
Walls Have Ears: Eavesdropping User Behaviors
via Graphics-Interrupt-Based Side Channel

Haoyu Ma1,2, Jianwen Tian1, Debin Gao1, and Chunfu Jia3?

1 Singapore Management University, Singapore 188065
{hyma,jwtian,dbgao}@smu.edu.sg

2 Xidian University, Xi’an, P.R. China 710126
3 Nankai University, Tianjin, P.R. China 300350

cfjia@nankai.edu.cn

Abstract. Graphics Processing Units (GPUs) are now playing a vital
role in many devices and systems including computing devices, data cen-
ters, and clouds, making them the next target of side-channel attacks.
Unlike those targeting CPUs, existing side-channel attacks on GPUs ex-
ploited vulnerabilities exposed by application interfaces like OpenGL and
CUDA, which can be easily mitigated with software patches. In this pa-
per, we investigate the lower-level and native interface between GPUs
and CPUs, i.e., the graphics interrupts, and evaluate the side channel
they expose. Being an intrinsic profile in the communication between
a GPU and a CPU, the pattern of graphics interrupts typically differs
from one GPU workload to another, allowing a spy process to monitor
interrupt statistics as a robust side channel to infer behavior of other pro-
cesses. We demonstrate the practicality of such side-channel exploitations
in a variety of attacking scenarios ranging from previously explored tasks
of fingerprinting the document opened and the application launched, to
distinguishing processes that generate seemingly identical displays. Our
attack relies on system-level footprints rather than API-level ones and
does not require injecting any payload into the GPU resource space to
cause contentions. We evaluate our attacks and demonstrate that they
could achieve high accuracy in the assumed attack scenarios. We also
present in-depth studies to further analyze the low-level rationale be-
hind such effectiveness.

Keywords: Side-channel attacks · GPU · Graphics interrupts · Machine
learning.

1 Introduction

Graphics Processing Units (GPUs) have become increasingly important compo-
nents for today’s computing devices, not only because applications may involve
heavy graphics and multi-media workloads, but also because of the capabil-
ity of GPUs in accelerating applications in domains such as security, computa-
tional finance, and bio-informatics [9]. Such development naturally makes GPUs
a tempting target to attacks aiming to leak user privacy.

? Prof. Chunfu Jia is the corresponding author of this paper.



2 H. Ma et al.

Several vulnerabilities have already been demonstrated in GPU security [13,
15, 18, 23, 32, 19], most of which focused on vulnerabilities caused by defective
memory management and privacy-leaking APIs from GPU-related frameworks
OpenGL, OpenCL, and CUDA. This includes the latest work on GPU side chan-
nel attacks [19] which demonstrated the practicability of exploiting resource
tracking APIs provided by the aforementioned frameworks to leak user privacy.
These previous attacks typically require injecting an attack process into the
same GPU where the victim process resides, and running it in parallel with the
victim process in order to capture any footprints it leaves. Although not hav-
ing been explicitly admitted in existing work, such an attack strategy is not
subtle enough considering that a defense opponent could potentially be able
to detect the attacks by identifying the existence of their co-residing attack
processes. In addition, with the GPU side-channel attacks drawing people’s at-
tention, corresponding defense approaches against GPU memory leakage were
also proposed [21, 29]. Manufacturers like Nvidia were also reported to be taking
actions to mitigate the resource tracking vulnerability [20].

In this paper, we consider a less demanding threat model and identify the
statistics of graphics interrupts as another source for side-channel attacks on
GPUs. Graphics interrupt statistics are available to non-privileged processes
on Linux-based systems, which are typically readable at /proc/interrupt.
The key insight is that footprints of the graphics stack exist not only within
the GPU resource space (exploited by existing work) but also at the interface
between a CPU and a GPU (interrupts as exploited in this paper). Specifically,
a GPU sends interrupt requests (IRQs) to signal key events like completion of
a graphics command or reporting a GPU error. Consequently, when handling
different GPU workloads, it is likely for the CPU to capture relevant IRQs in
different temporal patterns. As modern operating systems provide statistics of
interrupts captured at runtime, a malicious party may use the graphics interrupt
statistics as signatures to infer the exact workload that is being processed by the
GPU. Such an attack, unlike the existing ones, operates completely in a passive
manner, i.e., it does not require any payload to be co-resident with the victim
process inside the GPU resource space to cause contentions of any kind.

To demonstrate that graphics interrupts are indeed exploitable, we imple-
mented several side-channel attacks under various attacking scenarios, includ-
ing webpage fingerprinting, application inferencing, and distinguishing processes
that output seemingly identical displays, on two common graphics adapters of
Nvidia’s and Intel’s. Our attack periodically samples counts of graphics inter-
rupts and uses the pattern of increments as a time-series signature to identify the
target workloads with a machine learning model. Evaluations showed that our
attacks demonstrated comparable accuracy with the latest GPU side-channel
attacks based on memory APIs and performance counters [19] in webpage fin-
gerprinting. Experiments also demonstrated accuracy as high as 99.8% in GUI-
application fingerprinting. Last but not least, we found our application finger-
printing attack being capable of identifying different types of graphics workloads
which present the same visual perception. Experiments on this aspect demon-



Walls Have Ears: Eavesdropping User Behaviors 3

Video 
Memory

DRAM
DMA 

controller

CPUGPU

Address BUS DMA 
req

DMA 
ack

Interrupt requests (IRQs)

victim 
application

other spy 
processes

our spy 
process

Graphical 
payload

CUDA 
payload

payload for 
contentions

 

Fig. 1: Conventional GPU-related attacks and our attack strategy.

strated a high accuracy in distinguishing different video players when playing
the same video, or detecting differences in playing the same video encoded with
different codec.

