
Learning Fine-Grained Structured Input for

Memory Corruption Detection

Lei Zhao1,2, Debin Gao2, Lina Wang1

1 Computer School of Wuhan University, Wuhan, China
2 School of Information Systems, Singapore Management University, Singapore

zhaolei.whu@gmail.com, dbgao@smu.edu.sg, lnwang@whu.edu.cn

Abstract. Inputs to many application and server programs contain rich
and consistent structural information. The propagation of such input in
program execution could serve as accurate and reliable signatures for de-
tecting memory corruptions. In this paper, we propose a novel approach
to detect memory corruptions at the binary level. The basic insight is
that different parts of an input are usually processed in different ways,
e.g., by different instructions. Identifying individual parts in an input
and learning the pattern in which they are processed is an attractive
approach to detect memory corruptions. We propose a fine-grained dy-
namic taint analysis system to detect different fields in an input and
monitor the propagation of these fields, and show that deviations from
the execution pattern learned signal a memory corruption. We imple-
ment a prototype of our system and demonstrate its success in detecting
a number of memory corruption attacks in the wild. In addition, we eval-
uate the overhead of our system and discuss its advantages over existing
approaches and limitations.
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1 Introduction

Memory corruption exploits usually involve overwriting significant memory seg-
ments such as return addresses and function pointers [21]. Typical memory cor-
ruption exploits include control-hijacking attacks (e.g., [10]) and non-control
data attacks (e.g., [8]). Despite having a long history, memory corruption ex-
ploits are still one of the biggest challenges to computer security [19].

Many techniques have been proposed to fight against memory corruption
exploits, e.g., secure language [20, 14], bug detection [17], safe library [25], bounds
checking [26], etc. Some of these techniques require access or even changes to the
source code (e.g., [3, 7, 20, 14]), which might not be suitable when dealing with
commercial off-the-shelf applications. Dynamic approaches which do not require
source code of the program include canary-based techniques [10], probabilistic
defenses [4], runtime enforcement [25], dynamic taint analysis [21], control flow
integrity [2], etc. These binary-level techniques are powerful and efficient against
many attacks, however they also suffer from some limitations [3]. For example,



dynamic tainting such as TaintCheck cannot detect non-control data attacks [21].
Pointer tainting [18] may result in a large number of false alarms because of
legitimate use of input as pointers [23].

In this paper, we investigate how fine-grained taint analysis and propaga-
tion of program inputs could fight against memory corruptions. Program inputs
usually contain rich structural information, which has been shown to be useful
in a number of security applications [13, 16]. Intuitively, programs usually parse
an input into various fields, which contain independent semantics and are sub-
sequently processed by different instructions [6, 15]. A consistent and reliable
pattern on the fine-grained structure of an input and the corresponding process-
ing of it by different instructions could be used to capture normal execution of
the program, since memory corruption exploits usually violate program seman-
tics, e.g., the overflowed bytes are not processed by intended instructions. Thus
the processing of exploits may not be consistent with that in benign executions.
With this observation, memory corruptions could be detected by monitoring
deviations of program execution from the pattern of input processing.

There are some difficulties in realizing such an intuition. First, the fine-
grained structural information of the input might not be known. This could
be due to a proprietary protocol used or lack of documentation. Moreover, even
if a protocol description is available, it is usually not implementation specific,
which might introduce noise to the detection (e.g., two independent fields in
an input might be processed by the same instructions in a similar way in an
optimized implementation). Second, it is unclear how to model the propagation
and processing of the fine-grained structural input and to define patterns to
catch the deviations. Third, existing dynamic tainting systems do not support
the monitoring of fine-grained structural inputs.

