
Beyond a Joke: Dead Code Elimination Can Delete Live Code
Haoxin Tu

∗

Singapore Management University

Singapore

haoxintu.2020@smu.edu.sg

Lingxiao Jiang, Debin Gao

Singapore Management University

Singapore

{lxjiang,dbgao}@smu.edu.sg

He Jiang

School of Software, Dalian University

of Technology, China

hejiang@dlut.edu.cn

ABSTRACT

Dead Code Elimination (DCE) is a fundamental compiler optimiza-

tion technique that removes dead code (e.g., unreachable or reach-

able but whose results are unused) in the program to produce

smaller or faster executables. However, since compiler optimiza-

tions are typically aggressively performed and there are complex

relationships/interplay among a vast number of compiler optimiza-

tions (including DCE), it is not known whether DCE is indeed cor-

rectly performed and will only delete dead code in practice. In this

study, we open a new research problem to investigate: can DCE hap-
pen to erroneously delete live code? To tackle this problem, we design

a new approach named Xdead, which leverages differential testing,

static binary analysis, and dynamic symbolic execution techniques,

to detect miscompilation bugs caused by the erroneously deleted

live code. Preliminary evaluation shows that Xdead can identify

many divergent portions indicating erroneously deleted live code

and finally detect two such miscompilation bugs in LLVM compil-

ers. Our findings call for more attention to the potential issues in

existing DCE implementations and more conservative strategies

when designing new DCE-related compiler optimizations.

CCS CONCEPTS

• Software and its engineering → Software testing.

KEYWORDS

Reliability, software testing, program analysis, symbolic execution

ACM Reference Format:

Haoxin Tu, Lingxiao Jiang, Debin Gao, and He Jiang. 2024. Beyond a Joke:

Dead Code Elimination Can Delete Live Code. In New Ideas and Emerging
Results (ICSE-NIER’24), April 14–20, 2024, Lisbon, Portugal. ACM, New York,

NY, USA, 5 pages. https://doi.org/10.1145/3639476.3639763

1 INTRODUCTION

Dead Code Elimination (DCE) is a compiler transformation that

removes unreachable code or reachable ones whose results are

not used
1
[1]. In compiler theory, DCE is treated as a promising

∗
Also affiliated with the School of Software, Dalian University of Technology.

1
For clarification, we refer to such code fragments as dead code, while the code is not
only reachable but whose results are used is as live code (follow the definitions in [26]).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0500-7/24/04. . . $15.00

https://doi.org/10.1145/3639476.3639763

1 int idx = 0;
2 int a = 0;
3 void __attribute__((noinline)) marker_2() { ++idx; }
4 static void c() { marker_2(); }
5 void d(int j) { for (;;) ; } // infinite loop
6 void e() { for(int i = 0; i < 100; m++) d(i);}
7 void f() {
8 e(); // live code here is erroneously deleted
9 c();
10 }
11 void g() {if (a == 0x99) f();}
12

13 int main(int argc, char* argv[]) {
14 a = strtol(argv[1], NULL, 16); // when a = 0x99, the bug triggers
15 g();
16 printf("%d", idx);
17 return 0;
18 } /* affecting -O1 and above on LLVM-11.0.1 downward versions */

Figure 1: A miscompilation bug
2
detected by Xdead

technique for producing a smaller or faster executable, saving a

greater amount of time or resources when compiling the source

code program or running the compiled executables [21, 28]. In

compiler implementations, DCE is consistently applied from slight

optimizations (e.g. with -O0) to aggressive optimizations (e.g. with

-O3) [1, 28]. Benefiting from such advantages of DCE, a vast number

of compilers, such as GCC/LLVM, JavaScript Minifiers, .NET, and

OpenJDK, are using DCE by design. Moreover, many studies [17,

18, 26, 28] rely on DCE to detect critical bugs in compilers.

In particular, two main lines of research utilize DCE to construct

new test programs or build test oracles to detect bugs in GCC/LLVM

compilers. First, Orion [17], Athena [18], and Hermes [26] perform

dead code insertion or deletion as a mutation strategy to produce a

new Equivalence Modulo Inputs (EMI) variant test program. They

assume that DCE will only remove dead code so either the insertion

or deletion of the dead code will not change the semantics of the

seed test program, thus producing EMI variants to detect crash

or miscompilation bugs in compilers. Second, Theodoridis et al.
[28] propose exploiting DCE as a test oracle to identify missed

optimization opportunities, thus detecting potential performance

bugs in compilers. They also simply assume that DCE will never

delete live code and that only dead code is supposed to be deleted.

