
1

UIPDroid: Unrooted Dynamic Monitor of Android App UIs for
Fine-Grained Permission Control

Mulin Duan, Lingxiao Jiang, Lwin Khin Shar, Debin Gao
 School of Computing and Information Systems

 Singapore Management University
 mlduan.2020@msc.smu.edu.sg, {lxjiang, lkshar, dbgao}@smu.edu.sg

ABSTRACT
Proper permission controls in Android systems are important for
protecting users' private data when running applications installed
on the devices. Currently Android systems require apps to obtain
authorization from users at the first time when they try to access
users' sensitive data, but every permission is only managed at the
application level, allowing apps to (mis)use permissions granted
by users at the beginning for different purposes subsequently
without informing users. Based on privacy-by-design principles,
this paper develops a new permission manager, named UIPDroid,
that (1) enforces the users' basic right-to-know through user inter-
faces whenever an app uses permissions, and (2) provides a more
fine-grained UI widget-level permission control that can allow,
deny, or produce fake private data dynamically for each permis-
sion use in the app at the choice of users, even if the permissions
may have been granted to the app at the application level. In addi-
tion, to make the tool easier for end users to use, unlike some
other root-based solutions, our solution is root-free, developed as
a module on top of a virtualization framework that can be in-
stalled onto users' device as a usual app. Our preliminary
evaluation results show that UIPDroid works well for fine-
grained, per-widget control of contact and location permissions
implemented in the prototype tool, improving users' privacy
awareness and their protection. The tool is available at
https://github.com/pangdingzhang/Anti-Beholder; A demo video
is at: https://youtu.be/dT-mq4oasNU

KEYWORDS
Android, Permission Management, Rootless, VirtualXposed

1 Introduction
While users enjoy the convenience brought by mobile applications
(a.k.a. apps), they also have to bear threats like data leakage [1].
To protect users' privacy, Google uses a permission request mech-
anism in their Android systems that apps must declare
permissions needed and send a request to users before they access
the data controlled by the permissions for the first time [2]. For

each permission request, users only have two choices, namely,
Allow or Deny. Once users choose Allow for an app, the app gets
access to users' data and the system will not check whether the
subsequent permission uses are still allowed by the users or in-
form users about those uses. Once users choose Deny, the app
often disables the functionality that may be wanted by the users. 1

Such a permission control mechanism is far from enough in
protecting users' privacy. Based on privacy-by-design and UI-
design principles [3, 4, 5], an app should respect users' right to
know whenever it needs to use private data and explain sufficient-
ly to the users about its purpose of the uses (e.g., through a
notification message on UI, short animation, flash lights
/audio/vibration on device, etc.), and provide users the right to
withdraw either partially for some parts of the apps or temporarily
whenever they want to. Stock Android still lacks such features for
user awareness and control of the uses of sensitive data after au-
thorization [1]. In other words, apps can use permissions such as
Contacts, Locations, etc. rampantly anytime for any purpose after
the permissions are granted to them without informing users; they
may simply fail to run if users do not grant permissions even
though not all the functionalities of the apps need the permissions.
In short, the Android permission manager is too coarse-grained
and not flexible enough to protect user privacy at different granu-
larity levels when users are using apps for different purposes.

To help users safely use third-party apps and reduce their con-
cerns about privacy leaks, we need a fine-grained solution that can
distinguish apps' different uses of a permission with respect to
users' preferences and provide useful information and mechanisms
for users to easily make suitable and adjustable choices [6, 7, 8].
Furthermore, users should still be able to use (or at least try out)
app functionalities even if they do not grant permissions to an app.
Lastly, the solution should be easy to install and use by end users
without requiring rooting an Android phone.

