reuse-based Android Application Obfuscation 5

Upon our analysis, we realized that gadgets that implement basic operations,
such as memory operations, arithmetic, and logic operations, can be easily found
through searching the corresponding instructions. Other functionality, including
control-flow transfers and function calls, need to be constructed carefully. We
carefully analyzed the gadget sets found and managed to form a Turing complete
gadget set for converting sensitive code into gadget sequences, see Table 2.

Table 2: Number of different types of gadgets in our gadget set.
Gadget Functionality libc libruntime libunity libvideo libcocos2d

Load 127 151 2,484 60 1,607
Store 227 161 5,518 77 2,333
Add 20 3 878 23 204
Sub 30 1 78 3 35
Shift 12 8 20 2 689
And 6 8 137 3 60
Or 21 6 274 3 100
Xor 2 2 31 0 22

Unconditional Branch 226 753 12,063 84 3,035
Conditional Branch 28 15 1,107 29 29

Function Call 8 187 865 5 458

The results show that libraries contain sufficient gadgets in each category
of the Turing complete gadget set, with the exception of libvideo where there
is no gadgets to perform xor operation. However, also note that xor could be
indirectly implemented with other logical operators. This shows that many com-
monly used libraries are sufficient for providing gadgets for code-reuse obfusca-
tion.

4 Code Obfuscation

With the Turing complete gadget set found in various native libraries covering
different functionality, we now present details of the obfuscation mechanism for
protecting a piece of essential code in an Android application. The code pro-
tection process, as shown in Figure 1, consists of a few steps in 1) replacing
the sensitive code with our gadget sequence; 2) generating code-reuse payload
according to the gadget sequence; and 3) constructing trigger code to invoke the
hidden code with payload in the app.

4.1 Essential Code Replacement

It is usually straightforward to replace the essential code to be obfuscated with
gadget sequences. Most code-reuse techniques typically disassemble the essential
code to instruction sequences first, and then substitute them with semantically

6 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

equivalent gadgets. However, dealing with Android applications makes this pro-
cess more complicated as we want to be able to obfuscate both the native and
Java code. This makes our code-reuse-based obfuscation tool different from most
existing ones.

For Android apps, native code is always compiled to native libraries (.so
file) by the building module of Android Native Development Kit (NDK). Re-
verse engineering tools, such as IDAPro, Hopper, or the GNU Project debugger
(GDB) can be used to disassemble the native libraries and to obtain the instruc-
tion sequences for the essential code to be obfuscated. We can then substitute
instructions in the essential code with gadgets in the native binaries of the app.
Since most of these native libraries contain Turing Complete gadget sets as shown
in Table 2, we will always be able to perform this substitution successfully.

Dealing with Java code in Android apps is more challenging, since exist-
ing code-reuse techniques only support native code. Although a subset of the
language-independent functionality (e.g., concatenation of strings can be im-
plemented in Java as + operator and native code as strcat() method) can
be implemented in native code as well, other functionality that uses classes
or methods specifically provided by Java or Android cannot be directly imple-
mented in native code (e.g., enable bluetooth can only be implemented in Java
as BluetoothAdapter.enable()).

Fortunately, the Java Native Interface (JNI) provides a flexible connection
for the communication between Java and native code [18]. JNI provides several
native methods for accessing object’s field from native code as well as meth-
ods for converting Java classes to native classes, including GetObjectClass(),
GetMethodID() and CallVoidMethod(). These methods allow native code to
use Java class objects and to call Java methods by providing corresponding
class names and method names. In addition, JNI also provides methods to con-
vert Java objects to native variables. For example, GetStringUTFChars() can
be used to convert a Java string to native chars.

Fig 2 shows an example of the corresponding native code that can be used
to replace a sensitive Java API sendTextMessage(). In this example, The JNI
function CallVoidMethod() will call the sensitive API in native code after re-
trieving the class and method names.

In addition to the proposed method of implementing Java functionality in
native code via JNI and then subsequently obfuscating the resulting native code,
here we propose another method using shell command. We notice that many Java
operations can be represented with shell commands in Android apps, e.g., read-
ing SMS can be implemented through shell command content query --uri

content://sms. Therefore, we propose to obfuscate Java code by first replac-
ing it with a call to system() with the corresponding shell command, and then
subsequently obfuscating the calling of system() with our code-reuse program.
This method only needs two gadgets — the first one to move the address of the
corresponding command to register R0, and the second to invoke the system call
function. The actual shell command appears as parameters to the system call.