Research Problem. Due to the complex relationships/interplay

among a plurality of aggressive compiler optimizations [28] and

the sophisticated implementations of modern compilers (e.g., GCC

and LLVM) [4], it is not known whether the assumption that DCE

will only delete dead code is always held in practice. In this study,

we aim to open an interesting problem to investigate:

Can DCE happen to erroneously delete live code?
Motivating Example. Considering the code example shown in

Figure 1 (the code snippets highlighted in grey box are inserted by

our approach Xdead, and we will detail the purpose of each line in

Section 2.1), the main function simply invokes function g (Line 14)

which gets function call f executed if the condition in if-branch in

function g is satisfied (Line 11). Inside the function f, the function e
is invoked (Line 8) which calls the infinite loop in the function d in

2
For the sake of simplicity, we revised the code from a real bug [23] reported by Xdead.

32

2024 IEEE/ACM 46th International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

http://crossmark.crossref.org/dialog/?doi=10.1145%2F3639476.3639763&domain=pdf&date_stamp=2024-05-24

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Haoxin Tu, Lingxiao Jiang, Debin Gao, and He Jiang

the for-loop (Line 6). If a compiler correctly compiles the code, the

executable should encounter the infinite loop in function d, leading
to endless execution. However, the LLVM 11.0.1 downward versions

with “-O1” and above miscompile the code and get the wrong result

[14] caused by erroneously deleted live code in Line 8. The root

cause [9] is that the buggy LLVM compilers erroneously treat calls

that may not return as being dead, and then DCE is erroneously

performed to remove the function e, causing the miscompilation

bug in the LLVM compiler.

Although a rich collection of studies [2, 5, 16–18, 26, 30] is de-

voted to constructing test programs for compiler testing and they

can still possibly generate such a test program in theory, they may

fail to detect this bug in practice mainly due to the randomness

issue during program generation. First, existing approaches (e.g.,

Csmith [33] or YARPGen [20]) generally perform fixed value as-

signments during program generation to construct test programs,

which means that users may not be able to change the value of a se-

lected variable (e.g., the variable a in Figure 1). Second, even though

users can add extra implementations to support user-provided test

inputs, it may still be challenging for them to generate a desirable

input (e.g., 0x99) that could execute a specific portion of the exe-

cutable. Thus, instead of randomly assigning fixed values, a new

approach that can automatically manipulate the program inputs so

that it can go through a specific portion of the executable is needed.

Our Solution. In this paper, we propose a new approach named

Xdead to tackle the program and detect compiler bugs caused by

erroneously deleted live code. More concretely, given a program P,
Xdead inserts a set of markers M into the basic blocks of its source

code. When P is compiled under two compilation settings to two

binaries, say b1 and b2, a miscompilation bug occurs if (1) a marker

m only exits in one binary (say b1) by comparing the existence of

the marker m between the assembly code of b1 and b2; (2) there
exists an execution path that goes through the markerm in b1. Our
core insight is that if a divergent and revealing marker exists in only

one binary while missing in another, there must exist erroneously

deleted live code, either the binary contains the marker (e.g., the

one shown in Figure 1) or the binary without the marker. To realize

it, Xdead utilizes differential testing and static binary analysis to

find the differentiated markers (i.e., divergent markers between two

binaries) and adopts divergent marker-targeted symbolic execution

to automatically generate desirable divergence-revealing inputs

that could execute the marker.

Taking the example shown in Figure 1 again, given a seed test

program generated by Csmith [33] (the code without highlighted),

Xdead instruments the seed program by inserting the highlighted

code. Then, by compiling it with two compiler versions and the same

compilation options, assuming users are unaware of which compiler

is buggy, to two binaries (i.e., “clang-11 -O3 -std=c99” to b1 and

“clang-12 -O3 -std=c99” to b2) and comparing their corresponding

control flow graphs (CFGs) to identify the divergent markers in the

CFGs, Xdead finds out that the marker_2 only exists in b1 while
missing in b2. Next, with the target address of the marker_2,Xdead
utilizes binary symbolic execution (i.e., angr [24]) to symbolically

execute the instrumented test program by symbolizing the global

variable a. Finally, angr gives the desirable input (i.e., the value of

0x99) to reveal the execution of the marker_2, which will trigger

the miscompilation bug by executing “./b1 0x99”.