Towards the above objectives, this paper proposes a tool,
named UIPDroid, as a module developed on top of a virtualization
framework called VirtualXposed [9] and can be installed like a
usual app on unrooted Android phones of compatible versions.
When an app tries to access a user's private data that requests for a
permission, UIPDroid intercepts the requests and checks the UI
context of this behavior, informs the user about the potential per-
mission use through UI notification, and provides choices for the
user to set their preferences. The notification and decision making
can be done for each use per UI widget, depending on if the use is

1 In recent Android versions, there are a few more choices for users: "Allow all the
time," "Allow only while in use," and "Ask every time." But the essence of the dis-
cussion in this paper remains valid.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than the author(s) must be honored. Abstracting with credit is
permitted. To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee. Request permissions
from Permissions@acm.org.
ICSE '22 Companion, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-9223-5/22/05...$15.00
https://doi.org/10.1145/3510454.3516844

ICSE 2022, May, 2022, Pittsburgh, PA, USA Duan et al.

2

triggered by the user's actions on the UI or by the app's internal
behavior (e.g., an operation done in a background service of the
app). In addition to Allow and Deny, UIPDroid gives another op-
tion, Fake, to allow the permission use but return pseudo-random
values to the requesting app to continue its functionality. Also,
UIPDroid records all the apps' permission uses and can present
the logs to users visually for postmortem inspection. Further,
UIPDroid has an interface that can export/import predefined per-
mission preferences for a user and automate the permission
choices based on the UI context and users' preferences to help re-
duce the cognitive and decision burdens on users.

We envision that UIPDroid can be used by any end user who
has basic knowledge of Android app installation and settings. Alt-
hough it is a prototype, we believe that such a dynamic fine-
grained permission notification and setting tool can help to raise
users' awareness of privacy. We also believe that such fine-
grained control mechanism could and should be integrated into
future versions of Android for better privacy protection.

The rest of the paper is organized as follows. Sec. 2 illustrates
a usage example of UIPDroid. Sec. 3 explains its design and im-
plementation. Sec. 4 presents small-scale evaluation results and
limitations for future improvements. Sec. 5 concludes this work.

2 Usage Example
To use UIPDroid, users should download and install the Virtu-
alXposed app [9] and our module, which are as easy as installing
a normal app. After that, users can add the apps whose permission
uses need to be managed into VirtualXposed. The step-by-step
instructions can be found in README in the tool's repository.

By default, UIPDroid generates fake values for all the per-
mission requests of an app. When the apps or their UI widgets
trigger a permission use for the first time, our tool pushes notifica-
tions to user and waits for user's decision. The user decisions are
stored for future checks and can be changed in user’s setting page.

2.1 Notification
For a permission request that UIPDroid cannot find in users’ set-
ting, it pushes a notification (Figure 1) to ask for their choices.
Even if users have set up their preferences, UIPDroid can still
send toast messages to make users aware of apps’ behaviours.

Figure 1: Notification

2.2 Setting
Users can manage their permission preferences for different apps
or UI widgets. Basic Permission Management (Figure 2) lists all
permissions requested by an app, which is similar to Android sys-
tem's native permission manager. Users can switch to Widget-
Level Permission Management (Figure 3) in which UIPDroid lists
permissions triggered by each widget in a format of {Permission-

Name_WidgetID}. One permission can appear multiple times under
this widget-level setting as the same permission may be linked to
different UI widgets, through which we enable more fine-grained
control for user-aware permission uses (cf. Section 3.2.2).

Figure 2: Basic Permission

Management

Figure 3: Widget-Level Per-

mission Management

2.3 Report
Users can inspect the logs of apps' permission uses visually in two
formats. One is Timeline Report (Figure 4) that displays all per-
mission uses in a reverse chronological order. The other is
Summary Report (Figure 5) that lists the total numbers of times
each permission is used and the last access time. Users can filter
the reports by a specific permission or an application.

Figure 4: Timeline Report

Figure 5: Summary Report

UIPDroid ICSE 2022, May, 2022, Pittsburgh, PA, USA

3

3 Design & Implementation
This section introduces the architecture of UIPDroid and describes
major technical details in its design and implementation.