We propose a novel technique called FiGi to monitor fine-grained input infor-
mation for detecting memory corruptions. FiGi extends existing dynamic taint
systems to enable precise monitoring of the propagation of individual input bytes
(and their corresponding taint tags) during program executions. It learns and
extracts structural information in program inputs by analyzing the execution
context of every input byte. To normalize the input structures for specific in-
puts, FiGi uses a tree structure to model the input as well as its propagation
in program executions, and constructs normal patterns by monitoring benign
executions of the program. We implement FiGi and demonstrate its success in
detecting a number of memory corruption exploits in the wild, include both
control-hijacking and non-control data attacks. We additionally evaluate the
overhead in using FiGi, and discuss its advantages over existing dynamic tech-
niques in detecting memory corruption exploits as well as its limitations.

2 Related Work

The closest related work to FiGi is dynamic taint analysis which has been pro-
posed to detect attacks, to diagnose vulnerabilities, and to generate attack signa-
tures. TaintCheck [21] detects attacks that overwrite return addresses, function



pointers, format vulnerabilities, and in general control-related memory corrup-
tions [8]. Pointer tainting detects non-control data attacks [18], but over-tainting
causes a large number of false alarms [23]. FiGi differs from these existing dy-
namic tainting systems in the granularity of tainting in that FiGi assigns a
different taint tag to each individual byte of the input and monitors the prop-
agation of every taint tag. As we will show in Section 5, FiGi is able to detect
both the control-hijacking attacks and non-control data attacks.

Clause et al. proposed tainting memory allocation to improve memory safety [9,
12]. Instead of tainting the input of the program, they taint the memory seg-
ments and the corresponding pointers for dynamic memory allocations on the
heap and stack. However, a drawback of their approach is that compiler opti-
mization may consolidate multiple memory regions (especially for local variables)
into a single allocation request, which hides the granularity required for effective
detection of memory corruptions. FiGi, on the other hand, does not suffer from
this limitation because our tainting is fine-grained and not limited to memory
allocations.

A key step in FiGi is to learn the structure of inputs, which is closely re-
lated to protocol reversing [6, 15]. FiGi employs a similar idea as these protocol
and format reversing techniques. However, the different scenarios in which the
recovered structure is used pose very different requirements on the discovery of
the input structure. FiGi uses the input structure to detect memory corruptions
exploits, which requires very fine-grained input structure to be learned; on the
other hand, protocol and data structure reversing could benefit from grouping
multiple fields of the input together as long as the execution context is simi-
lar [15].

3 A Motivating Example and the Challenges

In this section, we present a motivating example to demonstrate the idea of FiGi
as well as the challenges involved.

232   char ifname[MAX_PATH_LEN]; /* input file name */

233   char ofname[MAX_PATH_LEN]; /* output file name */

756   if(make_ofname() != OK) return; 

757   ifd = OPEN(ifname, ascii && !decompress, RW_USER); 

1072   local int make_ofname() { 

1076   strcpy(ofname, ifname); //memory corruption

Fig. 1. A motivating example of vulnerable gzip

Fig. 1 shows a vulnerable code segment of gzip-1.2.4 with an unsafe string
copy from ifname to ofname. If the length of the filename (part of the input)



is larger than 1024 bytes, strcpy will result in an overflow of the buffer for
ofname. Note that FiGi works on the binary level. The source code and the
corresponding memory layout of variables in Fig. 1 and Fig. 2 are presented
for clearer explanation only. FiGi does not need to know anything about the
high-level symbols such as ifname and ofname.
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Fig. 2.Memory layout of gzip. 0x807f680, 0x807fa80 and 0x807faa0 are the beginning
memory addresses of ifname, part nb and ofname, respectively.

We first examine what FiGi could learn from the fine-grained structural input
in benign executions of gzip, when each byte of the command line input to
gzip is assigned a different taint tag. Fig. 2(a) shows a portion of the memory
layout in one particular execution of gzip, and we can see that each byte on
the stack comes with a unique taint tag. At a closer look into the instructions
processing the tainted input, we also realize that the tainted input bytes are
stored into two buffers of which the memory addresses start from 0x807f680

and 0x807faa0, respectively. Moreover, the bytes are all processed by the same
instructions (strcpy and open) continuously during program executions. That
is, the tainted input is processed as one unit. Therefore, FiGi could derive that
the entire input contains only one field (see Fig. 2(b)).

