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Abstract—Matching indirect function callees and callers using
function signatures recovered from binary executables (number
of arguments and argument types) has been proposed to construct
a more fine-grained control-flow graph (CFG) to help control-flow
integrity (CFI) enforcement. However, various compiler optimiza-
tions may violate calling conventions and result in unmatched
function signatures. In this paper, we present eight scenarios
in which compiler optimizations impact function signature re-
covery, and report experimental results with 1,344 real-world
applications of various optimization levels. Most interestingly,
our experiments show that compiler optimizations have both
positive and negative impacts on function signature recovery,
e.g., its elimination of redundant instructions at callers makes
counting of the number of arguments more accurate, while it
hurts argument type matching as the compiler chooses the most
efficient (but potentially different) types at callees and callers.
To better deal with these compiler optimizations, we propose
a set of improved policies and report our more accurate CFG
models constructed from the 1,344 applications. We additionally
compare our results recovered from binary executables with
those extracted from program source and reveal scenarios where
compiler optimization makes the task of accurate function
signature recovery undecidable.

I. INTRODUCTION

Control-Flow Integrity (CFI) [1] is a promising technique
in defending against control-flow hijacking attacks [2], [5],
[24], [30] by enforcing that runtime control flows follow valid
paths in the program’s Control-Flow Graph (CFG). Many
approaches [20], [25], [26], [31] opt for fine-grained CFGs
obtained at compilation time due to their high accuracy.
However, it is difficult to precisely recover CFGs at the binary
level since compilers do not preserve much information in the
process of compilation [19]. Most existing approaches had to
conservatively consider all functions as potential targets of an
indirect caller, resulting in loosened CFI policies [35], [36]
which make these approaches vulnerable to various attacks [4],
[9], [11], [13], [29].

Latest approaches [23], [32] recover function signatures at
the binary level by following calling conventions and only
allow control flows between callees and callers with matching
function signatures. Although generally good accuracy had
been reported, e.g., TypeArmor [32] achieved 83.26% and
79.19% accuracy in identifying the number of arguments at
callees and callers, respectively, in this paper, we challenge
this belief of high accuracy when dealing with optimized
binary executables. We subject TypeArmor to the same set
of applications as chosen in the original paper, which are now

compiled with different compiler versions with new optimiza-
tion strategies enabled and find that the accuracy drops to
72.89% and 72.27%. The accuracy goes even lower to 63.74%
and 69.36% when analyzing more complicated applications
(e.g., Binutils) even with the same compiler version used in
the original paper.

Our further investigation shows that this is because compiler
optimizations may violate calling conventions and result in
unmatched function signatures recovered at valid callees and
callers. For example, modern compilers may not set or reset an
argument register explicitly at the caller if the intended value
is already in the corresponding register. The non-existence
of the value assignment instruction therefore confuses the
recovery process and results in underestimation on the number
of function arguments. As shown in Listing 1, the indirect call
at line 2 has 4 arguments, but the compiled binary code (with
optimization flag -O2 by clang) does not prepare for any
argument as shown at Line 15 – 20. Similarly, the compiler
only sets the first two arguments (%edi, %esi) for the indirect
call at Line 25 while it requires 3 arguments as shown at
Line 7. Such errors in function signature recovery could lead
to invalid function calls being allowed or, even worse, valid
calls being inadvertently blocked.

In this paper, we systematically study how compiler opti-
mizations impact the accuracy of function signature recovery
on x86-64 platform, with obfuscated binary out of our scope
since existing work has clearly shown how obfuscated code
complicates static binary analysis [15]. Specifically, we first
theoretically analyze the possible ways in which compiler
optimizations could impact the accuracy of two most recent
approaches in function signature recovery for CFI, namely
TypeArmor [32] and τCFI [23], and then experiment with
a large number of applications including Binutils1, LLVM
test-suite2, as well as C/C++ applications from Github to
evaluate the extent to which such complications arise on real-
world applications. We recover the ground truth of function
signatures of 552 C and 792 C++ applications compiled with
gcc-8 and clang-7 with optimization levels -O0 to -O3
and compare them with results of TypeArmor [32], τCFI [23],
and Ghidra [12] in recovering the number of arguments and
argument types.