On the Effectiveness of Code-reuse-based Android Application Obfuscation 7

1 void * sendSMS(JNIEnv *env)
2 {

3 jclass smsclass = env->FindClass("android/telephony/SmsManager");
4 jmethodID get = env->GetStaticMethodID(smsclass, "getDefault", "()Landroid/telephony/

SmsManager;");
5 jobject sms = env->NewObject(smsclass, get);
6 //Obtaining sendTextMessage()

7 jmethodID sendMethod = env->GetMethodID(smsclass, "sendTextMessage",
8 "(Ljava/lang/String;Ljava/lang/String;Ljava/lang/String;Landroid/app/PendingIntent;

Landroid/app/PendingIntent;)V");
9 jstring destAddress = env->NewStringUTF("1234567890"); //Phone number

10 jstring text = env->NewStringUTF("native"); //SMS content

11

12 //Sending SMS with sendTextMessage() in native code

13 env->CallVoidMethod(sms, sendMethod, destAddress, NULL, text, NULL, NULL);
14 }

Fig. 2: The native code of calling sendTextMessage() with JNI.

Table 3 presents some common behaviors which can be represented by shell
commands on Android. These commands are all feasible to be used on nor-
mal Android devices. The available shell commands can be found under the
directory /system/bin in the corresponding Android devices. More complicated
operations can be hidden in shell scripts written with available commands and
be invoked through executing the scripts with system(). These shell commands
include simple ones like file operations, process management, network configu-
ration, as well as those provided by Android Debug Bridge (ADB) for activity
management and package management.

Table 3: Examples of operations on Android and the corresponding shell com-
mands.

Operations Shell Command
Open Messenger am start --user 0 -a android.intent.action.SENDTO

-d sms:PHONE_NUMBER --es sms_body MESSAGE

Read SMS content query --uri content://sms

Open Dialer am start --user 0 -a android.intent.action.DIAL

-d tel:PHONE_NUMBER

Start Browser am start --user 0 -a android.intent.action.VIEW -d URL

Create Directory mkdir DIRECTORY_PATH

4.2 Payload Generation

The main advantage of code-reuse-based obfuscation tools over other obfusca-
tion techniques is that the hidden code exists in the form of data rather than
instructions. To achieve this, we need to prepare a payload according to the gad-
get sequence. Payload is a segment of memory content that contains semantics

8 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

of the protected code and will be used for overwriting control data at runtime.
A payload typically consists of three parts. The first part is the data that will be
used to overwrite control data in memory to redirect control flow to the hidden
code. The second part consists of the parameters and addresses for the gadget
sequence which presents the semantics of the hidden program. The third part
is a segment of buffer with data needed by the code reuse program and other
padding data. Fig 3 is an example of the payload which has been loaded on the
stack.

...

R4

R13(sp)

R14(lr)

...

Address

&Gadget2

...

...

...

...

LDR R0, [R4]
POP {R5,PC}

Data

Addresses and

Parameters

Control data

Stack

Growth

Stack

STR R0,[R5]
POP {R4,PC}

0x1

R5-R12

Fig. 3: Layout of the payload. The shadowed areas present different parts of the
payload.

This payload is used for the gadget sequence that loads a number 0x1 from
memory and stores it at another address. From bottom to top of the stack, the
first part is the data that overwrites control data jmp_buf which is used to set
register values of the execution environment. In the rewritten jmp_buf, R4 is set
to the address of 0x1 and stack pointer is set to the beginning of the second
part of the payload. The second part contains the parameter needed by the
first gadget and the address of the second gadget. The last part of the payload
contains other data — the number 0x1 to be loaded from memory and stored to
the address specified by R5. To generate the payload, the most essential steps are
store the address of the first gadget in lr and addresses of following gadgets on
the stack. Thus, by changing sp, the gadgets will be executed in proper order.