To see the advantage of monitoring the fine-grained structural input, we
consider a typical memory corruption exploit with inputs of 1200 bytes long
at offset 0–1199 as shown in Fig. 2(c). When the input is longer than 1056
bytes, the unsafe string copy will overwrite segments of part_nb (the memory



address starts from 0x807fa80) and ifname (the memory address starts from
0x807faa0). Bytes with tags 1056–1199 would be accessed when open executes.
FiGi would realize that the input portion with offset 1056–1199 is accessed by
two instructions, namely open and strcpy, while the input portion with offset
0–1055 is accessed by strcpy only. Given the assumption that the input fields
contain independent semantic and are subsequently processed by different in-
structions, from the exploit execution, the two portions with offset 1056–1199
and 0–1055 form two independent fields. This constitutes a deviation from what
FiGi had learned from training of gzip, and triggers an alarm. Note that this
deviation could not have been detected without a fine-grained monitoring of the
structural input. Also note that such a memory corruption cannot be detected
by TaintCheck [21] because tainted data does not change any function pointers
or format characters.

Although this motivating example shows some intuition as to how the fine-
grained structural input and its propagation during program executions could
help detecting memory corruptions, there are some challenges we face.

1. The structural information of the input might not be known, either due to a
proprietary protocol in use or lack of documentation. FiGi assumes that the
only information available is the binary program as well as some training
inputs. Therefore, we need to design FiGi in such a way that the structural
information is learned via training.

2. It is unclear how to best model the propagation and processing of the fine-
grained structural input to catch memory corruptions and to minimize false
alarms. As we shall explain in the next section, FiGi keeps multiple patterns
for each program to minimize false alarms.

4 System Design

4.1 Patterns and Deviations

We design two types of patterns in FiGi based on the observations that 1) the
input structure is well-defined and consistent; and 2) fields accessed by different
instructions are independent of one another. With these two observations, we
capture the independent fields and the input structures. At the same time, for
each independent field, we capture the execution context in which the field is
processed as well.

Definition 1. An independent field of the input consists of several continuous

bytes which are always accessed as one unit in the program execution.

Definition 2. The accessing location of an independent field is the program

execution context accessing the bytes of this field, which include the current call

stack as well as the accessing instructions.

With the two patterns, a program execution processing one input could be
represented as follows.



Definition 3. An input processing is denoted as R(i) = 〈S,F,E〉. In this for-

mula, R(i) refers to the program execution with the input i. S refers to the struc-

ture of i. F = {f1, f2, ..., fn} refers to the set of fields. E = {e1, e2, ..., em} refers

to the set of accessing locations.

The input structure is specific with i (e.g., the offset interval of fields). With
this impact, the field sets cannot be directly compared, and a normalized repre-
sentation is required to generally represent the structured input. We will demon-
strate this part in Sec. 4.5. Beside, there are mapping relationships between F

and E. fi is mapped with with more than one ej , which indicates that one field
could be accessed by several execution contexts, respectively.

For an unknown execution R(i), the deviation is detected if 1) S is not
matched with any of benign inputs, or 2) even S is matched, but the ej of
fi cannot be matched. The first condition makes sense because the abnormal
execution violates the input structures due to the misuse of corrupting bytes
by unintended instructions. However, it is possible that the exploit could break
and interrupt the input parsing, especially when the program is control hijacked
and jumps to illegal instructions. These cases are common in multiple vulnera-
ble programs (e.g, AT-Tftp, ghttpd in Sec. 5). As a result, we could only get a
partial structure and the difference of structures may not be clear. In such cases,
the second condition makes sense because a specific fields can only be accessed in
several specific accessing locations. In Sec. 5.2, we will use the ghttpd program
to illustrate.

4.2 Overview

As demonstrated in Sec. 3, we cannot expect the structural information of in-
puts is known, and we need to extract and learn patterns on input processing
from benign executions. To overcome these challenges, the basic idea of FiGi is
to model the propagation and processing of the fine-grained structured input
through dynamic execution monitoring. Fig. 3 shows an overview of FiGi.