Preliminary Results. We run Xdead over two versions of two

mature compilers (i.e., GCC and LLVM) to evaluate the effectiveness

of Xdead. The results show that Xdead is capable of identifying

many divergent markers in different running scenarios and suc-

cessfully detecting two miscompilation bugs caused by live code

deleted erroneously in LLVM compilers.

Contributions. This paper makes the following contributions:

• We open a new research problem and propose a new solution

Xdead, which combines differential testing, static binary analysis,

and dynamic symbolic execution, to tackle the problem.

• We open source [6] and evaluate the effectiveness of Xdead,

and the preliminary results demonstrate that Xdead can detect

important compiler bugs caused by erroneously deleted live code.

2 APPROACH

Overview. Figure 2 shows the overview design of Xdead, where

several techniques are utilized to construct new test programs

that could trigger compiler bugs caused by erroneously deleted

live code. Xdead first instruments the seed program test.c in

1 . After using different compilers with the same complication

options to compile the instrumented program test-inst.c,Xdead
differentiates the markers from two CFGs of the compiled binaries

in 2 . Finally, Xdead leverages dynamic symbolic execution to

perform targeted symbolic execution (i.e., the function call address

of a divergent marker) over the potentially miscompiled binary

(e.g., b1) to produce divergence-revealing test inputs in 3 .

2.1 Test Program Instrumentation

The purpose of instrumenting the source code of the seed program

is to help identify potential divergent portions (i.e., indicators of

live code that DCE might delete) in binaries. Specifically, two sub-

steps, i.e., markers injection and program input modification, are

automatically performed in this process.

Markers Injection. Identifying possible erroneously deleted live

code in a binary could be challenging. This is because the two bina-

ries, either from the same compiler with two different optimization

options or from the same optimization with different compilers,

can have huge differences due to different register allocation and

basic block re-ordering [13]. To facilitate the identification process,

we inject optimization markers into the source code and keep them

in the compiled binaries to identify potential divergent markers.

The optimization markers can be implemented in many forms such

as function calls, compiler builtins, inline assembly, or writes to

global variables [28]. In this study, we opt for the markers using

a combination of different ways. More concretely, the following

function marker_𝑖 is the function marker injected at the beginning

of each block during instrumentation,

void __attribute__((noinline)) marker_𝑖() { ++idx; };

where 𝑖 refers to the sequential order of the block statements, and

each marker_𝑖 is used uniquely once for each location in the pro-

gram. The noinline attribute specified for the function is used

to avoid the removal of function calls in the binary when higher

optimizations are enabled: This could keep the existence of a func-

tion call and thus guides the symbolic execution (see more details

later in Section 2.3). The body of the marker function includes the

33

Beyond a Joke: Dead Code Elimination Can Delete Live Code ICSE-NIER’24, April 14–20, 2024, Lisbon, PortugalMotivating example

Seed program P
(test.c)

marker_1()

marker_2()

marker_3()

marker_4()

marker_5()

Part1: insert markers into blocks

Part2: modify inputs

a = strtol(argv[1],NULL,16);
…

Test Program Instrumentation1 Divergent Marker Identification2 Divergence-revealing Input Generation3

call marker_1
call marker_2
call marker_4
call marker_5

call marker_1
call marker_4
call marker_5

clang-11 –O3

Binary 1
(b1)

Binary 2
(b2)

markers in CFG of b1

markers in CFG of b2

marker_2()

Marker-targeted
Symbolic Execution

＋
Address of the
target marker

＋
a = 0x99;

…Test inputs

Bug triggering

Binary 1
(b1)

clang-12 –O3

Instrumented P
(test-inst.c)

Divergent marker

Figure 2: Overview of Xdead (Input: a seed program; Output: a new bug-revealing test program with its test inputs)

incremented global variable idx, which is used to indicate the live
code and the test oracle without affecting the functionality of the

original code: If a binary executes a marker function, but another

executable does not, this indicates a miscompilation bug, as the

global value idx is not the same after execution. This follows the

assumption in Csmith [33] and YARPGen [20], where they compute

a checksum of the global variables and compare the checksum after

binary execution: any differences expose a miscompilation bug. For

the inserting locations, variable/function definitions are injected in

the global scope and the printing function is injected after invoking

the primary function call, e.g., the function g inside main function

in Figure 1. Therefore, the code snippets in Lines 1, 3, 4, and 16

(Line 14 will be injected in the later step) in Figure 1 are injected

after the marker injection step.

