
Towards Speedy Permission-Based Debloating for Android Apps
Ferdian Thung1, Jiakun Liu1, Pattarakrit Rattanukul1, Shahar Maoz2, Eran Toch3, Debin Gao1, and

David Lo1
{ferdianthung,jkliu,pattarakritr,dbgao,davidlo}@smu.edu.sg,maoz@cs.tau.ac.il,erant@tauex.tau.ac.il

1School of Computing and Information Systems, Singapore Management University, Singapore
2School of Computer Science, Tel Aviv University, Israel

3Department of Industrial Engineering, Tel Aviv University, Israel

ABSTRACT

Android apps typically include many functionalities that not all
users require. These result in software bloat that increases possible
attack surface and app size. Common functionalities that users may
not require are related to permissions that they intend to disallow
in the first place. As these permissions are disallowed, their related
code would never be executed and therefore can be safely removed.
Existing work has proposed a solution to debloat Android apps
according to the disallowed permissions. However, for large and
complex applications, the debloating process could take hours, typ-
ically due the long time that may be needed to construct call graph
for analysis. In this work, we proposeMiniAppPerm, that speeds
up the permission-based debloating by constructing a partial call
graph instead of a complete call graph. Our preliminary experi-
ments on a set of apps in Google Play show thatMiniAppPerm can
reduce the call graph construction time by up to 85.3%. We also
checked that the debloated apps can run without crashes.

CCS CONCEPTS

• Security and privacy → Software security engineering.

ACM Reference Format:

Ferdian Thung1, Jiakun Liu1, Pattarakrit Rattanukul1, Shahar Maoz2, Eran
Toch3, Debin Gao1, and David Lo1. 2024. Towards Speedy Permission-Based
Debloating for Android Apps. In IEEE/ACM 9th International Conference
on Mobile Software Engineering and Systems (MOBILESoft ’24), April 14–15,
2024, Lisbon, Portugal. ACM, New York, NY, USA, 4 pages. https://doi.org/
10.1145/3647632.3651390

1 INTRODUCTION

Modern Android apps contain a lot of features to support different
needs of their target users. These include but not limited to different
use case scenarios, different versions of libraries, and various appli-
cation binary interface (ABI) for various device architectures [7].
Due to different user needs, some features can be safely removed as
users never need them. Features that users commonly do not need
are the ones related to permissions that they disallow. Since the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBILESoft ’24, April 14–15, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0594-6/24/04
https://doi.org/10.1145/3647632.3651390

permissions are disallowed, the features would not work. Thus, we
can safely remove all features related to the disallowed permissions.

Several works have exploredAndroid apps debloating/pruning [7,
8, 14], with XDebloat [14] as the most recent work that can per-
form permission-based debloating. These work mainly focused on
realizing the capability of debloating Android apps. While they did
measure the execution time, it is not their main goal. They typically
rely on common tools such as FlowDroid to construct call graph and
perform static program analysis [1]. While this saves development
time, they would also inherit FlowDroid shortcomings. It has been
reported that FlowDroid call graph generation time could takemany
hours [3, 15] for modern apps, which would lengthen the overall
execution time of permission-based debloating solutions. This is
not desirable as users would need to wait longer to receive the
debloated apps. Thus, there is a need for a faster permission-based
debloating, which can reduce users’ waiting time.

In this work, we propose MiniAppPerm to speed up permission-
based debloating by constructing a partial call graph instead of a
complete one. When we debloat features related to permissions,
we need to remove the permission-related methods (i.e., Android
APIs that require the specific permission) that are called by the
app. We then need to traverse the call graph to find other methods
that may be affected by the removal of these permission-related
methods. To do so, we do not really need to explore the whole call
graph. We only need to explore the methods that are reachable from
the permission-related methods. Thus, we do not actually need to
construct the portion of call graph that are not reachable from
permission-related methods, as they would not be used and waste
computation time. Constructing a partial call graph with methods
reachable from permission-related methods should suffice.