2 Related Work

GPU-based side channels Existing GPU side-channel attacks focused on
disclosing the webpage loaded and sensitive workload on cryptographic algo-
rithms [13, 15, 18, 23, 32, 19]. Most of them exploited GPU vulnerabilities related
to insecure memory management, e.g., not initializing newly allocated blocks [13,
32] and vulnerabilities in the CUDA driver [23]. Recently, Naghibijouybari et
al. [19] studied the practicability of exploiting GPU resource tracking APIs.

These existing GPU side-channel attacks work according to an intrusive
model in which contentions are introduced inside the GPU resource space. Fig-
ure 1 demonstrates this attacking strategy with the payload being deployed in
the GPU memory. This strategy is not only intrusive to the victim process but
also easy to defeat by simple countermeasures of software patching. For example,
most browsers have now reduced the timer resolution and thus eliminated the
timing signal used by the attacks. GPU manufacturers have also noticed the po-
tential vulnerability caused by the resource tracking APIs and expressed plans to
fix the problem with updates to OpenGL and CUDA. In this paper, we propose
a novel GPU side-channel attack which works by collecting graphics-related in-
terrupt footprints. Our approach operates passively rather than being intrusive
to its victims, making it more stealthy than the existing attack strategies while
being able to achieve similar effectiveness.

Interrupts Interrupts have been exploited in privacy leakage scenarios. Diao
et al. [3] reported using interrupts to infer unlock patterns on Android devices.
Tang et al. [25] further suggested that patterns of interrupt increment could be
exploited to identify hardware related sensitive behaviors of Android apps. An-
other study demonstrated inferencing of instruction-granular execution states



4 H. Ma et al.

from hardware-enforced enclaves by measuring the latency of carefully timed
interrupts [26]. There were also researches suggesting that attackers could es-
tablish covert channels based on the CPU time used for handling interrupts [16,
6]. In this paper, we focus specifically on using statistics of graphics interrupts
as a side channel to infer GPU related activities, and study the potential risk of
privacy leakage that can be caused by such an attack.

Webpage fingerprinting Early approaches for webpage fingerprinting include
measuring web access time to exploit browser caching [5], measuring mem-
ory footprints [11], and analyzing network traffic [7, 22]. The relationship be-
tween webpage loading and graphics displaying behaviors was also proposed for
webpage fingerprinting. For example, previous researches had proposed using
display-related features of browsers to construct cross-origin timing attacks [12,
27]. Kotcher et al. [12] found that after applying CSS filters to a framed docu-
ment, its rendering time becomes dependent on its content.

Proc filesystem The proc filesystem on Linux-based systems is another leak-
age vector that was used by side-channel attacks for inferring application UI
status [2], keystrokes [30], TCP sequence numbers [24], and user identities [31].

3 Our idea

3.1 Graphics interrupts

Communication between CPUs and GPUs is critical to a computer’s graphics
pipeline; see Figure 1. Important components of such communication include
DMA requests and acknowledgment to enable buffer sharing, the command FIFO
between CPUs and GPUs, as well as interrupts from the GPU to CPU when
certain events need to be processed immediately (IRQs as shown in Figure 1).
These IRQs are reflections of the corresponding workload being processed.

Table 1 lists all IRQs defined in a popular open-source graphics driver on
Linux, namely the drm/i915 Intel GFX Driver. Each of these interrupt types
is either about a specific engine of the GPU, including the RCS (rendering),
BCS (blitter copy), VCS (video en/decoding), and VECS (video enhancement)
engine, or about basic events (such as vertical blanking). For example, displaying
a PNG picture only involves rendering static frames which will be done by the
RCS engine, while playing an MKV video may require the VCS engine to perform
decoding throughout the process. This suggests that graphics interrupts are good
reflections of content of the document being displayed. By the same token, the
user interface of an application needs to be rendered and refreshed, which could
be reflected on the corresponding graphics interrupts.

3.2 Threat model and our idea

Different from existing side-channel attacks on GPUs, our proposal considers a
lower level interface which works completely in a passive manner by capturing



Walls Have Ears: Eavesdropping User Behaviors 5

Table 1: Interrupt Request Definitions in drm/i915 Driver.
Name of IRQ Description

GEN8 DE MISC IRQ
Miscellaneous interrupt raised by graphics system
events (GSE) and panel self refresh events (PSR).

GEN8 DE PORT IRQ
The display engine port interrupt, related to AUX
DDI A done event and hotplug events.

GEN8 PIPE VBLANK Related to vertical blanking events.

GEN8 PIPE CDCLK CRC DONE This displays core clock (CDCLK).