Program Input Modification. To increase the possibility of

executing divergent portions, one possible solution is to let users

provide concrete values for their own needs. Unfortunately, it is im-

practical to try out every possible (e.g., using random fuzzing [25])

value. To enable the automatic generation of divergence-revealing

test inputs, we modify the program inputs by inserting the follow-

ing code snippets inside the main function before the executing of

the primary function call (e.g., the function call g in Figure 1):

int n = 1; var = strtol(argv[n++], NULL, 16);

Such functions enable users to have the flexibility to control the

values of variables (we do not include “int n = 1;” in the code

example in Figure 1 as there is only one interesting variable to

investigate). Therefore, Line 14 is inserted for this purpose.

Since it is challenging to obtain desirable test inputs, Xdead

leverages symbolic execution to automatically generate desirable

test inputs by symbolizing the program inputs. It is worth noting

that the selection of interesting variables to be controlled by users

can affect the trade-off between the number of symbolized vari-

ables and the potential path explosion problem during symbolic

execution. In this study, we select all integer global variables as

interesting variables in Xdead.

2.2 Divergent Marker Identification

After the instrumentation in 1 , Xdead differentially compiles the

instrumented test program under two different versions of com-

pilers with the same optimization options and language standard

(e.g., “clang-11 -O3 -std=c99” and “clang-12 -O3 -std=c99” shown

in Figure 2) to produce two versions of binaries. Then, Xdead con-

structs the CFGs from the two binaries and retrieves the recordings

of marker function call names (e.g., marker_2) from the CFGs, to

identify divergent markers among two comparative binaries. The

choice for retrieving markers from CFGs is motivated by the fact

that, if the marker is in CFGs, it is possible that there exists an

execution path that could execute the marker, assuming the CFGs

are correctly yielded for each binary.

2.3 Divergence-revealing Input Generation

This subsection describes the divergent marker-targeted symbolic

execution in 3 to automatically generate the divergence-revealing

input that could execute a divergent marker identified in 2 .

To accomplish this, Xdead first leverages the address of the

function call in the divergent marker (i.e., marker_2 in Figure 1)

as a target and makes the controllable variables as symbolic. Note

that after symbolizing every interesting variable, Xdead maintains

the type information of each variable and adds a value range for

it to avoid potential undefined behaviors such as integer overflow.

Second, Xdead utilizes the target information to guide a symbolic

execution engine (i.e., angr [24]) to check if there is an execution

path that can execute the target function. Finally, if a solution is

found through the directed symbolic execution, Xdead obtains the

concrete values (e.g., 0x99) solved by a constraint solver.

In this way, divergence-revealing inputs are automatically gen-

erated. For example, test-inst.c with the concrete input 0x99
triggers the miscompilation bug in Figure 1.

3 PRELIMINARY EVALUATION

3.1 Experiment Setup

Implementation. We have implemented Xdead [6] using LLVM’s

LibTooling [8] for the instrumentation of the seed programs. We

used the tool bcov [3] to generate CFG of a binary and Shell code

scripts for automatically differentiatingmarkers.We used angr [24]

as our binary symbolic execution engine and implemented Python

and Shell code for the construction of divergence-revealing inputs.

During symbolic execution in Angr, we set the maximum iteration

number of 1,000 to loops whose condition involves a symbolic

variable, to avoid infinite forking of loop and improve the efficiency.

Benchmarks. We adopt Csmith [33] to generate seed programs,

as it is widely used in existing work [16–18, 26–29]. However, the

seed programs are not restricted to the program generators, other

real-world benchmarks such as SPEC CINT2006 Benchmarks [11]

or test suites [7, 10] from GCC or LLVM can also be applicable in

Xdead. For the test subjects, we opt for recent versions of GCC

(i.e., GCC-10/11) and LLVM (i.e., LLVM-11/12).

Running Settings. In both GCC and LLVM, the option “-O3”

aggressively enables a large number of optimizations on the code.