1. We adopt the dynamic taint analysis to dynamically monitor the program
executions as well as the propagation of inputs. In addition, we extend the
dynamic taint analysis to enable precise monitoring of the propagation of
individual input bytes (and their corresponding taint tags), such fine-grained
propagation could be used to capture the structured input.

2. To model the input processing and learn some patterns, we identify fields of
the input via execution context comparison. This approach is similar with
the protocol/format reversing techniques [15], except the difference that the
field identification is performed online for the purpose of emergency responses
to memory corruption attacks. Moreover, for exploits, the input structure
may not be sufficient for deviation detection, because the memory corrup-
tion attack could break and interrupt the input parsing, from which the
deviation cannot be observed and lead to false negatives. For effectiveness
enhancement, we also collect the corresponding processing contexts for each
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Fig. 3. The overview framework of our model

independent field based on the intuition that one field could be accessed in
several specific execution contexts.

3. The identified fields are represented by the taint tags of a specific input.
Since some fields are not length-fixed and some fields are optional, we need
a normalized representation of structural inputs to compare the structures
and figure out the deviations. We design to use the tree structure to model
the structured input based on the observation that the input is processed
subsequently and the input parsing looks like the construction of a tree.

4. By analyzing the execution context and identifying fields of benign execu-
tions, we generate patterns of the input processing and propagation, and
use them to detect the deviation of executions with unknown inputs. The
deviation detection is performed online. In details, we dynamically analyze
the execution context and the propagation of fine-grained structured inputs
to identify fields and collect patterns, whenever a field is identified, update
R(i) and perform deviation detection on R(i) with trained ones.

4.3 Execution Monitoring and Context Tracking

To monitor the propagation of inputs and precisely capture the execution con-
text, we extend the dynamic tainting [21, 6] to give each byte a unique taint tag.
The taint tag includes two items, the taint source and the taint offset, which refer
to the source of the input and the byte offset, respectively. Among the taint prop-
agation, we make the destination operand has the union taint record for multiple
source operands. For example, suppose the instruction is ADD %eax, %ecx. The
taint records of %eax and %ecx are {1001, 3} and {1001, 7}, respectively. After
the execution, the taint record of %ecx will be {{1001, 3}{1001, 7}}.

During execution monitoring, we record two types of execution context in-
formation: the run-time call stack and the address of instructions that access
tainted bytes [15]. To acquire the run-time call stack, we monitor the the func-
tion call and return instructions, as well as the stack frame balancing. For each



taint byte, we make every tainted instructions as well as the call stack to form
an execution sequence of this taint byte. Then we compare the execution se-
quences of taint bytes with continuous offsets, if the execution sequences could
be matched, we regard the continuous bytes belong to the same field.

4.4 Identifying Fields and Collecting Patterns

Algorithm 1: Identifying Fields

Data: InstAddr(tb): the instruction address accessing the taint byte tb
Data: ExecSeq[index]: the data structure storing the execution sequences
Data: ExecSeq[index][tb]: the execution sequence of the taint byte tb
Result: 〈 offset intervals, accessing locations 〉
while instruction i do1

if i is tainted then2

for taint byte tb in i do3

Insert InstAddr(tb) into the ExecSeq[index][tb];4

end5

end6

Call Stack Analysis;7

if call stack changes and a function returns then8

ContextComparison(ExecSeq[index]);9

// compare the execution sequences and identify fields

delete ExecSeq[index];10

index−−;11

end12

if call stack changes and a function starts then13

index++;14

ExecSeq[index] = new ExecSeq;15

end16

end17

In the dynamic protocol reversing techniques, the execution context analysis
are performed off-line [6] and the inputs are assumed benign [6, 15]. For our
problem scope, we cannot wait for the program to exit and should sponsor quick
response to the anomaly as early as possible. That is, the execution context
comparison and identifying fields should be performed online.