4.3 Code Triggering

After preparing the payload, extra code needs to be added to the app as an entry
point of the hidden code. This part of the code fetches the payload at runtime
and uses it to trigger the code-reuse program. Code-reuse programs are com-
monly triggered through overwriting control data, including return addresses,

On the Effectiveness of Code-reuse-based Android Application Obfuscation 9

function pointers, and jump buffer. The overwriting could be based on a set
of vulnerable library functions that lack boundary checking, such as gets(),
fread(), strcpy(), and sprintf(). As in some existing work [12], the control
data we choose to overwrite is the jmp_buf structure that is used to restore the
execution environment in exception handling. The jmp_buf structure contains
data that will be used to set values of registers which are used for storing param-
eters and the return address of a function call. Thus, it is convenient to redirect
the control flow through overwriting jmp_buf structure on ARM.

Fig 4 shows an example of overwriting jmp_buf [12]. In this piece of code,
function setjmp() and longjmp() are used to store and restore the execution
context in variable jbuf. Reading data from sFile to buf will overwrite jbuf.
Thus, longjmp() will direct the program execution to somewhere specified by
the overwritten jbuf.

1 typedef struct foo{

2 char buf[JP_BUFSIZE];
3 jmp_buf jbuf;
4 }FOO, *PFOO;

5 PFOO f;
6

7 void * overflow(char * filePath)
8 {

9 int i;
10
11 i = setjmp(f->jbuf);

12 fread(f->buf, 1, BUFSIZE+256, sFile);
13

14 longjmp(f->jbuf, 2);
15
16 }

Fig. 4: Trigger code to be added to source code of the application.

4.4 Payload Protection

Since the semantics of the essential code are hidden in the code-reuse payload,
it is important that our obfuscation tool provides protection on the payload
to resist and reverse engineering attempts. To protect the payload, we propose
three possible solutions.

– Instead of storing payload as static resources of the Android app, the payload
can be embedded in the resources using information hiding techniques. For
example, the payload can be hidden in a segment of normal code, e.g., as an
image, using steganography [19].

– The payload can exist in an encrypted form of data in the Android app, and
be decrypted at runtime.

10 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

– To completely remove the payload from the APK file of the Android app, we
can dynamically download it from a trusted remote server [15]. Dynamically,
the app will request and receive payload from the server based on a reliable
protocol.

In this work, we use the last, and the most secure, method.

5 Implementation and Case Studies

We manage to implemente our idea of obfuscating Android application as a tool
set, AndroidCubo. AndroidCubo takes as input the source code of an Android
app and obfuscates selected native and Java code in it. We present some imple-
mentation details and applications of AndroidCubo on an app in this section.
Experiments were performed on a Nexus 5 running Android 4.4.

5.1 Implementation details

Code-reuse programming is complicated since it involves a lot of low level op-
erations on memory and registers. We implement AndroidCubo as a tool set
for helping Android app developers to obfuscate sensitive code with code-reuse
technique. It contains a source code template to be inserted into the Android
source code and a payload maintainer to execute on a trusted server.

The source code template contains a Java class named ObfuscateUtil and a
C program named Hiding. The class ObfuscateUtil provides native interfaces
for calling native methods in Hiding. It also implements network communication
with the trusted server which maintains the payload for the code-reuse program.
The Hiding program has a method named trigger() that uses the payload
(received from communication with the trusted server) to trigger the obfuscated
code.

This source code template can be directly added to the Android project for
obfuscating a segment of sensitive code. The only additional code a developer
has to add is for preparing parameters if they are obfuscating API calls. To
use this template for obfuscating multiple segments of sensitive code, the user
needs to add trigger methods in Hiding and the corresponding interfaces in
ObfuscateUtil.

The payload maintainer on the server side has two parts. The first part is a
payload generator that works in the following manner.

– Native code obfuscation Our gadget searching tool lists available gadgets
and their relative addresses for the developer to construct the gadget se-
quence. The developer can also use other existing tools, e.g. ROPgadget [20]
or Q [21], to develop their code reuse program.

– Java code obfuscation through shell commands The generator auto-
matically generates the payload with a command provided by the user.

– Java API obfuscation The developer specifies the addresses of the API
and the corresponding parameters and our generator outputs the payload.

On the Effectiveness of Code-reuse-based Android Application Obfuscation 11

The second part is a program for sending payload to the app. This program
is developed with PHP with which the server will handle the request of payload
from the app, trigger the payload generator, and then send the payload over to
the app.