34

ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal Haoxin Tu, Lingxiao Jiang, Debin Gao, and He Jiang

Table 1: Statistics of divergent markers and test programs

Testing Scenarios Num.Div.b1 Num.Div.b2 Num.TP Per.TP Ave.M

GCC-10/11 (-std=c99) 52,553 0 5,897 58.97% 8.91

GCC-10/11 (-std=c11) 49,431 0 5,758 57.58% 8.59

LLVM-11/12(-std=c99) 187 60 70 0.007% 4.12

LLVM-11/12 (-std=c11) 142 57 68 0.0068% 2.93

* Num.Div.b1 and Num.Div.b2 refer to the number of divergent markers in two

binaries from different testing scenarios. For example, in the first scenario GCC-

11/12 (-std=c99), b1 is compiled with “GCC-11 -O3 -std=c99” while b2 is compiled

with “GCC-12 -O3 -std=c99”. Num.TP represents the number of test programs that

contain divergent markers. Per.TP refers to the percentage of test programs that

exist divergent markers among 10,000 test programs. Ave.M counts the average

number of markers calculated by (Num.Div.b1 + Num.Div.b2) / Num.TP.

Therefore, we separate the experiments into four scenarios (cf.
Table 1) and compare the results under “-O3” with commonly used

C language standards (i.e., “c99” and “c11”). We use CReduce [22] to

reduce and produce the minimal version of the bug-revealing test

programs. The experiments are run on Ubuntu 18.04 with Intel(R)

Xeon(R) W-2133 CPU @ 3.60GHz × 12 processors and 64GB RAM.

3.2 Preliminary Experiment Results

The Distribution of Divergent Markers. We generate 10,000 test

programs using Csmith [33] and record the number of divergent

markers and the number of test programs that contain divergent

markers. Table 1 lists the results of divergent markers identified by

Xdead. From the column Ave.M of the table, we can see that in

all scenarios Xdead could detect divergent markers between two

binaries. Specifically, GCC and LLVM behave differently in terms of

the number of divergent markers and the number of test programs

that contain the divergent markers. This is reasonable because

LLVMperformsmore aggressive DCE and a recent study [28] shows

LLVM eliminates more dead blocks than GCC among different

optimization versions, which indicates that the number of divergent

markers that exist in LLVM compilers is smaller than those in GCC

compilers. Furthermore, no divergent markers were found with the

higher GCC version (i.e., GCC-11) compared with the lower version

(i.e., GCC-10) while LLVM compilers behave differently. This result

suggests that different versions of GCC compilers perform very

similar strategies while doing DCE.

Practical Bug Detection Capability of Xdead. We contin-

uously run Xdead for 90 hours, which follows the same testing

duration [16] in detecting compiler bugs in previous work, for each

scenario and check how many compiler bugs are detected. As a re-

sult, Xdead successfully detects two miscompilation bugs in LLVM

compilers. One bug is triggered under LLVM-11/12(-std=c99) with

-O3, which has been shown as Figure 1 and discussed in Section 1.

Another bug [15] is detected under the scenarios of LLVM-11/12 (-

std=c11) with -O3, where LLVM-11 deletes live code again, causing

the miscompilation bug. The root cause of this bug is that LLVM-

11 encounters some issues in handling goto loops surrounded by

complex control/data flows, leading to the deletion of live code.

Comparison with Existing Tools. We also run the same set-

tings (i.e., running 90 hours with the same compilation options)

using two notable program generators, i.e., Csmith [33] and YARP-

Gen [20]. As a result, they failed to detect any miscompilation bugs.

This is reasonable as (1) modern compilers are already resilient to

the test programs generated by them [12, 29] and (2) the low possi-

bility of generating the desirable test program that could execute

the divergent portions. In contrast, Xdead could construct new

programs that existing program generators are hard to generate,

thus contributing to a larger possibility of detecting unique bugs.

Discussion. Xdead is sound, which means that Xdead will not

produce false positives, under the assumption that the tools, includ-

ing bcov and Angr, used in the implementation are sound. Xdead

is not complete as it may miss some opportunities when the deletion

of live code is happening but Xdead can not catch it. This is because

the function call divergence may be too coarse-grained and not

every bug can be detected using this way. There are two threats to

validity. One threat lies in the implementation of Xdead, includ-

ing CFG generation and symbolic execution tools. Another threat

comes from the evaluation of Xdead: we only evaluate Xdead over

test programs generated by Csmith [33] while other test programs

(e.g., from test-suite [7, 10]) are not tested yet.

4 RELATEDWORK

Test Program Construction for Compiler Testing.Mainstream

test program construction approaches either apply generation-

based approaches [20, 33] or adopt mutation-based approaches

[2, 17, 18, 26] to construct test programs. All of the above approaches

use random strategies to construct test programs, which can be

time-consuming and ineffective in detecting certain specific com-

piler bugs, such as the one caused by erroneously deleted live code.