To identify fields online, an intuitive approach is to compare the execution
context of a captured taint byte with those of its continuous bytes whenever
the taint byte is captured. However, the taint bytes are dynamically processed
and the order of accessed taint bytes is an undecided problem (e.g., the program
could access another field such as a separator between the period of accessing two
continuous bytes). To overcome the problem, we design to perform the context
comparison whenever a function returns that causes the call stack changes. For



every calling of a function, we allocate a data structure to store the execution
sequences of taint bytes which are accessed within the current call stack. When
a function returns, we compare the execution context for the bytes that are
only processed in this function, and the offset interval could be identified. The
algorithm is shown in Algorithm 1.
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Fig. 4. The execution trace of the vulnerable gzip. The header refers to taint tags of
input bytes, the left column refers to the call stacks, and the hex numbers refer to the
address of instructions accessing the taint bytes.

This scheme leads to little impact on the effectiveness of identified fields but
a little impact on the detection of memory corruptions. First, it is rarely that
several parts of one field are processed with different functions. Second, memory
corruption attacks could only be detected when the call stack changes, which
causes a little delay.

Whenever a field is identified, we record the current call stack as well as the
instruction address accessing this field, and make them as the accessing location
of this field. Note that the field could be accessed by several instructions, we
only regard the current call stack and the beginning instruction address as the
accessing locations.

We still take the gzip example for detailed illustration. Fig. 4 shows a seg-
ment of execution contexts. When the program calls strcpy, we create a new
object of data structure to store the execution sequences for every taint byte.
Among the instructions of strcpy, we record the tainted instructions, and in-
sert the instructions into the execution sequences of taint bytes. When strcpy

returns, we find that the taint bytes share the same execution context and then



are grouped as one unit in strcpy. The field with the offset interval [0, 1199]
(the length of the exploit is 1200) is identified. Another call stack is captured
when program calls open. The bytes from offset 1056 to 1199 are accessed by
the instructions of which the addresses are b7e8d283, b7e8d28a, and b7e8d28e.
But the bytes from offset 0 to 1055 are not accessed in this function. As a result,
a new field of which the offset interval is [1056, 1199] is identified.

For the two fields identified in this trace segment, [0, 1199] and [1056, 1199],
the accessing locations identifying these two fields are shown in Fig. 5. The
two fields are accessed by several instructions, we only record the beginning
instruction addresses as the accessing locations.

8051114 -> 804950d -> 8049a65 -> 804a2a6 -> b7e8cda0

/* main  -> treat_file -> make_ofname -> strcpy */

offset interval

8051114 -> 804950d -> 8049a89 -> b7e8d283

/* main  -> treat_file -> open */

0-1199

execution context

1056-1199

Fig. 5. The accessing locations identifying the two fields

4.5 Structure Normalization

The identified fields are represented with the offset intervals. These offsets are
specific to an input, because the values of some fields are user-defined and not
every fields is length-fixed. For two inputs, the offset intervals are likely not
identical and cannot directly to compare. We need to normalize the specific
offsets with an abstract structure.

The tree structure is a well fit data structure to represent the input formats
because the input could be a flatten or hierarchical structure [6, 15]. In our
approach, we also employ the tree to normalize the structures of specific inputs,
where nodes refer to the fields and edges refer to the flatten or hierarchical
relationships.

During online monitoring and detection, the tree is dynamically built and
initialized with a root node. Whenever a new field is identified, we search its
parent node of which the offset interval is the smallest yet covers the offset
interval of the new field, and then insert a new node into the tree as a child
node of its parent node. If no parent is found, we will make the root node as the
parent node. At the same time, for a parent node has several child nodes, we
order these child nodes with a increasing order of their offset interval.