GEN8 PIPE FIFO UNDERRUN
Related to GPU’s command FIFO when running
into a buffer underrun.

GEN8 DE PCH IRQ
The south display engine interrupt, also deals with
hotplug interruption and ambus events.

GEN8 GT RCS IRQ
Interrupt of the RCS engine which performs com-
puting and rendering.

GEN8 GT BCS IRQ Interrupt of the Blitter COPY engine.

GEN8 GT VCS0 IRQ
Interrupt of the VCS engine used in processing
videos where it performs encoding and decoding.

GEN8 GT VCS1 IRQ Same as the previous one.

GEN8 GT VECS IRQ Interrupt of the video enhancement engine.

GEN8 GT PM IRQ Related to power management events.

GEN8 GT GUC IRQ
Related to microprocess interruptions of the
graphics microcontroller (GuC).

only statistical interrupt information provided by the OS kernel. As illustrated in
Figure 1, unlike existing attacks which intrusively cause contentions in the GPU
resource space (as highlighted by ¬ in the figure), our attack does not access
GPU resources but instead reads interrupt statistics from the OS (as highlighted
by ). Although such a spy process could potentially exploit other system side
channels (e.g., CPU cache and network related ones) to launch data-driven leak-
age attacks, our investigation here focuses on the leakage of GUI-related private
information, which is more directly reflected over graphics interrupts.

Specifically, our threat model assumes a (non-privileged) spy process which
periodically reads the aggregated graphics interrupt counts reported by the oper-
ating system, and uses a sliding window to extract subsequences of the collected
time series of interrupt statistics. We then use a trained machine learning model
to determine the task being processed by the GPU.

3.3 Challenges and experiments

Although modern operating systems like Linux report graphics interrupt statis-
tics to any unprivileged user process via the proc filesystem (procfs), the specific
types of graphics interrupts (e.g., those reported in Table 1) are aggregated in the
report. It is therefore not clear whether such coarse grained reporting of graph-
ics interrupt reveals GUI-related private information. In this paper, we evaluate
the extent to which such aggregated graphics interrupt information masks or



6 H. Ma et al.

reveals workloads on the GPU, and the extent to which such masking/revealing
of workload leaks private information of victim processes.

We experimented with the graphics interrupts on two different microarchi-
tectures, namely an Nvidia GeForce GTX 760M (with Nvidia driver version
340.107) and an Intel HD Graphics 520 GT2 (with drm/i915 driver integrated
in Linux kernel 5.4.2). The Nvidia unit is chosen due to its popularity and po-
tential use in general-purpose computing. The Intel unit is chosen because it is
controlled by an open-source driver integrated in the Linux kernel, which allows
us to observe the low-level details of the collected graphics interrupt patterns to
make our experimental results explainable. The experiments were conducted on
an Ubuntu 18.04 machine with an Intel i7-4700MQ Processor and 8GB RAM,
where interrupt statistics are obtained by reading /proc/interrupt. Note
that in case of Windows, information of IRQs are managed by the interrupt
descriptor table (IDT). Although there had not been software (via legitimate
APIs or hacking techniques) reported specifically designed for extracting inter-
rupt statistics on Windows, documentations suggest that it can be done in a
similar way in which system call information is extracted with a kernel driver
overwriting the system service descriptor table (SSDT) [14, 10].

4 Attack Scenario I: Webpage Fingerprinting

Our first attack implements webpage fingerprinting as it has been targets of
many existing attack strategies (see Section 2). We make a comparative study
with one of the latest attacks using GPU side channels [19]. To this end, we tested
our attack on the same Alexa top 200 websites [1] with the Chrome browser and
used the same basic machine learning models as in Naghibijouybari et al. for our
classification, namely Gaussian Naive Bayes (NB), K-Nearest Neighbor with 3
neighbors (KNN-3), and Random Forest with 100 estimators (RF). We addition-
ally included a state-of-the-art deep learning model on time series classification,
the Residual Neural Network (ResNet) [8, 28]. This is because a previous research
on time series classification [4] suggested that deep learning methods typically
outperform conventional statistics-based models because they do not require pre-
processing the input data to extract feature vectors. Our ResNet model used the
same hyperparameters as in the original proposal [28] with 3 residual blocks each
built by stacking 3 convolutional blocks consisting of a convolutional layer fol-
lowed by a batch normalization layer and a ReLU activation layer. The number
of filters in the residual blocks are, respectively, set to 64, 128, and 128, with the
convolution operation fulfilled by three 1-D filters of sizes 9, 5, and 3 without
striding.

We automatically load each webpages 100 times with a script while having
the timestamp of each events logged. Upon each webpage loading, we pick up
100 continuous samples of (aggregated) graphics interrupt counts collected by
our spy process to form a time series corresponding to the event, with the value
of each sample indicating the increment of graphics interrupts since the previous
sampling. We use a sampling interval of 50ms for negligible performance over-



Walls Have Ears: Eavesdropping User Behaviors 7

head. Note that in such a side-channel attack, data sampling of the spy process
and the targeted sensitive events are supposed to be asynchronous for mimicking
a practical attacking scenario. Therefore, we start establishing a time series using
the last interrupt count collected before the timestamp of its corresponding web-
page loading event as its first sample. Finally, we used 10 fold cross validation
to measure the accuracy of the corresponding machine learning models.