SinceMiniAppPerm constructs a partial call graph, the call graph
construction time should be faster. Intuitively, the amount of time
saved is commensurable to the proportion of unreachable methods
in the complete call graph. To measure how much timeMiniApp-
Perm can actually save when constructing call graph, as a prelimi-
nary experiment, we collected a dataset of modern Android apps.
We first obtain the list of popular apps from Android Rank1, which
is a website that collects historical Android data and Google Play2
since 2011. We then downloaded the apps in the list from Google
Play. We sample some apps for preliminary experiments. We ran
FlowDroid on these apps and collected their call graph construction
time. Our experiments on these apps highlight that MiniAppPerm
can successfully reduce the call graph construction time by up to

1https://www.androidrank.org/
2https://play.google.com/

84

2024 IEEE/ACM 11th International Conference on Mobile Software Engineering and Systems (MOBILESoft)

https://doi.org/10.1145/3647632.3651390
https://doi.org/10.1145/3647632.3651390
https://doi.org/10.1145/3647632.3651390
https://www.androidrank.org/
https://play.google.com/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3647632.3651390&domain=pdf&date_stamp=2024-06-07


MOBILESoft ’24, April 14–15, 2024, Lisbon, Portugal Ferdian Thung1 , Jiakun Liu1 , Pattarakrit Rattanukul1 , Shahar Maoz2 , Eran Toch3 , Debin Gao1 , and David Lo1

85.3%. We have also manually checked that the resultant debloated
apps can be successfully installed and ran without crashes.

2 MINIAPPPERM

The overview of MiniAppPerm is presented in Figure 1. It takes
an Input App and the list of Disallowed Permissions and outputs
Debloated App. It has four components: (1) Permission Identifier;
(2) Call Graph Constructor; (3) Call Graph Slicer; and (4) Debloater.
Permission Identifier reads the list of Disallowed Permissions and
identifies the Permission-Related Methods from the Input App.
Call Graph Constructor constructs a Partial Call Graph containing
only methods reachable from the Permission-Related Methods. Call
Graph Slicer traverses the Partial Call Graph and identifies the
methods that can be removed due to removal of Permission-Related
Methods. Last but not least, Debloater takes the list of Methods
to Remove and returns the Debloated App, which is a repackaged
Input App after discarding the Methods to Remove.
Permission Identifier. To identify whether permission-related
methods are called in the app, it makes use of a known mapping be-
tween a permission and permission-related methods (i.e., Android
APIs that require the specified permission). We take the mapping
from PScout [2], which produces the mapping by performing a
reachability analysis between permission checks and API calls in
Android framework. Given the list of Disallowed Permissions, it
obtains the corresponding permission-related methods. For exam-
ple, setAudioSource(int) method requires RECORD_AUDIO per-
mission. It collects such methods for all Disallowed Permissions.
Given Input App, it dumps the bytecode of Input App into a plain-
text using dexdump3. It iterates the collected permission-related
methods and check whether each of them is invoked in the bytecode
plaintext. It then returns the Invoked Permission-Related Methods.
Call Graph Constructor. It is built on top of BackDroid, which is
proposed by Wu et al. [15]. BackDroid performs a targeted inter-
procedural analysis that can skip unreachable code and follow only
the paths that lead to security-sensitive sink APIs. Similarly, to
build the Partial Call Graph, it adopts the targeted inter-procedural
analysis and treats the Invoked Permission-Related Methods as the
sink APIs. It performs a targeted backtracking from the Invoked
Permission-Related Methods. For each invoked permission-related
method, it searches the bytecode plaintext of the Input App for
the call sites of the corresponding permission-related method. For
each call site, it identifies the caller of permission-related method.
It repeats the search until it reaches callers that are Android entry
points (e.g., Android lifecycle methods).
Call Graph Slicer. Given the Partial Call Graph, it first puts the
Invoked Permission-Related Methods to the list of Methods to Re-
move. It then traverses the call graph to find methods that would
be affected by the removal of Invoked Permission-Related Methods.
Specifically, it performs two kinds of slicing: (1) Forward slicing.
It recursively put methods that are only called by methods in the
list of Methods to Remove into the list of Methods to Remove. The
intuition is that such methods would never be called since all their
callers would be removed; (2) Backward slicing. It recursively put
methods that only call methods in the list of Methods to Remove