5.2 Case study: Obfuscating Native Code

To demonstrate AndroidCubo in obfuscating native code, we hide a simple com-
parison algorithm as shown Fig 5(a)(b). This algorithm obtains and stores the
larger one of the two input numbers. As described in Section 4, this simple al-
gorithm needs to be converted to a sequence of gadgets first. AndroidCubo first
executes the gadget searching tool and finds available gadgets and their relative
addresses, and then generates a sequence of gadgets to substitute the original
code as shown in Fig 5(c). In this sequence, gadgets 1-3 are used to load the
first operand to register R9. Gadgets 4-6 are used to load the second operand
to register R3. The last conditional gadget is used to find and store the larger
number.

int max(int num1, int numb2)
{

int max = num1>num2?numb1:numb2;
return max;

}

ldr r2, [r11, #-16]
ldr r3, [r11, #-20]
cmp r2, r3
ble 0x74fadf40 <max(int, int)+44>
ldr r3, [r11, #-16]
b 0x74fadf44 <max(int, int)+48>
ldr r3, [r11, #-20]
str r3, [r11, #-8]
ld r3, [r11, #-8]

ldr r0, [r4]
pop {r3-r6, pc}
str r0, [r4, #0x14]
pop {r4, pc}
pop {r4-r11, pc}
ldr r0, [r4]
pop {r4-r6, pc}
str r0, [r4, #0x14]
pop {r4, pc}
pop {r3-r5, pc}
cmp r9, r3
ite hs
strhs.w r9, [r5, #0x20]
strlo r3, [r5, #0x20}
add sp, #0x14
pop.w {r4-r11, pc}

1.

2.

3.
4.

5.

6.
7.

(a) Original C code
(c) Gadget Sequence

(b) Original Assembly

Fig. 5: Source code to be hidden and the corresponding gadget sequence.
(a) Original C code; (b) Original assembly code; (c) Gadget sequence.

AndroidCubo then generates the payload based on the gadget sequence. In
particular, the first part of the payload is the data used to overwrite the control
data jmp_buf. jmp_buf directs the stack pointer to the beginning of the second
part — the addresses and parameters of the gadgets. LR is then set to the address
of the first gadget. The last part of the payload is a buffer containing junk data.

We recompile the Android app with outputs from AndroidCubo and execute
the app with the corresponding payload. After executing the app and loading
the payload to the stack, longjmp() successfully executes with the prepared
jmp_buf, and the gadget pointed to by LR executes followed by other gadgets
prepared in the payload.

12 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

...

R4

R5-R12

R13(sp)

R14(lr)

�✁✂ ✄☎✆✆ ✝user 0

PACKAGE_✞✟✠✡☛

...

&system()

&Gadget2

...

...

...

...

MOV R0, R4
POP {R4,PC}

Data

Addresses and

Parameters

Control data

Stack

Growth

Stack

system()

BLX R4
POP {R3-R5,PC}

Fig. 6: Stack layout after loading the payload.

5.3 Case study: Obfuscating Java Code

We use another example to demonstrate using AndroidCubo to obfuscate Java
code. In this example, we hide the Java code that kills a background process.

The operation of killing a background process is typically implemented by ob-
taining an ActivityManager object and killing the process by calling the method
killBackgroungProcess() in Java. AndroidCubo hides this Java code through
a shell command am kill --user 0 PACKAGE NAME with two gadgets. The first
gadget MOV R0, R4; POP {R4, PC} is used to prepare the shell command as a
parameter for system(). The second gadget is a function call gadget BLX R4;

POP {R3-R5, PC} to invoke the shell command. Fig 6 presents a view of the
stack after our app loads the payload generated by AndroidCubo to overwrite a
buffer.

From bottom to top of the stack, the three shadowed areas present the cor-
responding parts of the payload. The first part is the overwriting of control data
jmp buf. In jmp buf, register LR is set to the address of the first gadget. Function
pointer SP is set to the beginning of the second part of the payload. Register R4
is set to the address of the command that will be assigned to R0 as the parameter
of system(). The second part is the gadget addresses and parameters. The most
essential data on this part is the address of system() and the address of the
second gadget. The last part includes the padding data and the command string
needed by system().

5.4 Overhead

In our experiments in applying AndroidCubo to the Android apps, it introduces
around 150 LOC to native part and around 250 LOC to Java part of the Android
application.