Result and analysis: As shown in Table 2, conventional machine learning
models could no longer provide effective classification on side-channel leakage of
graphics interrupts. Out of the three such learning methods tested, only ran-
dom forest could maintain a precision of around 85% and 79%, respectively, on
the Intel and Nvidia GPU. However, the state-of-the-art deep learning model
on time series classification, namely ResNet, demonstrated much better accu-
racy on the Nvidia GPU (88.2% F-measure) and even better on the Intel GPU
(92.0% F-measure). Although our results are not as good as those reported by
Naghibijouybari et al. [19] when using the same conventional machine learning
classifiers, we remind readers that our results are achieved without injecting
GPU payload or causing contention in the GPU resource space, unlike those in
Naghibijouybari et al. [19]. Such results suggest that graphics interrupts provide
a valid privacy leakage vector to support side-channel attacks in the scenario of
website fingerprinting, with an unprivileged spy process reading only aggregated
graphics interrupts from /proc/interrupt.

Table 2: Performance of webpage fingerprinting: average and standard deviation.
F-Measure Precision Recall

Graphics
Interrupt (on

Intel)

NB 46.3% (7.51) 48.7% (10.6) 49.7% (8.26)
KNN-3 32.4% (6.12) 36.5% (8.72) 34.1% (5.12)

RF 83.1% (7.02) 85.5% (5.78) 83.9% (5.47)
ResNet 92.0% (1.35) 93.4% (1.27) 92.2% (1.31)

Graphics
Interrupt (on

Nvidia)

NB 46.7% (1.76) 49.0% (2.96) 50.1% (2.02)
KNN-3 29.3% (1.12) 31.9% (1.26) 30.5% (1.41)

RF 76.5% (0.56) 79.3% (0.65) 77.2% (0.66)
ResNet 88.2% (0.51) 89.9% (0.31) 88.3% (0.44)

Naghibijouybari
et al. [19] (on

Nvidia)

NB 83.1% (13.5) 86.7% (20.0) 81.4% (13.5)
KNN-3 84.6% (14.6) 85.7% (15.7) 84.6% (14.6)

RF 89.9% (11.1) 90.4% (11.4) 90.0% (12.5)

To better understand the results, we dive into the low-level details of the
interrupt handling process by hooking the IRQ handlers of the drm/i915 driver
to gain more detailed logs on the graphics interrupts captured, which enabled us
to investigate the interrupt counts for each IRQ listed in Table 1 Note that an
unprivileged attacker (main threat model used in our paper) could not obtain
such information. We do this solely for the purpose of better understanding
our attacking capability behind the scene. Figure 2 demonstrates such detailed
interrupt patterns on opening four webpages (homepages of Google, Facebook,



8 H. Ma et al.

0 1000 2000 3000 4000 5000
Time(ms)

0

10

20

30

40

50

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(a) Google (Chrome)

0 1000 2000 3000 4000 5000
Time(ms)

0

10

20

30

40

50

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(b) Facebook (Chrome)

0 1000 2000 3000 4000 5000
Time(ms)

0

10

20

30

40

50

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(c) Tencent (Chrome)

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK

(d) Amazon (Chrome)

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(e) Amazon (Falkon)

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(f) Amazon (Firefox)

Fig. 2: Interrupt patterns (Intel) of different webpages (and the corresponding
browser). Missing lines correspond to zero readings of IRQ types.

Amazon, and Tencent) using three browsers (Chrome, Falkon, and Firefox).
Our analysis reveals two interesting observations.

First, Google’s homepage has the simplest layout and correspondingly, the
GEN8 GT RCS IRQ interrupt boost (indicating events signaled by the rendering
engine) of its loading was the shortest among the four webpages (for around
1.2s, while those for Amazon and Facebook were respectively around 2.0s and
3.7s). In addition, all the tested webpages are static except that of Tencent
which contains animation effects. As a result, we can see that the RCS interrupt
pattern of Tencent’s corresponds to continuous refreshing of the webpage, unlike



Walls Have Ears: Eavesdropping User Behaviors 9

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(a) Standard version

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(b) Prerendered version

Fig. 3: Interrupt patterns (Intel) of two versions of a same Vue webpage, with
and without pre-rendering.

what happened to the other tested webpages. These confirm our intuition (see
Section 3) that graphics interrupts reflect layouts and objects of the display.

Second, we found that on opening the same webpage, different browsers
resulted in distinct graphics interrupt patterns (see Figure 2.d, 2.e and 2.f).
This suggests that the detailed implementation of GPU acceleration in different
browser engines also has a significant impact on our side-channel attacks. At
this moment, we did not dig deeper into source code of the browsers to find
out the decisive answer on how the implementation of different engines affects
website-related graphics interrupt patterns. A reasonable guess on this is that
each browser has a unique strategy with regard to the type and amount of data to
be submitted to the GPU for processing, which will translate to different number
of GEN8 GT RCS IRQ interrupts per sampling. We believe this is why browsing
with Firefox causes significantly smaller amount of rendering-related inter-
rupts on average compared with Falkon and Chrome. This also suggests that
graphics interrupts could not only be used to fingerprint data (e.g., webpages)
processed, but also for fingerprinting applications; see Section 5.