3.1 Architecture

Figure 6: Overview of Architecture

Error! Reference source not found. illustrates the architecture
of UIPDroid. This tool is built on the VirtualXposed [9] providing
the ability to hook any Java method invoked by apps that are exe-
cuted within the VirtualXposed sandbox. When an app tries to
access users' private data in Android, it needs to call correspond-
ing APIs of the Android system. For example, apps often call the
method, android.location. LocationManag-

er.getLastKnownLocation, to get users' locations, and call the
method, android.content.ContentResolver.query, to retrieve
contacts. UIPDroid implements the hooks to intercept such meth-
od calls and uses custom-built Permission Manager to check
whether each request should be granted with permissions. If Per-
mission Manager does not find existing users' preferences, it will
push a notification to ask users for their decisions and record them
in the Decision Databases. Users can also change their preferences
any time via the Permission Configuration UI or by importing de-
cisions suggested by other analysis tools or experts. Meanwhile,
all the permission requests and decision results are recoded in the
App Behaviours Database and can be displayed via Permission
Usage Report for users' inspection.

3.2 Permission Management
From the Android system's perspective, VirtualXposed (VX) runs
like a normal app, and all permission requests from the apps run-
ning in the VX sandbox are like permission requests from the VX
app itself. Thus, the VX app should be given all the permissions
that may be needed by the apps that users want to manage; then,
UIPDroid's Permission Manager implements more fine-grained
permission controls for the apps. If VX is not given a permission,
UIPDroid also denies the permission for the managed apps.

3.2.1 Basic permission management. For each request for Con-
tact or Location permissions from an app, UIPDroid implements

three decision choices: Allow, Fake, and Deny. UIPDroid inter-
cepts calls to sensitive APIs such as getLastKnownLocation and
query as illustrated in Section 3.1 to check users' preferences. For
Allow, the calls proceed per usual; for Deny, the calls are aborted
with a SecurityException; for Fake, the calls still proceed but
UIPDroid intercepts their return values and replace them with
semi-random values with the same data types and formats.

In addition, some apps follow Android's privacy best practices
[2]: they check whether they have the permission (e.g., by calling
ContextCompat.checkSelfPermission) before calling the sensi-
tive APIs; if permission is not given, they may abort gracefully by
themselves, or issue a request for the permission at runtime (e.g.,
by calling ActivityCompat.requestPermissions and waiting for
users' response via the onRequestPermissionsResult callback).
Thus, we also hook checkSelfPermission and onRequestPermis-
sionsResult and replace their decision results according to our
Decision Databases and users' preferences so that the apps can
still abort gracefully on their own when the permission is denied.

3.2.2 Widget-level Permission management. Following the
privacy-by-design principles, private data uses should have rele-
vant UI widgets that are linked to user actions and inform users
via UI status changes. Thus, UIPDroid uniquely relates permis-
sion controls to UI widgets. i.e., it allows users to set permissions
based on visible UI widgets (e.g., clickable buttons and scrollable
list view). We hook each of the event handlers of the UI widgets
(e.g., onClick and onScroll) that would trigger calls to sensitive
APIs and inject our permission control per Section 3.2.1, so that
we enable widget-level permission control and allow users to al-
low/deny/fake the permission use before each sensitive API call.
Permission requests that do not relate to any UI widget are de-
faulted to Fake if the permission is given to VirtualXposed for
management (handled as Section 3.2.1) or Deny otherwise, as
such permission requests without user awareness should not be
allowed to use private data.

An important issue here is to correctly relate a potential per-
mission request to a UI widget that interacts with users so that the
hooks are placed in the right event handlers for users’ control. In
our current implementation, we focus on only clickable buttons by
manually running the subject apps separately and analyzing their
execution profiles. In particular, we identify the unique button ID
of an app and the permission triggered by clicking it to add the
button-level permissions (cf. Figure 3) for users. In principle, such
links between UI widgets and permissions triggered can be auto-
matically discovered by static and dynamic analysis of the apps.
Then, such settings for different apps can be imported to UIP-
Droid to extend the scope of UI widgets that it can manage.