Table 1. Vulnerable Programs

Programs Published Date Vulnerable Description Detected

3CTfpdSvc-0.11 2006-05 stack overflow
√

AT-Tftp-1.9 2008-05 stack overflow
√

knftpd-1.0.0 2011-10 stack overflow
√

tftpd32-2.21 2010-09 format string
√

nginx-0.6.38 2010-08 heap overflow
√

wu-ftpd-2.6.0 2001-01 format string (non-control)
√

ghttpd-1.4.3 2002-10 stack overflow (non-control)
√

floatFTP 2011-09 stack overflow (ROP attack)
√

gzip-1.2.4 2002-06 stack overflow (DoS)
√

5 Implementation and Evaluation

We implement FiGi on the platform of Bitblaze [24]. TEMU, the taint tracking
component of Bitblaze, develops sophisticated data structures on the QEMU
and could be very slow with an overhead at several hundreds [24].

Bitblaze uses shadow memory and a data structure of taint record to repre-
sent the taint tags for every bytes. FiGi extends the data structure of such taint
record to an array to store the multiple tags, and modifies the taint propaga-
tion for instructions with multiple source operands. Compared with the original
Bitblaze, the performance of FiGi is impacted by a litter larger memory move-
ment of taint records and the multiple taint propagation for instructions that
have multiple tainted source operands. FiGi results in the similar overhead as
Bitblaze.

The off-line training is a stand-alone program that is performed on the exe-
cution traces collected from FiGi. The online monitoring, context analysis, and
deviation detection are implement as a plugin of TEMU. Both the off-line training
and online monitoring are implemented in C++ with about 3000 lines of code.

5.1 Evaluation on Attacks

We select several vulnerable programs to evaluate the effectiveness of FiGi. The
selected programs are shown in Table 1. The exploits of vulnerable programs
cover memory corruptions on stacks, format strings, and heaps. The execution
of such exploits could result in both control-hijacking and non-control data at-
tacks. In addition, we also select an attack exploit based on the Return-Oriented
Programming (ROP), which is a research focus during recent years, and a DoS
attack of which the memory corruption could lead the program to crash but
hard to exploit.

As shown in Table 1, FiGi could detect all these memory corruptions. In
general, memory corruptions are the root-cause of control-hijacking, non-control
data attacks, and many memory errors. The approach behind FiGi is to detect



the misuse of user inputs by unintended instructions. Therefore, we claim that
FiGi is transparent to the type of attacks, no matter the memory corruption is
used for control-hijacking, non-control data attacks, or just deny of service.

5.2 A Case Study

We use an example to show a case study on how FiGi works to detect both
the control-hijacking and non-control data attacks. There is a stack overflow
vulnerability in the log() function in ghttpd-1.4.3. This vulnerability could
be triggered when the GET package contains too many bytes. In [8], Chen et al.
proposed a non-control data attack to overwrite a significant pointer and force
the program to execute the “\bin\sh”. We use both control-hijacking exploit
and non-control exploit to compromise this program.

0

exploit: GET {shellcode}\x30\x83\x82\xbf\x30\x83\x82\xbf..

322-325

0-360

/*804a497*/

1 2 326-329

804a497 pop    %ebx T1{(10000, 322);(10000, 323);(10000, 324);(10000, 325);} 

804a498 pop    %esi T1{(10000, 326);(10000, 327);(10000, 328);(10000, 329);} 

804a499 pop    %edi T1{(10000, 330);(10000, 331);(10000, 332);(10000, 333);}

804a49a pop    %ebp T1{(10000, 334);(10000, 335);(10000, 336);(10000, 337);}

804a49b ret    T1{(10000, 338);(10000, 339);(10000, 340);(10000, 341);}

330-333

/*804a499*/

334-337

/*804a498*/ /*804a49a*/

338-341

/*804a49b*/

Fig. 6. The detection of the control-hijacking attack on ghttpd. T1 refers to tainted,
and T0 refers to non-tainted. The taint tags of individual byte are separated with “;′′.
Each taint tag is represented as (source, offset), where source refers to the input
source and offset refers to the offsets of every bytes.