1https://www.gnu.org/software/binutils/
2https://llvm.org/docs/TestSuiteGuide.html



1 l ong t e s t ( l ong a , l ong b , l ong c , l ong d , l ong e ,
l ong f ) {

2 l ong sum1 = (∗ f p t r 1 ) ( a , b , c , d ) ;
3 . . . . . .
4 / / f u n c t i o n l d i v r e t u r n s a s t r u c t
5 l d i v t l d i v r s ;
6 r s = l d i v (1000000L , 1 3 2L ) ;
7 l ong sum2 = (∗ f p t r 2 ) ( a , r s . q u o t , r s . r e m ) ;
8 i f ( sum2 > sum1 )
9 r e t u r n sum2 ;

10 e l s e
11 r e t u r n sum1 ;
12 }
13 0000000000400650 <t e s t >:
14 . . . . . .
15 40065 b : mov %r9 ,(% r s p )
16 40065 f : mov %r8 ,% r12
17 400662: mov %rcx ,% r13
18 400665: mov %rdx ,% rbp
19 400668: mov %e s i ,% r15d
20 40066 b : mov %r d i ,% r14
21 40066 e : c a l l q ∗0 x200e04(% r i p ) # 601478 <f p t r 1>
22 . . . . . .
23 40069 e : mov %r14d ,% e d i
24 4006 a1 : mov %eax ,% e s i
25 4006 a3 : c a l l q ∗0 x2009b7(% r i p ) # 601060 <f p t r 2>

Listing 1: An example when function signature recovery
meet compiler optimization.

Results show that compiler optimizations have both positive
and negative impacts on function signature recovery. First,
optimizations make the identification of variadic functions
more accurate as arguments are more likely to be moved to
callee-saved registers than being moved onto the stack. At the
same time, the elimination of redundant instructions due to
optimization also simplifies the argument analysis at callers.
However, compiler optimization could make identification of
the number of arguments and the type inferencing at callees
less accurate, because of the elimination of unused arguments
and promotion/demotion of argument types.

In order to mitigate these inaccuracies, we propose our
improved policies to recover the function signatures more
accurately from optimized binaries. We evaluate our proposed
policies with the same set of real-world applications and
compare our accuracy with that of existing ones. Results show
that, e.g., the likelihood of misidentifying variadic functions
in C is reduced from 3.3% to 1.2%. Moreover, our policy
can mitigate all issues caused by argument type demotion at
callers and argument type promotion at callees. Finally, we
look at the bigger picture of CFI policies recovered from
binary executables and program source, empirically analyze
the implication of errors they make, and reveal scenarios
in which compiler optimization makes the task of accurate
function signature recovery undecidable.

In summary, this paper makes the following contributions:
• We study how compiler optimizations impact function

signature recovery and perform our evaluation on 1,344
real-world applications;

• We propose improved inferencing policies which result
in much higher accuracy when experimenting with real-
world applications; and

• We empirically compare function signatures recovered
from executables and program source and identify cases
where compiler optimization makes the task undecidable.

II. BACKGROUND AND UNIFIED NOTATION

In this section, we first briefly present C/C++ calling con-
vention and introduce our notations used in this paper, and
then present the CFI policies used by the two most recent
approaches TypeArmor [32] and τCFI [23].

A. Basic Calling Conventions in C/C++

On Linux x86-64, all arguments of a function are passed
from the caller to the callee who is assumed to process
every argument. Integer arguments are passed in registers
%rdi, %rsi, %rdx, %rcx, %r8, %r9 in sequence, while
%XMM0 - %XMM7 are used to pass floating-point argu-
ments [21]. Additional arguments are pushed onto the stack
in reverse order. The return value is stored in %rax with
potentially the higher 64 bits stored in %rdx. Floating-point
return values are similarly stored in %XMM0 and %XMM1. Both
TypeArmor and τCFI adhere to these calling conventions and
do not consider deviations from them.

Variadic functions (such as printf in the C library)
are used to maximize flexibility in argument passing. These
functions accept a variable number of arguments which do not
necessarily have fixed types.

B. Unified Notation

TypeArmor [32] and τCFI [23] reconstruct both callee and
caller signatures by performing static binary analysis and then
use this information to enforce Control-Flow Integrity between
callees and callers with similar signatures. TypeArmor uses the
number of arguments as the signature, while width (number
of bits p ∈ {64, 32, 16, 8}) of the argument-storing registers
is used by τCFI. Just like in existing approaches, we focus
on function signature recovery for integer arguments and use
i ∈ [1, 6] to index the six argument registers.