Unlike existing test program construction approaches, which find

compiler bugs by luck, the novelty of this study lies in that Xdead

designs a new way to construct desired test programs, which could

be a new direction for compiler testing.

Finding Semantic Differences in Binaries. Many techniques

have been proposed to find the semantic differences between two bi-

nary programs when the source code is not available [13, 19, 31, 32].

They typically combine static binary analysis with control-flow

graph comparison and combine with symbolic execution for partial

instructions in the binary to reduce false positives. Different from

existing approaches, Xdead could be a new solution to find the

semantic differences between binaries, by first finding the possi-

ble semantically different portions and then leveraging dynamic

symbolic execution to explore the whole binary instead of partial

instructions in the binary for further reducing false alarms.

5 CONCLUSION AND FUTURE PLANS

We open a new research problem and present a new solution Xdead

to tackle the problem. The techniques of injection of marker func-

tions, marker differentiation based on differential testing and static

binary analysis, and automatic generation of divergence-revealing

test inputs are designed in Xdead. The evaluation results show that

Xdead can detect important miscompilation bugs caused by erro-

neously deleted live code. The existence of such bugs calls for more

attention to existing DCE implementations and more conservative

decisions when designing new DCE-related compiler optimizations.

Future Plans. We are considering the following concrete plans

to turn our new idea into a full-length paper in the near future:

• Utilize more fine-grained binary analysis to identify fine-grained

divergent portions (e.g., instruction or register) in binaries.

• Apply static program analysis over instrumented programs to

select interesting program inputs to be symbolized.

• Conduct more experimental evaluations (e.g., cross-component

comparison) to fully assess the effectiveness of Xdead.

35

Beyond a Joke: Dead Code Elimination Can Delete Live Code ICSE-NIER’24, April 14–20, 2024, Lisbon, Portugal

REFERENCES

[1] Aho Alfred V, Lam Monica S, Sethi Ravi, Ullman Jeffrey D, et al. 2007. Compilers-
principles, techniques, and tools. pearson Education.

[2] Mohammad Amin Alipour, Alex Groce, Rahul Gopinath, and Arpit Christi. 2016.

Generating focused random tests using directed swarm testing. In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA). 70–81.

[3] M. Ammar Ben Khadra, Dominik Stoffel, and Wolfgang Kunz. 2020. Efficient

Binary-Level Coverage Analysis. In Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (ESEC/FSE). 1153–1164.

[4] Jeremy Bennett. 2024. How Much Does a Compiler Cost? Retrieved 08/01/2024

from https://www.embecosm.com/2018/02/26/how-much-does-a-compiler-cost/

[5] Junjie Chen, Guancheng Wang, Dan Hao, Yingfei Xiong, Hongyu Zhang, and

Lu Zhang. 2019. History-guided configuration diversification for compiler test-

program generation. In 2019 34th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, 305–316.

[6] Developers. 2024. Xdead Implementation. Retrieved 01/08/2024 from https:

//github.com/haoxintu/Xdead

[7] GCC Developers. 2024. GCC Testsuite. Retrieved 01/08/2024 from https:

//github.com/gcc-mirror/gcc/tree/master/gcc/testsuite

[8] LLVM Developers. 2023. LibTooling. Retrieved 01/08/2024 from https://clang.

llvm.org/docs/LibTooling.html

[9] LLVMDevelopers. 2024. Bug fixing commit beforewe reported the bug. Retrieved

01/08/2024 from https://reviews.llvm.org/D94106

[10] LLVM Developers. 2024. LLVM Testsuite. Retrieved 01/08/2024 from https:

//github.com/llvm/llvm-project/tree/main/clang/test

[11] SPEC Developers. 2024. SPEC CINT2006 Benchmarks. Retrieved 01/08/2024

from https://www.spec.org/cpu2006/CINT2006/

[12] Karine Even-Mendoza, Cristian Cadar, and Alastair F Donaldson. 2022.

CsmithEdge: more effective compiler testing by handling undefined behaviour

less conservatively. Empirical Software Engineering 27, 6 (2022), 1–35.

[13] Debin Gao, Michael K Reiter, and Dawn Song. 2008. Binhunt: Automatically

finding semantic differences in binary programs. In International Conference on
Information and Communications Security (ICICS). 238–255.