On the Effectiveness of Code-reuse-based Android Application Obfuscation 13

6 Comparison with other Obfuscation Techniques

There have been existing obfuscation techniques proposed, and in this sec-
tion, we conduct a comparative test on sensitive API obfuscation among code-
reuse-based method and other techniques, including control-flow obfuscation and
Java-reflection-based obfuscation. Control-flow obfuscation techniques typically
hides or protects the selected code by branching or looping garbage code. Java-
reflection-based techniques typically hide sensitive API calls by using Java re-
flection to access the APIs through their names. We use these techniques to
obfuscate an open source application named OverFlow. The sensitive API that
we target to obfuscate is sendTextMessage().

6.1 The Experiment

We obfuscate the target app with all three techniques and then build the signed
APK file. We use Apktool [1], dex2jar [3], and JD-GUI [22] to reverse engineer
the APk files obtained to see how much information of the sensitive API can be
reconstructed. Apktool is used to unpack the APK file and obtain the dex file.
dex2jar converts the dex file to jar files which contain the byte code of the app.
After obtaining the jar file, we extract the class files in the jar and use JD-GUI
to reverse engineer class files to readable Java code. The above constitutes the
most commonly used methods for reverse engineering Android apps.

6.2 Reverse Engineering Results

Fig. 7 presents the reverse engineering output for the un-obfuscated app (Fig. 7(a))
and apps obfuscated by the three different techniques (Fig. 7(b)-(d)).

Although the control flow recovered in Fig. 7(b) seems opaque, it is easy to
spot out the sensitive API call from the byte code at line 9. This shows that the
control-flow obfuscation manages to introduce confusion in terms of how control
transfers, but it fails to hide the existence of Java API call. From Fig. 7(c),
we can also easily figure out the name of the API from the first parameter of
getMethod().

Fig. 7(d), on the other hand, substitutes the sensitive API call with a na-
tive function call whose functionality cannot be inferred from the name. That
said, one could further analyze the native function CallVoidMethod() to see if
it contains any hints of the API function to be called. We use IDAPro to re-
verse engineer the native function CallVoidMethod(), and find that the string
sendTextMessage and (Ljava/lang/String;...)V can be recovered from the
binaries.

6.3 Discussion

In our experiments of obfuscating the Android app with different obfuscation
methods, AndroidCubo presents better security in hiding the sensitive API

14 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

1 private void sendMessage(String paramString1, String paramString2)
2 {

3 try
4 {

5 SmsManager.getDefault().sendTextMessage(paramString1, null, paramString2, null,
null);

6 return;

7 }
8 catch (Exception paramString1)

9 {
10 paramString1.printStackTrace();
11 }

12 }

(a) Decompiled code of un-obfuscated sendTextMessage()

1
2 // 131: goto -7 -> 124

3 // 134: aload 4
4 // 136: aload 1
5 // 137: aconst null

6 // 138: aload 2
7 // 139: aconst null

8 // 140: aconst null
9 // 141: invokevirtual 105 android/telephony/SmsManager:sendTextMessage ...

10 // 144: return

11 // 145: astore 1
12 // 146: aload 5

13 // 148: astore 2
14

(b) Decompiled code of function call obfuscated by control-flow obfuscation

1 private void sendMessage(String paramString1, String paramString2)
2 {

3 try
4 {

5 SmsManager localSmsManager = SmsManager.getDefault();
6 localSmsManager.getClass().getMethod("sendTextMessage", new Class[] { String.class,

String.class, String.class, PendingIntent.class, PendingIntent.class }).invoke(
localSmsManager, new Object[] { paramString1, null, paramString2, null, null });

7 return;

8 }
9 catch (Exception paramString1)

10 {
11 paramString1.printStackTrace();
12 }

13 }

(c) Decompiled code of function call obfuscated by Java Reflection

1 private void sendMessage(String paramString1, String paramString2)
2 {

3 try
4 {
5 nativeMethod(paramString1, null, paramString2, null, null);

6 return;
7 }

8 catch (Exception paramString1)
9 {

10 paramString1.printStackTrace();
11 }
12 }

(d) Decompiled code of function call obfuscated by AndroidCubo

Fig. 7: The decompiled code of calling sendTextMessage() and the decompiled
code from obfuscated calling.