3https://manpages.ubuntu.com/manpages/bionic/man1/dexdump.1.html

Table 1: Statistics of the Studied Android Apps

ID App Category #Perm #Install

1 org.wikipedia Books & Refer-
ence

13 50M+

2 com.apusapps.browser Communication 22 10M+
3 com.halamate.app Lifestyle 28 5M+
4 com.sourceapp.ebb Food & Drink 10 500K+
5 com.canva.editor Art & Design 11 100M+
6 com.lovense.wear Health & Fitness 37 1M+
7 com.nytimes.cooking Food & Drink 7 100K+
8 com.amomedia.madmuscles Health & Fitness 9 500K+
9 com.ecw.healow Health & Fitness 22 5M+
10 com.tacobell.ordering Food & Drink 20 10M+

into the list of Methods to Remove. The intuition is that such meth-
ods do not have much functionality as all the methods they called
are removed. After it finds all methods that satisfy the above condi-
tions, it returns the final Methods to Remove to the next component
for debloating.
Debloater.Debloater performs a method-level debloating. For each
Method to Remove, Debloater discards the content of the method
body. If the method has a return value, Debloater changes the return
value according to its type. If the return type is a numeric class,
Debloater changes the return value to 0. If the return type is an
instance of other classes, Debloater changes the return value to null.
Debloater then repackaged the modified Input App and outputs it
as the Debloated App.

3 PRELIMINARY EXPERIMENT

Dataset.We collected modern Android apps from the list of pop-
ular apps taken from Android Rank4 on April 2023. This website
provides a list of top Android apps. The apps are divided into 33
categories such as Art and Design, Business, Productivity, Sport,
etc. We downloaded the list of top apps from each category and
obtained the latest version of the apps from APKCombo5, which is
a third party website that pulls the apps directly from Google Play
and make them downloadable from their website. We then sample
10 apps for preliminary experiments. Note that we exclude apps
that crash when we run it through FlowDroid, BackDroid, or Soot.
Statistics of the studied apps are shown in Table 1.
Experimental Settings. We used the latest numbered version of
FlowDroid at the time (v2.111.1) and construct call graph for the
studied apps. We found that different versions of FlowDroid could
have a significant impact on the call graph construction time. When
constructing the call graph, we run FlowDroid for up to 5 hours
followingWu et al. [15]. Similarly, we also runMiniAppPerm for the
same amount of time andmeasure how long it takes to construct the
call graph. We consider the worst case scenario where we disallow
all permissions. We then compare the call graph construction time
between FlowDroid and MiniAppPerm. We measure how much
call graph construction time MiniAppPerm can reduce. We also
measure the overall debloating time of MiniAppPerm.

It is worth noting that we cannot compareMiniAppPerm with
existing debloating approaches (e.g., XDebloat [14]) since they do
not release their tools. Nevertheless, XDebloat is built on top of
4https://www.androidrank.org/
5https://apkcombo.com/

85

https://manpages.ubuntu.com/manpages/bionic/man1/dexdump.1.html
https://www.androidrank.org/
https://apkcombo.com/


Towards Speedy Permission-Based Debloating for Android Apps MOBILESoft ’24, April 14–15, 2024, Lisbon, Portugal

Permission
Identifier

1

DebloaterCall Graph
Constructor

2

Call Graph Slicer

3

Input App

Debloated
App

Permission-
related methods

Partial Call Graph

Invoked
Permission-

Related Methods

Methods to
Remove

4

Disallowed
Permissions

Figure 1: Overview of MiniAppPerm

Table 2: Debloating and call graph construction time

ID Debloating Time

Call Graph Construction Time

FlowDroid MiniAppPerm Impr.

1 1m 43s 2m 23s 1m 30s 37.1%
2 8m 31s 10m 6s 8m 10s 19.1%
3 2m 34s 5m 13s 46s 85.3%
4 7m 24s 8m 9s 6m 22s 21.9%
5 7m 29s 7m 20s 7m 5s 3.4%
6 3m 5s 8m 10s 1m 25s 82.7%
7 6m 2s 7m 21s 5m 41s 22.7%
8 6m 33s 10m 21s 6m 13s 39.9%
9 13m 15s 12m 41s 12m 15s 3.4%
10 14m 38s 15m 1s 14m 14s 5.2%

FlowDroid and thus its call graph construction time should be sim-
ilar with running FlowDroid directly. Additionally,MiniAppPerm
also does not compete with existing permission-based debloating
approaches. Rather, it complements them.
Results. Table 2 shows the total debloating and call graph con-
struction time when running FlowDroid and MiniAppPerm on the
studied apps. The total debloating time measures the total time
required for debloating the app starting from the Input App and
ending with the Debloated app. We observe that, for most apps,
the total debloating time is dominated by the call graph construc-
tion time, even after the speed up achieved by MiniAppPerm. This
shows that, for most apps, the call graph construction time takes
up the majority of execution time and it is indeed the right target
for optimizing total debloating time.