We also note that modern web browsers utilize the GPU to accelerate their
rendering processes. Many webpages now contain optimized frontend/backend
code to take advantage of it [17]. As a result, it is likely for different webpages to
have adopted different acceleration techniques including server- and client-side
rendering, rehydration, and prerendering, which also leads to differences in their
resulting graphics interrupt patterns. To confirm this intuition, we used an open-
source prerendering tool, pre-render4, to convert a simple Vue webpage into
its pre-rendered variant5, and recorded the corresponding graphics interrupts
when the two pages were loaded and displayed in Chrome. Figure 3 showed
noticeable differences between the interrupt patterns on the two instances.

4 https://github.com/kriasoft/pre-render.
5 The tested webpage can be accessed via http://pay.his.cat/app.html (original ver-

sion) and http://pay.his.cat/index.html (prerendered version).



10 H. Ma et al.

5 Attack Scenario II: GUI Application Fingerprinting

Our second attack attempts to fingerprint GUI applications with the same
spy process monitoring graphics interrupts. Application fingerprinting has im-
plications not only on revealing end user activities (e.g., which application is
launched), but also on picking the best machine learning model for webpage
fingerprinting. This is especially important since different browsers result in dif-
ferent graphics interrupt patterns even for the same webpages (see Section 4).
With an effective application fingerprinting, it could then be possible to first
identify the specific web browser being used and then pick the suitable machine
learning model for webpage fingerprinting to achieve optimized accuracy.

We downloaded 20 popular applications on Ubuntu as test subjects (see
Table 3 for the list of selected applications), and launched each of them 100
times with our scripts. Note that to demonstrate the connection between this
attack and webpage fingerprinting, we included two web browsers, Firefox and
Brave, into the test set. Since the goal of this attack is to infer the application
launched, we did not further use them to process any input. Again, each time
a subject application is launched, 100 samples (with sampling interval at 50ms)
of interrupt count were collected to form the corresponding time series.

Table 3: Subjects for our application fingerprinting attack.
Application Category Application Category

Inkscape
graphics
editor

libreoffice
text editor

GIMP Notepadqq
Krita ClamTk antivirus

atril doc viewer Deluge download

Thunderbird
e-mail

Audacity

multimedia
Geary Clementine
Pidgin

social
Kdenlive

Corebird VLC
Neofetch system

management
Firefox web

browserSynaptic Brave

Result: Our attack on application fingerprinting demonstrated very high accu-
racy with all tested machine learning models on both Nvidia and Intel GPUs (as
shown in Table 4). This suggests that graphics interrupts could effectively leak
information about the running desktop applications, indicating good generality
of our application fingerprinting attack. We believe that this is due to the higher
degree of flexibility in the design of GUI of desktop applications, compared to
the design of webpages which is governed by the html protocol.

6 Attack Scenario III: Beyond Visual Perception

In our attack scenarios I and II, webpage and application fingerprinting are both
targeting objects that present unique visual perception to human users. The idea



Walls Have Ears: Eavesdropping User Behaviors 11

Table 4: Results of application fingerprinting, average and standard deviation.
F-Measure Precision Recall

Intel

NB 98.7% (0.26) 98.8% (0.19) 98.7% (0.26)
KNN-3 91.4% (3.53) 91.9% (2.99) 91.5% (3.51)

RF 99.6% (0.07) 99.7% (0.06) 99.7% (0.07)
ResNet 99.5% (1.09) 99.5% (0.91) 99.6% (1.11)

Nvidia

NB 97.9% (3.09) 98.2% (1.91) 97.9% (3.31)
KNN-3 95.4% (3.62) 95.6% (2.89) 95.5% (3.51)

RF 99.3% (1.58) 99.4% (1.17) 99.3% (1.71)
ResNet 99.8% (0.08) 99.8% (0.07) 99.8% (0.08)

is that each unique GUI or view of the webpages correspond to unique workload
on the GPU, resulting in classifiable graphics interrupts. In this section, we in-
vestigate a more challenging problem in using aggregated graphics interrupt to
differentiate objects with the same visual perception, i.e., can we differentiate
something even a human being cannot differentiate with visual inspection? Such
a capability has a strong implication on the research of human factors in secu-
rity, e.g., in assisting human to detect phishing websites, to detect re-packaged
applications, and in digital forensics.

As a first step in evaluating such a capability, we take video playback as an
example. Specifically, we consider the following two experimental settings:

– Same video clip encoded with the same codec, played back with different
video players, in which we played back a video clip in FLV format using four
different video players (VLC, SMPlayer, TOTEM, and MPV);

– Same video clip encoded with different codec and played back with the same
video player, in which we encoded a video using four codec (H264, MPEG4,
WMV2, and XIVD) and had them played back using the VLC player.

Time series of graphics interrupt counts in this experiment were collected
from the 2nd to the 6th seconds into the subject video6 to avoid potential noise
from setting up GUI of the video players. We repeated the experiment 100 times
and performed a 10 fold validation over the collected data as usual. Unlike the
previous experiments, here we only used ResNet as the classifier since it outper-
formed the other tested models (especially in webpage fingerprinting).