On the Effectiveness of Code-reuse-based Android Application Obfuscation 15

call from reverse engineering tools. At a high level, its idea is similar to Java-
Reflection-based techniques in that both techniques replace the original Java call
with another method call, and both techniques specify the underlying method to
be called via a string. However, the replacement in Java-Reflection-based tech-
niques is still a Java method call, which is relatively easy to analyze; on the
other hand, AndroidCubo uses a replacement of native calls that are more dif-
ficult to analyze. Coupled with other string obfuscation techniques, we argue
that AndroidCubo presents higher resilience in obfuscation compared to Java-
Reflection-based techniques.

6.4 Limitations

Although applying the code-reuse-based obfuscation technique is feasible, there
are a couple of limitations that are worth noting. First, AndroidCubo, in its
current form, is a semi-automatic tool. Piecing together gadgets and writing long
code-reuse programs are still a complicated process that requires the developer’s
attention and help. Second, applying code-reuse techniques for good, e.g., in
obfuscating program logic, runs into the risk of being prohibited by code-reuse
protection mechanisms. That side, current Android systems have no protection
mechanisms to resist code-reuse programs, and advanced many techniques [23–
26] are powerful enough to bypass most protection mechanisms.

7 Related Work

Traditionally, there have been three categories of obfuscation techniques pro-
posed, including layout obfuscation [6], control-flow transformation [7, 27], and
data obfuscation. Layout obfuscation [6] removes relevant information from the
code without changing its behavior. Control-flow transformation [7, 27] alters
the original flow of the application. Data obfuscation obfuscates data and data
structures in the application. These techniques are certainly helpful in obfuscat-
ing Android apps; however, they are not specific to the Android platform and
are especially weak in hiding code in Android apps.

There are also free or commercial obfuscation techniques specifically provided
to Android developers. ProGuard [4] is a free and commonly used one that obfus-
cates the names of classes, fields, and methods. DexGuard [28] is a commercial
optimizer and obfuscator. It provides advanced obfuscation techniques for An-
droid development, including control-flow obfuscation, class encryption, and so
on. DexProtector [29] is another commercial obfuscator that provides code ob-
fuscation as well as resource obfuscation, such as the Android manifest file.

Code reuse techniques, including Return-into-lib(c) [30,31], Return-oriented
programming [8, 9] and Jump-oriented programming [10–12], are first proposed
to exploit vulnerable apps by hijacking their control-flow transfers and con-
structing malicious code dynamically. Among these code-reuse techniques, only
a few of them work on Android system or the ARM architecture. [12] proposes
a systematic jump-oriented programming technique on ARM architecture. The

16 Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao

gadget set proposed in this work consists of gadgets ending with BLX instruc-
tions. In this paper, we use a different type of gadgets that are more commonly
found in native libraries.

Recently, several code-reuse-based obfuscation techniques [13–15] have been
proposed. One of the code-reuse-based obfuscation techniques is RopSteg —
a steganography technique on x86 [14]. RopSteg protects binary code on x86
architecture, while our code-reuse-based obfuscation on Android platform works
for both Java and native code on Android platform. Another work [15] proposes a
malware named Jekyll which hides malicious code and reconstructs it at runtime.
Our obfuscation mechanism can be used for protection of either malicious or
benign code.

8 Conclusion

In this paper, we present a code-reuse-based technique for protecting Android
applications. This technique enhances the concealment of both Java and native
code in Android apps through hiding essential code. Our evaluation shows that
the limited binary resources in Android apps are sufficient for applying code-
reuse-based obfuscations. We further implement AndroidCubo semi-automate
the process of obfuscating essential code. Examples present that it is practical
to protect applications with AndroidCubo.

References

1. Winsniewski, R.: Apktool: A tool for reverse engineering android apk files.
http://ibotpeaches.github.io/Apktool/

2. Vaibhavpandeyvpz: Apk studio. http://www.vaibhavpandey.com/apkstudio/
3. Alll, B., Tumbleson, C.: Dex2jar: Tools to work with android. dex and java. class

files
4. Lafortune, E., et al.: Proguard. http://proguard.sourceforge.net
5. Collberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transfor-

mations. Technical report, Department of Computer Science, The University of
Auckland, New Zealand (1997)

6. Chan, J.T., Yang, W.: Advanced obfuscation techniques for java bytecode. Journal
of Systems and Software 71(1) (2004) 1–10

7. Collberg, C., Thomborson, C., Low, D.: Manufacturing cheap, resilient, and
stealthy opaque constructs. In: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, ACM (1998) 184–196