We can see from the table that MiniAppPerm can reduce the
the call graph construction time from 3.4% to 85.3%. The high-
est reductions are achieved when debloating com.halamate.app
and com.lovense.wear. Interestingly, these two apps have the
highest number of permissions among the studied apps. On the
other hand, the lowest reductions are achieved when debloating
com.canva.editor and com.ecw.healow. These two apps have a
very different number of permissions. Therefore, it appears that the
call graph construction time does not depend on the number of per-
missions. Indeed, the time likely depends more on how widespread
the permission-related methods are being called within the app.

4 RELATEDWORK

Many works have studied program debloating [6, 8, 9, 11–14]. Heo
et al. [6] proposed Chisel to debloat C programs. Chisel takes a
program to debloat and high-level specification of its desired func-
tionality, and outputs the debloated program that follows the speci-
fication. Quach et al. [11] proposed an approach that can perform
piece-wise compilation and loading, which can systematically de-
tect and eliminate unused code from memory. Rastogi et al. [12]
developed Cimplifier, which debloats containers (i.e. Docker) based
on user-defined constraints. Sharif et al. [13] proposed TRIMMER,
which debloats unused functionality from C programs by special-
izing the programs according to the deployment context. Jiang et
al. [9] proposed JRed to trim unused code from Java applications
and Java Runtime Environment (JRE) via static analysis. In a sub-
sequent work, Jiang et al. [8] proposed RedDroid, which debloats
Android applications by removing compile-time and install-time
redundancies. More recently, Tang et al. [14] proposed XDebloat to
perform feature-oriented debloating for Android apps. Our work
complements the above work by speeding up the debloating process
through optimizing the call graph construction.

Some works aim to detect and analyse software bloat [4, 5, 17].
Bhattacharya et al. [4] proposed an approach to detect an execution
bloat in Java applications by utilizing concern information. Xu et
al. [17] analysed how one can find, remove, and prevent perfor-
mance problems due to software bloat. Bu et al. [5] highlighted
the importance of bloat-aware design in developing Big Data appli-
cations. Nguyen et al. [10] analyses the impact of software bloat
in data-intensive systems. Xu et al. [16] introduced an abstraction
called copy graph that can be used to expose common patterns of
bloat in Java. The above studies provides foundations for work on
debloating approaches. One should detect a bloat first before re-
moving it. Better understanding on software bloat is also beneficial
in the development of future debloating approaches.

5 CONCLUSION AND FUTUREWORK

We proposeMiniAppPerm to speed up permission-based debloat-
ing for Android apps. It does so by constructing a partial call graph.
Our preliminary evaluation indicates that MiniAppPerm can re-
duce the call graph construction time by up to 85.3%. In the future,
we plan to ascertain MiniAppPerm effectiveness more extensively
on more apps. We also plan to improve MiniAppPerm speed by

86



MOBILESoft ’24, April 14–15, 2024, Lisbon, Portugal Ferdian Thung1 , Jiakun Liu1 , Pattarakrit Rattanukul1 , Shahar Maoz2 , Eran Toch3 , Debin Gao1 , and David Lo1

optimizing the partial call graph construction, e.g., by introducing
parallelization. Another possibility is to perform on-the-fly slicing
without fully constructing the call graph. Yet another direction is
to employ neurosymbolic program analysis to construct the partial
call graph, e.g., by predicting the edges of the partial call graph
using deep learning techniques.