4 Empirical Evaluation

4.1 Experimental Setup
We experimented with 19 apps that use Contact and Location
permissions in our preliminary evaluation. These apps are popular
in various categories such as Map, Instant Messaging, Social
Networking, Food, Shopping, Transportation. All applications are
the latest version on Google Play as of July-23-2021. We ran the

ICSE 2022, May, 2022, Pittsburgh, PA, USA Duan et al.

4

apps manually on a Google Pixel 4A phone with Android 10 to
trigger their Contact or Location uses and enable UIPDroid to
control.

4.2 Experimental Results
The experimental results are summarized in Table 1. Some appli-
cations detect whether current mobile phone has installed Xposed
or other similar frameworks, and detect whether their process are
hooked. If so, they refuse to be executed for security reasons. Due
to this reason, 9 out of 19 apps cannot be run in the sandbox and
thus cannot be managed by our tool (cf. "VX loaded" column).
For other apps, UIPDroid successfully enabled Allow/Deny/Fake
permission control except for Telegram and Instagram Lite as
they use some mobile development techniques, such as React Na-
tive, that are not hooked by VX. The execution performance
impact is negligible from users' perspective because all codes are
still executed on the native Android operating system and Virtu-
alXposed only intercepts some UI-triggered method calls when
inner applications interact with the system. For some large appli-
cations, the installation process may take longer time than native
system because VirtualXposed disables JIT.

Table 1: Experimental Results. "VX loaded" indicates if an
app can be run within VirtualXposed. "Allow", "Deny",

"Fake" indicate if each of the permission settings can pass our
manual test cases or not; "N/A" is for apps that cannot be run

due to VX.
App Name Permission VX

loaded
Allow Deny Fake

Red Contact Y Y Y Y
WeChat Contact Y Y Y Y
Telegram Contact Y Y N Y
Instagram Lite Contact Y Y N N
Facebook Lite Contact N N/A N/A N/A
Lazada Contact N N/A N/A N/A
Shopee Contact N N/A N/A N/A
WhatsApp Contact N N/A N/A N/A
FairPrice Location Y Y Y Y
Moovit Location Y Y Y Y
OneMap Location Y Y Y Y
PizzaHut Location Y Y Y Y
Singapore Map Location Y Y Y Y
Waze Location Y Y Y Y
Deliveroo Location N N/A N/A N/A
FoodPanda Location N N/A N/A N/A
McDonald Location N N/A N/A N/A
myEnv Location N N/A N/A N/A
MyTransport Location N N/A N/A N/A

4.3 Discussions, Related Work & Future Work
Recently, Apple introduces App Privacy Report to let users know
which and when permissions have been accessed by which apps
[10]. Google also introduces a new privacy dashboard to help in-
crease permissions transparency [11]. However, in both of IOS 15
and Android 12, users can only see the usage reports but cannot
have fine-grained controls. Other manufacturers like Xiaomi and
Huawei provide ROM-based solutions, using customized permis-
sion managers [12, 13]. However, they do not have widget-level
control either. Root-based solutions are available, but are not con-
venient for end users to root their phones [14, 15, 16]. In

comparison, UIPDroid has the advantages that it is root-free, pro-
vides more fine-grained widget-level control for better user
awareness. On the other hand, its implementation has the follow-
ing limitations.

Limited Permission Hooks. Many other permissions for vari-
ous sensitive data, such as body sensors, accounts, call logs, etc.
need fine-grained control too. More types of UI widgets can inter-
act with users and stipulate permission uses. UIPDroid can hook
more such places automatically in the future, although it may need
more customization efforts for faking different types of data.

VirtualXposed Capabilities. VirtualXposed does not need root
privileges, but thus cannot provide system-level operations when
sandboxing apps, which may be the main reason for load failures
in Table 1. Better app virtualization techniques are interesting fu-
ture work for broader application of UIPDroid.

Permission Decision Databases. For a hooked point, UIPDroid
allows permission decisions according to either users' choices or
imported settings. This opens the possibility for UIPDroid to uti-
lize crowdsourced shared permission settings [8] to reduce users'
decision burdens and improve the privacy protection ecosystem.