Let us first examine the control-hijacking attack shown in Figure 6. We ob-
serve that operands of these 5 instructions are tainted. By comparing execution
contexts, 5 fields are identified ([322, 325], [326, 329], [330, 333], [334, 337], and
[338, 341]), of which the accessing locations are 804a497, 804a498, 804a499,
804a49a, 804a49b. After the normalization, we compare the pattern of the ex-
ploit with trained ones and find that the accessing locations of the 5 fields are
never present in the benign executions.

During the non-control attack, as shown in Figure 7, the exploit only over-
writes the value of ebx and esi. FiGi detects that 2 fields are identified and
their accessing locations are not present in benign executions.

Note that the execution of log() function is much earlier before the ghttpd
parsing the entire GET request package, thus the tree structure at this moment is
simple. However, the tree structure of a benign input is much more complicate,



0

exploit: GET AA…AA\x3c\x83\x82\xbf /cgi-bin/../../../../bin/sh

322-325

0-329

/*804a497*/ /*804a498*/

1 2 326-329

804a497 pop    %ebx T1{(10000, 322);(10000, 323);(10000, 324);(10000, 325);} 

804a498 pop    %esi T1{(10000, 326);(10000, 327);(10000, 328);(10000, 329);} 

804a499 pop    %edi T0

804a49a pop    %ebp T0

804a49b ret    T0

Fig. 7. The detection of the non-control data attack on ghttpd.

and a similar result could be seen in [15]. There is no difference between this
partial tree structure and a benign tree because this partial tree is a sub-tree
of that. The deviation in this example is detected by matching the accessing
locations.

5.3 False Negative and False Positive

In our experiments, we encounter no false negatives. It means that we missed
no attacks among these control-hijacking, non-control data attacks, and memory
corruption errors. Among these attacks, all the exploits try to overwrite some
significant data structures, including the internal data structures (such as the
return addresses) and significant variables. After the corruptions, some bytes
would further be misused by unintended instructions, which may lead to the
deviation of input structures or the deviation of execution context for a specific
field of user input. These anomalies could be captured by the patterns of input
processing. However, there is no guarantee that the false negatives will not occur.

The false positives is a big challenge in FiGi. The main reason to arise false
positive is the coverage. That is, if the coverage is not sufficient, then we could
miss some input processing patterns. For example, record sequences [11] are
common in some user inputs such as images, videos and others. Generally, the
processing of such sequences will be a loop. In such cases, the number of loop
paths is large and hard to be full covered, and FiGi may generate false positives
for benign executions covering untrained paths.

In addition, there is no close relationships between the input structure and
the execution paths. Inputs with the same structure but different values of fields
could also generate different patterns. This scenario is not rare because some
significant input values could affect the program behaviors. We are interested in
the training overhead of inputs with identical structures. In the two case studies,
we only change the value of some fields but keep the structure unchanged, and
then construct 8 benign inputs for gzip and nginx, respectively. The training



overhead is shown in Fig. 8, and the numbers of trained patterns are 3 and 4,
respectively.
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Fig. 8. The training overhead of the gzip and nginx

5.4 Comparison with Peer Techniques

We perform a theoretical comparison between FiGi and peer techniques on their
abilities to detect attacks. Since FiGi works on the binary level, we just select
peer techniques works on binaries (e.g., TaintCheek [21], PointerTainting [18],
CFI [2], Clause2007 [9, 12]) and transparent protection systems (e.g., Stack-
Guard [10], Data Execution Protection (DEP for short) [1], ALSR [4]).

Table 2. Comparison with Peer Techniques

Attacks
Performance Errors

S(C) F(C) H(C) F(N) S(N) H(N) ROP DoS

StackGuard [10]
√ • • × × × • × ≈ 1x FN

DEP [1]
√ √ √ × × × × × ≈ 1x FN

ALSR [4]
√ √ √ √ √ √ • • ≈ 1x FN

TaintCheck [21]
√ √ √ × × × √ × 1.5x-30x FN

PointerTaint [18]
√ √ √ √ √ √ √ × 1.5x-30x FP/FN

CFI [2]
√ √ √ × × × √ × 1x-2x FN

Clause2007 [9, 12]
√ √ √ √ √ √ √ • 1x-500x FN

FiGi
√ √ √ √ √ √ √ √

100x-1000x FP

In Table 2, we list the control-hijacking and non-control data attacks which
may be caused by stack overflow, format string, and heap overflow. For short