ACKNOWLEDGEMENTS

This research / project is supported by the National Research Foun-
dation, Singapore, and Cyber Security Agency of Singapore under
its National Cybersecurity Research and Development Programme,
NCRP25-P03-NCR-TAU. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
author(s) and do not reflect the views of National Research Founda-
tion, Singapore and Cyber Security Agency of Singapore. This work
is also partly supported by the Blavatnik Interdisciplinary Cyber
Research Center at Tel Aviv University as part of a collaboration
with CSA Singapore, and Lee Kong Chian Fellowship awarded to
Debin Gao by Singapore Management University.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[2] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. 2012. Pscout:
analyzing the android permission specification. In Proceedings of the 2012 ACM
conference on Computer and communications security. 217–228.

[3] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven
Arzt, Siegfried Rasthofer, and Eric Bodden. 2015. Mining apps for abnormal usage
of sensitive data. In 2015 IEEE/ACM 37th IEEE international conference on software
engineering, Vol. 1. IEEE, 426–436.

[4] Suparna Bhattacharya, Kanchi Gopinath, and Mangala Gowri Nanda. 2013. Com-
bining concern input with program analysis for bloat detection. ACM SIGPLAN
Notices 48, 10 (2013), 745–764.

[5] Yingyi Bu, Vinayak Borkar, Guoqing Xu, and Michael J Carey. 2013. A bloat-
aware design for big data applications. In Proceedings of the 2013 international

symposium on memory management. 119–130.
[6] Kihong Heo, Woosuk Lee, Pardis Pashakhanloo, and Mayur Naik. 2018. Effective

program debloating via reinforcement learning. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security. 380–394.

[7] Jianjun Huang, Yousra Aafer, David Perry, Xiangyu Zhang, and Chen Tian. 2017.
UI driven Android application reduction. In 2017 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 286–296.

[8] Yufei Jiang, Qinkun Bao, Shuai Wang, Xiao Liu, and DinghaoWu. 2018. RedDroid:
Android application redundancy customization based on static analysis. In 2018
IEEE 29th international symposium on software reliability engineering (ISSRE).
IEEE, 189–199.

[9] Yufei Jiang, Dinghao Wu, and Peng Liu. 2016. Jred: Program customization and
bloatware mitigation based on static analysis. In 2016 IEEE 40th annual computer
software and applications conference (COMPSAC), Vol. 1. IEEE, 12–21.

[10] Khanh Nguyen, Kai Wang, Yingyi Bu, Lu Fang, and Guoqing Xu. 2018. Un-
derstanding and combating memory bloat in managed data-intensive systems.
ACM Transactions on Software Engineering and Methodology (TOSEM) 26, 4 (2018),
1–41.

[11] Anh Quach, Aravind Prakash, and Lok Yan. 2018. Debloating software through
piece-wise compilation and loading. In 27th {USENIX} Security Symposium
({USENIX} Security 18). 869–886.

[12] Vaibhav Rastogi, Drew Davidson, Lorenzo De Carli, Somesh Jha, and Patrick
McDaniel. 2017. Cimplifier: automatically debloating containers. In Proceedings
of the 2017 11th Joint Meeting on Foundations of Software Engineering. 476–486.

[13] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. 2018.
TRIMMER: application specialization for code debloating. In Proceedings of the
33rd ACM/IEEE International Conference on Automated Software Engineering. 329–
339.

[14] Yutian Tang, Hao Zhou, Xiapu Luo, Ting Chen, Haoyu Wang, Zhou Xu, and Yan
Cai. 2021. Xdebloat: Towards automated feature-oriented app debloating. IEEE
Transactions on Software Engineering 48, 11 (2021), 4501–4520.

[15] Daoyuan Wu, Debin Gao, Robert H Deng, and Chang Rocky KC. 2021. When
program analysis meets bytecode search: Targeted and efficient inter-procedural
analysis of modern Android apps in BackDroid. In 2021 51st Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 543–
554.

[16] Guoqing Xu, Matthew Arnold, Nick Mitchell, Atanas Rountev, and Gary Sevitsky.
2009. Go with the flow: Profiling copies to find runtime bloat. In Proceedings
of the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 419–430.

[17] Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, and Gary Sevitsky.
2010. Software bloat analysis: Finding, removing, and preventing performance
problems in modern large-scale object-oriented applications. In Proceedings of
the FSE/SDP workshop on Future of software engineering research. 421–426.

87