5 Conclusion
We design and implement a fine-grained widget-level permission
controller for managing permissions used in Android apps. It is
built on the VirtualXposed framework without root privileges,
making it easy for any end user with basic Android app
knowledge to use our tool. Its current implementation monitors
apps' every use of Contact and Location permissions and links the
uses to UI widgets with respect to basic privacy-by-design and UI
principles; then, it informs users of the permission uses and denies
or fakes the data if chosen to. Furthermore, it provides interfaces
for users to manage permission settings and review permission
usage logs to enhance their awareness of the private data uses by
apps. Finally, we evaluate the effectiveness of our tool based on a
set of popular apps and highlight possibilities for future work.

6 Acknowledgment

This work is supported by the National Research Foundation Sin-
gapore, under the National Satellite of Excellence in Mobile
System Security and Cloud Security (NRF2018NCR-NSOE004-
0001).

References

[1] M. V. Kleek, I. Liccardi, R. Binns, J. Zhao, D. J. Weitzner and N.

Shadbolt, "Better the Devil You Know: Exposing the Data Sharing
Practices of Smartphone Apps," in CHI Conference on Human
Factors in Computing Systems, 2017.

[2] Google, "Request app permissions," [Online]. Available:
https://developer.android.com/training/permissions/requesting.

[3] A. F. Westin, "Social and Political Dimensions of Privacy," Journal
of Social Issues, vol. 59, no. 2, pp. 431-453, 2003.

[4] A. Cavoukian, "Privacy by design," Identity in the Information

UIPDroid ICSE 2022, May, 2022, Pittsburgh, PA, USA

5

Society, vol. 3, no. 2, pp. 247-251, 2010.

[5] B. Shneiderman, C. Plaisant, M. S. Cohen, S. Jacobs, N. Elmqvist
and N. Diakopoulos, Designing the User Interface: Strategies for
Effective Human-Computer Interaction, Pearson, 2016.

[6] J. I. Hong and J. A. Landay, "An architecture for privacy-sensitive
ubiquitous computing," in 2nd international conference on Mobile
systems, applications, and services (MobiSys), 2004.

[7] J. Colnago, Y. Feng, T. Palanivel, S. Pearman, M. Ung, A. Acquisti,
L. F. Cranor and N. Sadeh, "Informing the design of a personalized
privacy assistant for the internet of things," in CHI Conference on
Human Factors in Computing Systems, 2020.

[8] Y. Agarwal and M. Hall, "ProtectMyPrivacy: detecting and
mitigating privacy leaks on iOS devices using crowdsourcing," in
11th annual international conference on Mobile systems, application,
and services (MobiSys), 2013.

[9] weishu, "VirtualXposed," [Online]. Available:
https://github.com/android-hacker/VirtualXposed.

[10] Apple, "Apple advances its privacy leadership with iOS 15,"
[Online]. Available:
https://www.apple.com/sg/newsroom/2021/06/apple-advances-its-
privacy-leadership-with-ios-15-ipados-15-macos-monterey-and-
watchos-8/.

[11] S. N-Marandi, "What’s new in Android Privacy," 18 May 2021.

[Online]. Available: https://android-
developers.googleblog.com/2021/05/android-security-and-privacy-
recap.html.

[12] Xiaomi, "Privacy at Xiaomi," [Online]. Available:
https://privacy.miui.com/en/#/.

[13] Huawei, "Permission Management," [Online]. Available:
https://consumer.huawei.com/en/support/content/en-us06515308/.

[14] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong and Y. Agarwal,
"Does this App Really Need My Location? Context-Aware Privacy
Management for Smartphones," ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 1, no. 3, pp. 1-22, 2017.

[15] Z. Alkindi, M. Sarrab and N. Alzidi, "CUPA: A Configurable User
Privacy Approach For Android Mobile Application," in 7th IEEE
International Conference on Cyber Security and Cloud Computing
(CSCloud)/6th IEEE International Conference on Edge Computing
and Scalable Cloud (EdgeCom), 2020.

[16] M. Bokhorst, "XPrivacyLua," [Online]. Available:
https://github.com/M66B/XPrivacyLua.