Result and analysis: Table 5 shows the performance of our attack in the two
settings listed above. We found that in the scenario of distinguishing different
video players, our attack worked accurately without a single misclassification.
While in the scenario of distinguishing different codec, the attack on the Nvidia
GPU outperformed that on the Intel (86.3% vs. 70.2%).

To further understand the low-level details behind such results, we again
leveraged the hooked drm/i915 driver to demonstrate the IRQ-specific patterns
of the tested events (as was done in Section 4). Figure 4 demonstrates such

6 The video used can be found at
https://www.dropbox.com/sh/vqd8ffi7eer8urd/AAAU9MYDg1bKkTtsSzjkpUp5a



12 H. Ma et al.

Table 5: Distinguishing video playback events with ResNet: average and standard
deviation.

F-Measure Precision Recall

Diff
players

Intel 100% (0) 100% (0) 100% (0)
Nvidia 100% (0) 100% (0) 100% (0)

Diff
codecs

Intel 70.2% (37.0) 76.0% (46.8) 72.0% (31.0)
Nvidia 86.3% (24.4) 90.0% (19.4) 87.0% (21.0)

detailed patterns for six tested events (three for each setting). We can see that
all demonstrated interrupt patterns show typical features of stream displaying,
making different patterns appear to be similar to a certain extent. We believe
this is the main contribution to the relatively low accuracy of our attack on the
Intel GPU. On top of this, there are still two observations worth noting.

First, we found that different video player engines use different rendering
techniques. Figure 4.a, 4.b, and 4.c show that when playing the same FLV
video, VLC, SMPlayer, and TOTEM used different GPU engines. Specifically,
SMPlayer relied purely on the basic RCS engine, while both VLC and TOTEM
used the VCS engine (VCS engine is for video encoding and decoding). This
means that SMPlayer resorts to a pure software solution while VLC and TOTEM
utilized hardware acceleration. Furthermore, we observed that TOTEM addition-
ally leveraged the BCS engine, i.e., the blitter engine, to accelerate 2D rendering.
We believe that such differences on the implementation details are the main fac-
tors that make the tested video players distinguishable from one another.

Secondly, the same video player also behaves differently when decoding videos
of different codec. In the case of VLC playing the H264 videos, patterns of
GEN8 GT VCS1 IRQ interrupts can be observed, indicating that hardware ac-
celerated decoding were leveraged. However, the other cases, i.e., VLC playing
the XVID, MPEG4 and WMV videos, only involved the RCS engine, indicating
pure software-level decoding. To demonstrate how such implementation details
affect effectiveness of our attack, we present the heatmap for classification re-
sults of distinguishing the aforementioned 4 types of codec on the Intel GPU
in Figure 5, where we can see that our attack never misclassified any event of
playing back the H264 video — unlike the playback of other clips where a certain
level of ambiguity existed.

7 Additional Experiments, Discussion, and Limitation

7.1 Tradeoff between Accuracy and Timeliness

When considering an attack scenario with on-the-fly monitoring of GPU usage,
classifications are expected to be made in real time. As discussed in Section 3,
our spy process uses a sliding window to feed its machine learning model subse-
quences of the interrupt time series. Intuitively, a larger sliding window (corre-
sponding to longer inputs to our deep learning model and better accuracy) will



Walls Have Ears: Eavesdropping User Behaviors 13

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(a) H264/SMPlayer

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ
GEN8_GT_VCS1_IRQ
GEN8_GT_BCS_IRQ

(b) H264/TOTEM

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ
GEN8_GT_VCS1_IRQ

(c) H264/VLC

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(d) XVID/VLC

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(e) MPEG4/VLC

0 1000 2000 3000 4000 5000
Time(ms)

0
10
20
30
40
50
60
70

Nu
m

be
r o

f I
nt

er
ru

pt
s

GEN8_GT_RCS_IRQ
GEN8_PIPE_VBLANK
GEN8_GT_PM_IRQ

(f) WMV2/VLC

Fig. 4: Interrupt patterns (Intel) of playing the same video using different video
players and codec. Missing lines correspond to zero readings of the IRQ types.

result in longer latencies, given that classification only happens after the subse-
quences are collected. Therefore, in this subsection, we investigate the impact of
reducing the length of such subsequences on the effectiveness of our attack.

We changed the length of subsequences with 10 different settings to train
new machine learning models and observe the accuracy of them. Note that the
sampling rate remains at 50ms to minimize workload of our spy process. As
presented in Figure 6, the shortest interrupt time series length for reaching 99%
accuracy in application fingerprinting was 50 samples, while that for reaching
80% accuracy in webpage fingerprinting was 60 (or 80 if we wish to reach 85%
accuracy). This difference implies that launching applications splashes differently



14 H. Ma et al.

MP
EG

4

W
MV

2

XV
ID

H2
64

True Label

MPEG4

WMV2

XVID

H264

Pr
ed

ic
te

d
La

be
l

precision

27 8 15 0 54.0%

5 36 4 0 80.0%

17 6 31 0 57.41%

1 0 0 50 98.04%
___________

Avg. 72.36%

Fig. 5: Classifying (using ResNet) video playback of different codec using the
same video player.

from the very beginning while loading webpages with the same browser splashes
differently within a slightly longer period. Also, such result suggests that using
time series of 60 to 80 samples, which translates to 3 to 4 seconds, would be good
hyperparameter configurations to optimize the accuracy and timeliness tradeoff.