8. Buchanan, E., Roemer, R., Shacham, H., Savage, S.: When good instructions go
bad: generalizing return-oriented programming to risc. In: Proc. ACM CCS. (2008)

9. Shacham, H.: The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In: Proc. ACM CCS. (2007)

10. Bletsch, T., Jiang, X., Freeh, V.W., Liang, Z.: Jump-oriented programming: a new
class of code-reuse attack. In: Proc. ACM ASIACCS. (2011)

11. Checkoway, S., Davi, L., Dmitrienko, A., Sadeghi, A.R., Shacham, H., Winandy,
M.: Return-oriented programming without returns. In: Proc. ACM CCS. (2010)

http://ibotpeaches.github.io/Apktool/
http://www.vaibhavpandey.com/apkstudio/
http://proguard.sourceforge.net

On the Effectiveness of Code-reuse-based Android Application Obfuscation 17

12. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Return-oriented program-
ming without returns on arm. System Security Lab-Ruhr University Bochum,
Tech. Rep (2010)

13. Ma, H., Lu, K., Ma, X., Zhang, H., Jia, C., Gao, D.: Software watermarking using
return-oriented programming. (2015)

14. Lu, K., Xiong, S., Gao, D.: Ropsteg: program steganography with return oriented
programming. In: Proc. ACM CODASPY. (2014)

15. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on ios: When benign apps
become evil. In: Proc. Usenix Security. (2013)

16. Seal, D.: ARM architecture reference manual. Pearson Education (2001)
17. Davi, L., Dmitrienko, A., Sadeghi, A.R., Winandy, M.: Privilege escalation attacks

on android. In: Information Security. Springer (2011)
18. Google: Jni tips. http://developer.android.com/training/articles/perf-jni.html
19. Morkel, T., Eloff, J.H., Olivier, M.S.: An overview of image steganography. In:

ISSA. (2005)
20. Salwan, J., Wirth, A.: Ropgadget (2012)
21. Schwartz, E.J., Avgerinos, T., Brumley, D.: Q: Exploit hardening made easy. In:

USENIX Security Symposium. (2011) 25–41
22. Dupuy, E.: Jd-gui: Yet another fast java decompiler. URL http://java. decompiler.

free. fr/? q= jdgui/accessed March (2012)
23. Carlini, N., Wagner, D.: Rop is still dangerous: Breaking modern defenses. In:

USENIX Security Symposium. (2014)
24. Davi, L., Lehmann, D., Sadeghi, A.R., Monrose, F.: Stitching the gadgets: On

the ineffectiveness of coarse-grained control-flow integrity protection. In: USENIX
Security Symposium. (2014)

25. Göktaş, E., Athanasopoulos, E., Polychronakis, M., Bos, H., Portokalidis, G.: Size
does matter: Why using gadget-chain length to prevent code-reuse attacks is hard.
In: 23rd USENIX Security Symposium, San Diego, CA. (2014) 417–432

26. Snow, K.Z., Monrose, F., Davi, L., Dmitrienko, A., Liebchen, C., Sadeghi, A.R.:
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In: Proc. IEEE Symposium on Security and Privacy, IEEE (2013)

27. Wartell, R., Mohan, V., Hamlen, K.W., Lin, Z.: Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In: Proc. ACM CCS. (2012)

28. : Dexguard. https://www.guardsquare.com/dexguard
29. : Dexguard. https://dexprotector.com/
30. Nergal: The advanced return-into-lib(c) exploits (pax case study). Phrack maga-

zine 4(58) (1996)
31. Tran, M., Etheridge, M., Bletsch, T., Jiang, X., Freeh, V., Ning, P.: On the expres-

siveness of return-into-libc attacks. In: Recent Advances in Intrusion Detection,
Springer (2011) 121–141

http://developer.android.com/training/articles/perf-jni.html
https://www.guardsquare.com/dexguard
https://dexprotector.com/

	On the Effectiveness of Code-reuse-based Android Application Obfuscation
	Introduction
	Overview
	Turing Complete Gadget Set
	Code Obfuscation
	Essential Code Replacement
	Payload Generation
	Code Triggering
	Payload Protection

	Implementation and Case Studies
	Implementation details
	Case study: Obfuscating Native Code
	Case study: Obfuscating Java Code
	Overhead

	Comparison with other Obfuscation Techniques
	The Experiment
	Reverse Engineering Results
	Discussion
	Limitations

	Related Work
	Conclusion