[14] Godbolt. 2024. Execution results on buggy and non-buggy compilers for bug 1.

Retrieved 01/08/2024 from https://godbolt.org/z/z7zxexfr1

[15] Godbolt. 2024. Execution results on buggy and non-buggy compilers for bug 2.

Retrieved 01/08/2024 from https://godbolt.org/z/xos1d64xo

[16] He Jiang, Zhide Zhou, Zhilei Ren, Jingxuan Zhang, and Xiaochen Li. 2022. CTOS:

Compiler Testing for Optimization Sequences of LLVM. IEEE Transactions on
Software Engineering 48, 7 (2022), 2339–2358.

[17] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Validation via Equiv-

alence modulo Inputs. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 216–226.

[18] Vu Le, Chengnian Sun, and Zhendong Su. 2015. Finding Deep Compiler Bugs

via Guided Stochastic Program Mutation. In Proceedings of the ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA). 386–399.

[19] Bingchang Liu, Wei Huo, Chao Zhang, Wenchao Li, Feng Li, Aihua Piao, and Wei

Zou. 2018. 𝛼-diff: cross-version binary code similarity detection with dnn. In

Proceedings of the 33rd ACM/IEEE International Conference on Automated Software
Engineering (ASE). 667–678.

[20] Vsevolod Livinskii, Dmitry Babokin, and John Regehr. 2020. Random testing for

C and C++ compilers with YARPGen. Proceedings of the ACM on Programming
Languages 4, OOPSLA (2020), 1–25.

[21] Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patricia Lago.

2018. An extensible approach for taming the challenges of JavaScript dead

code elimination. In Proceedings of the 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER). 291–401.

[22] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-Case Reduction for C Compiler Bugs. In Proceedings of the 33rd
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). 335–346.

[23] Bug Report. 2024. LLVM Issue 63121. Retrieved 01/08/2024 from https://github.

com/llvm/llvm-project/issues/63121

[24] Yan Shoshitaishvili, RuoyuWang, Christopher Salls, Nick Stephens, Mario Polino,

AndrewDutcher, John Grosen, Siji Feng, Christophe Hauser, Christopher Kruegel,

et al. 2016. Sok:(state of) the art of war: Offensive techniques in binary analysis.

In Proceedings of IEEE Symposium on Security and Privacy (S&P). 138–157.
[25] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang,

Jacopo Corbetta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna.

2016. Driller: Augmenting fuzzing through selective symbolic execution. In The
Network and Distributed System Security Symposium (NDSS), Vol. 16. 1–16.

[26] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding Compiler Bugs via Live

Code Mutation. In Proceedings of the ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications (OOPSLA).
849–863.

[27] Yixuan Tang, He Jiang, Zhide Zhou, Xiaochen Li, Zhilei Ren, and Weiqiang

Kong. 2022. Detecting Compiler Warning Defects Via Diversity-Guided Program

Mutation. IEEE Transactions on Software Engineering 48, 11 (2022), 4411–4432.

[28] Theodoros Theodoridis, Manuel Rigger, and Zhendong Su. 2022. Finding Missed

Optimizations through the Lens of Dead Code Elimination. 697–709.

[29] Haoxin Tu, He Jiang, Xiaochen Li, Zhilei Ren, Zhide Zhou, and Lingxiao Jiang.

2022. Remgen: Remanufacturing a Random Program Generator for Compiler

Testing. In Proceedings of the 33rd International Symposium on Software Reliability
Engineering (ISSRE). 529–540.

[30] Haoxin Tu, He Jiang, Zhide Zhou, Yixuan Tang, Zhilei Ren, Lei Qiao, and Lingxiao

Jiang. 2022. Detecting C++ Compiler Front-End Bugs via Grammar Mutation

and Differential Testing. IEEE Transactions on Reliability (2022), 343 – 357.

[31] Sami Ullah and Heekuck Oh. 2021. BinDiff NN: Learning Distributed Represen-

tation of Assembly for Robust Binary Diffing against Semantic Differences. IEEE
Transactions on Software Engineering 48, 9 (2021), 3442–3466.

[32] Xiaojun Xu, Chang Liu, Qian Feng, Heng Yin, Le Song, and Dawn Song. 2017.

Neural network-based graph embedding for cross-platform binary code simi-

larity detection. In Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security (CCS). 363–376.

[33] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Finding and Under-

standing Bugs in C Compilers. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI). 283–294.

36