7.2 Robustness Against Noise

Since interrupt statistics is a fine-grained measurement, attacks based on such
information could be interfered by other events which trigger screen refreshing
or redrawing. The most typical example of such noise source is the movement of
mouse cursor, in which areas at the past and present locations of the cursor have
to be redrawn. Another possible scenario is when a multitasking user is conduct-
ing more than one screen redrawing activities at the same time, e.g., reading a
document while playing a video simultaneously. We tested the robustness of our
webpage fingerprinting attacks by collecting a group of new interrupt time series
from the Nvidia GPU, in which the experiments involved manually moving the
mouse cursor during the process of webpage loading, or having a random movie
being played throughout the experiment. The test was conducted on the top
50 websites (given by Alexa) and repeated 100 times for each webpage. Two
classification strategies were tested: the first to train two ResNet models for the
“noisy” and “clean” (free of noise) data, respectively, under an assumption that
the two environments could be effectively differentiated (e.g., by observing mouse
movement interrupts or by monitoring other side channels like CPU utilization),
while the second to train only one model with both types of data mixed.

From Table 6 we can see that when classifying noisy data with mouse clicks as
the noise source, F-measure of both strategies only slightly exceeded 54%. These
strategies performed better in classifying data with video playing as the noise
source, but the resulted F-measures were still only around 68%. Meanwhile, when



Walls Have Ears: Eavesdropping User Behaviors 15

10 20 30 40 50 60 70 80 90 100
Number of samples per time series

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Application Inference
Website Fingerprinting

Fig. 6: Webpage and application fingerprinting with shorter interrupt time series.

Table 6: Webpage fingerprinting with/without noise: average F-measure.

clean data
noisy data

mouse induced noise video induced noise

Dual models 88.2% 54.2% 67.9%

Mixed model 85.2% 54.6% 67.8%

using one model to classify both types of data, F-measure of classifying clean
data is 3% less than that with two different models. Therefore, we consider the
robustness against noise a limitation of our attack, which could also be pointing
toward a potential mitigation against GPU side-channel attacks.

8 Conclusion

This paper systematically studied the possibility of utilizing graphics interrupts
as a leakage vector to drive GPU side-channel attacks. We introduced a series of
attack scenarios in which graphics interrupt patterns were leveraged to respec-
tively infer webpage opening, GUI application starting, and GUI tasks with the
same graphics perception. Being a passive attack strategy, our attacks demon-
strated high accuracy in the tested attack scenarios, suggesting that graphics
interrupts could indeed leak sensitive information related to user activities.

Acknowledgment

This research/project is supported by the National Research Foundation, Sin-
gapore under its AI Singapore Programme (AISG Award No: AISG-100E-2018-



16 H. Ma et al.

004), National Natural Science Foundation of China (Grant No. 61702399 and
61972215) and National Key R&D Program of China (2018YFA0704703). Any
opinions, findings and conclusions or recommendations expressed in this mate-
rial are those of the author(s) and do not reflect the views of National Research
Foundation, Singapore and AI Singapore.

References

1. Alexa: The top 500 sites on the web (2019), https://www.alexa.com/topsites

2. Chen, Q.A., Qian, Z., Mao, Z.M.: Peeking into your app without actually seeing
it: UI state inference and novel android attacks. In: Proc. of the 23rd USENIX
Security Symposium. pp. 1037–1052 (2014)

3. Diao, W., Liu, X., Li, Z., Zhang, K.: No pardon for the interruption: New inference
attacks on android through interrupt timing analysis. In: Proc. of the 2016 IEEE
Symposium on Security and Privacy. pp. 414–432. IEEE (2016)

4. Fawaz, H.I., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for
time series classification: a review. Data Mining and Knowledge Discovery 33(4),
917–963 (2019)

5. Felten, E.W., Schneider, M.A.: Timing attacks on web privacy. In: Proc. of the
7th ACM conference on Computer and communications security. pp. 25–32. ACM
(2000)

6. Gay, R., Mantel, H., Sudbrock, H.: An empirical bandwidth analysis of interrupt-
related covert channels. International Journal of Secure Software Engineering 6(2),
1–22 (2015)

7. Hayes, J., Danezis, G.: k-fingerprinting: A robust scalable website fingerprinting
technique. In: Proc. of the 25th USENIX Security Symposium. pp. 1187–1203
(2016)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proc. of the 29th IEEE Conference on Computer Vision and Pattern Recognition.
pp. 770–778 (2016)

9. Hwu, W.M.W.: GPU computing gems emerald edition. Elsevier (2011)

10. inaz2: Abusing interrupts for reliable windows kernel exploitation (2015),
https://www.slideshare.net/inaz2/abusing-interrupts-for-reliable-windows-kernel-
exploitation-en

11. Jana, S., Shmatikov, V.: Memento: Learning secrets from process footprints. In:
Proc. of the 2012 IEEE Symposium on Security and Privacy. pp. 143–157. IEEE
(2012)