representation, we use S, F, H to denote the stack overflow, format string vulner-
ability, and heap overflow, respectively. We use C and N to denote the control-
hijacking and non-control data attacks, respectively. The symbol S(C) refers to
the control-hijacking attacks caused by stack overflow. Other symbols could be
similarly explained. In addition, we also select ROP and DoS memory corrup-
tions as comparison features. ROP could be caused by stack overflow, format
string, and heap overflow, and in Table 2, we just use ROP to represent attacks
passing DEP.

In Table 2, we use
√
, ×, • to denote that the attack can be detected, can-

not be detected, and uncertain. • means the protection mechanism may have
variants, which could be the improvement of previous techniques, or a differ-
ent implementation. Attacks could be detected by some of them, but may not
be detected by other variants. For example, StackGuard [10] places a hard-to-
predict canary before the return address on the stack, which could detect stack
smashing but cannot detect control-hijacking attacks caused by format string
and heap overflow. As an improvement, StackShield protects the stack by copy-
ing the return address to a “secure” location. Some ASLR [4] only randomize
the load memory but keep the relative addresses un-randomized, than it can-
not detect the memory corruptions between variables (e.g., wu-tftp and gzip).
As an improvement, some fine-grained ASLR could also randomize the relative
addresses (e.g., ASLR through binary transformation [4]), which could mitigate
more attacks. As we discussed in Sec. 2, Clause2007 [9, 12] may lose its ability
for non-control memory corruptions if the symbol table is unavailable.

FiGi could detect all these memory corruptions based the consistent and
reliable foundation that memory corruption exploits violate the program seman-
tics, leading some input bytes being misused by unintended instructions, and
the anomaly could be captured through patterns on the input processing. We
encounter no false negatives (FN for short in Table 2), but other peer techniques
could result in false negatives more or less. It means that FiGi misses the least
number of attacks. However, FiGi could result in false positives (FP for short in
Table 2).

From Table 2, we could also observe that performance is the shortage of FiGi.
The transparent protections are very fast. The prototype of TaintCheck [21]
could result in the overhead about 30x. Recent advances on dynamic taint anal-
ysis could reduce the overhead to 1.5x [5]. There is no quantified performance in
PointerTainting [18], but it should has the similar overhead with dynamic taint
analysis. The overhead of CFI is about 1x-2x. The Clause2007 [9, 12] prototype
based on software emulation could cause the overhead of 100x-500x, and the
improved overhead with hardware-assistant is about 1x-2x. We build FiGi on
TEMU [24], of which the overhead is more than several hundreds. To improve
the performance, several optimizations could be used, such as simplifying taint
tracking instructions [22], designing novel memory layout to reduce the overhead
caused by taint propagation [5], faster emulator [5], and hardware assistant [12].
Although these optimizations may not be directly used, we could learn from
these and design similar schemes.



6 Limitations and Discussions

In this paper, the fields mainly include semantic independent units, and we do
not recognize the higher level data types. For the complex and higher level data
types such as structs and unions, every item in the struct or union is treated as
one independent field, if each item is processed as one unit among the execution.

Comparing the execution contexts could lead to over-fine granularity [15].
For example, strcmp could return after accessing the first few bytes. In such
cases, the first few bytes will be regarded as one field and FiGi may divide the
string into several parts. Fortunately, such over-fine granularity shall occur in
all executions, both benign and abnormal ones. Therefore, this limitation bring
little noise to the deviation detection.

7 Conclusion

In this paper, we propose a novel approach FiGi to detect memory corruptions
at the binary level. FiGi identifies individual parts in an input and learns the
pattern in which they are processed. We implement a prototype of FiGi and
demonstrate its success in detecting a number of memory corruption attacks
in the wild. The experiments shown that FiGi is effective to detect memory
corruptions.
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