12. Kotcher, R., Pei, Y., Jumde, P., Jackson, C.: Cross-origin pixel stealing: timing at-
tacks using css filters. In: Proc. of the 2013 ACM SIGSAC conference on Computer
& communications security. pp. 1055–1062. ACM (2013)

13. Lee, S., Kim, Y., Kim, J., Kim, J.: Stealing webpages rendered on your browser by
exploiting gpu vulnerabilities. In: Proc. of the 2014 IEEE Symposium on Security
and Privacy. pp. 19–33. IEEE (2014)

14. Lukan, D.: Hooking the system service dispatch table (ssdt) (2014),
https://resources.infosecinstitute.com/hooking-system-service-dispatch-table-ssdt

15. Luo, C., Fei, Y., Luo, P., Mukherjee, S., Kaeli, D.: Side channel power analysis of a
gpu aes implementation. In: Proc. of the 2015 33rd IEEE International Conference
on Computer Design. pp. 281–288. IEEE (2015)



Walls Have Ears: Eavesdropping User Behaviors 17

16. Mantel, H., Sudbrock, H.: Comparing countermeasures against interrupt-related
covert channels in an information-theoretic framework. In: Proc. of the 20th IEEE
Computer Security Foundations Symposium. pp. 326–340. IEEE (2007)

17. Miller, J., Osmani, A.: Rendering on the web (2019),
https://developers.google.com/web/updates/2019/02/rendering-on-the-web

18. Naghibijouybari, H., Khasawneh, K.N., Abu-Ghazaleh, N.: Constructing and
characterizing covert channels on gpgpus. In: Proc. of the 2017 50th Annual
IEEE/ACM International Symposium on Microarchitecture. pp. 354–366. IEEE
(2017)

19. Naghibijouybari, H., Neupane, A., Qian, Z., Abu-Ghazaleh, N.: Rendered insecure:
Gpu side channel attacks are practical. In: Proc. of the 2018 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 2139–2153. ACM (2018)

20. Nvidia: Security notice: Nvidia response to “rendered insecure: Gpu side channel
attacks are practical” - november 2018 (2018), https://shorturl.at/efJO6

21. Olson, L.E., Power, J., Hill, M.D., Wood, D.A.: Border control: Sandboxing accel-
erators. In: Proc. of the 2015 48th Annual IEEE/ACM International Symposium
on Microarchitecture. pp. 470–481. IEEE (2015)

22. Panchenko, A., Lanze, F., Pennekamp, J., Engel, T., Zinnen, A., Henze, M., Wehrle,
K.: Website fingerprinting at internet scale. In: Proc. of the Network and Dis-
tributed System Security Symposium 2016 (2016)

23. Pietro, R.D., Lombardi, F., Villani, A.: Cuda leaks: a detailed hack for cuda and
a (partial) fix. ACM Transactions on Embedded Computing Systems 15(1), 15
(2016)

24. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative tcp sequence number inference at-
tack: how to crack sequence number under a second. In: Proc. of the 2012 ACM
conference on Computer and communications security. pp. 593–604. ACM (2012)

25. Tang, X., Lin, Y., Wu, D., Gao, D.: Towards dynamically monitoring android ap-
plications on non-rooted devices in the wild. In: Proc. of the 11th ACM Conference
on Security & Privacy in Wireless and Mobile Networks. pp. 212–223. ACM (2018)

26. Van Bulck, J., Piessens, F., Strackx, R.: Nemesis: Studying microarchitectural
timing leaks in rudimentary cpu interrupt logic. In: Proc. of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. pp. 178–195. ACM (2018)

27. Van Goethem, T., Joosen, W., Nikiforakis, N.: The clock is still ticking: Timing
attacks in the modern web. In: Proc. of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security. pp. 1382–1393 (2015)

28. Wang, Z., Yan, W., Oates, T.: Time series classification from scratch with deep
neural networks: A strong baseline. In: Proc. of the 2017 international joint con-
ference on neural networks. pp. 1578–1585. IEEE (2017)

29. Yao, Z., Ma, Z., Liu, Y., Amiri Sani, A., Chandramowlishwaran, A.: Sugar: Secure
gpu acceleration in web browsers. In: ACM SIGPLAN Notices. vol. 53, pp. 519–534.
ACM (2018)

30. Zhang, K., Wang, X.: Peeping tom in the neighborhood: Keystroke eavesdropping
on multi-user systems. In: Proc. of the 18th USENIX Security Symposium. vol. 20,
p. 23 (2009)

31. Zhou, X., Demetriou, S., He, D., Naveed, M., Pan, X., Wang, X., Gunter, C.A.,
Nahrstedt, K.: Identity, location, disease and more: Inferring your secrets from an-
droid public resources. In: Proc. of the 2013 ACM SIGSAC conference on Computer
& communications security. pp. 1017–1028. ACM (2013)

32. Zhou, Z., Diao, W., Liu, X., Li, Z., Zhang, K., Liu, R.: Vulnerable gpu memory
management: towards recovering raw data from gpu. Proceedings on Privacy En-
hancing Technologies 2017(2), 57–73 (2017)