Here we introduce our unified notation to describe the CFI
policies TypeArmor and τCFI employ as well as our improved
policy (see Section V). Note that the notations we introduce
are mainly for explaining what the policies are, and we discuss
more on how the policies are extracted in Section V-E.

1) Analysis of callees: Analysis of a callee function typi-
cally starts from the function entry and continues in a forward
manner until the end of the function. Here, the analysis focuses
on the first instruction involving a parameter-passing register,
which could have one of the following four possible states:
sEE ∈ {ẇ(), ˙rw(), ˙rw2s(), c} (we use the dot above a state
to denote that it’s the analysis result of the first instruction
involving the corresponding register).

Definition II.1. State ẇi(p) if the first instruction involving
register i is writing into the lower p bits of register i.

Definition II.2. State ˙rwi(p) if the first instruction involving
register i is reading the lower p bits of it and writing to anther
register or a non-stack address.

Definition II.3. State ˙rw2si(p) if the first instruction involv-
ing register i is reading the lower p bits of it and writing to a
stack address.



Definition II.4. State ci if register i is not involved in any
instructions.

For example, for function test in Listing 1, states of the
first five argument registers are ˙rw1(64), ˙rw2(32), ˙rw3(64),
˙rw4(64), and ˙rw5(64), since 64 or 32 bits of these argument

registers are read before (potential) new data is written to them.
The state of the sixth argument register sEE

6 = ˙rw2s6(64)
since 64 bits of %r9 are moved onto the stack.

Definition II.5. Argument register state vector observed at
callee POB

EE =< sEE
1 , sEE

2 , sEE
3 , sEE

4 , sEE
5 , sEE

6 > where
sEE
i ∈ {ẇi(), ˙rwi(), ˙rw2si(), ci} for i ∈ [1, 6].

For the example in Listing 1, POB
EE−400650 =<

˙rw1(64), ˙rw2(32), ˙rw3(64), ˙rw4(64), ˙rw5(64), ˙rw2s6(64) >.

Definition II.6. b2bi is true if sEE
i = ˙rw2si() and sEE

i+1 =
˙rw2si+1() and the corresponding instructions involving reg-

isters i and i +1 are back to back.

For the example in Listing 1, sEE
5 = rw5(64) and sEE

6 =
rw2s6(64); therefore b2b5 is false.

2) Analysis of callers: Analysis of a caller function starts
at the indirect call instruction and continues in a backward
manner until it hits another function call instruction. This
backward analysis follows the CFG and focuses on all in-
structions involving the parameter-passing register instead of
only the first instruction as in the analysis of callees.

Definition II.7. State wi(p) if there is an instruction writing
to the lower p bits of register i.

Definition II.8. State ŵi if there is no instruction writing to
register i.

At the caller, a register can be in either state, i.e., sER ∈
{w(), ŵ}. For example, for Line 23 – 25 in Listing 1, sER

1 =
sER
2 = w2(32).

Definition II.9. Argument register state vector observed at
caller POB

ER =< sER
1 , sER

2 , sER
3 , sER

4 , sER
5 , sER

6 > where
sER
i ∈ {wi(), ŵi} for i ∈ [1, 6].

The state vector at caller 0x4006a3 in Listing 1 is
POB
ER−4006a3 =< w1(32), w2(32), ŵ3, ŵ4, ŵ5, ŵ6 >, since 32

bits of data are written to %rdi and %rsi.

C. TypeArmor’s Policy on the Number of Arguments

1) Callee: TypeArmor [32] performs a forward recursive
analysis from the entry block to find out states of the six
argument registers. If the state of the sixth argument register
(%r9) is ˙rw2s6(), TypeArmor concludes that this function
is variadic and the number of arguments is the maximal i
that makes b2bi false. For example, in Listing 1, TypeArmor
concludes that it is a variadic function with 5 arguments. If
the state of %r9 is not ˙rw2s6(), the function is considered
non-variadic and the number of arguments is the maximal i
with state ˙rw2si() or ˙rwi().

Definition II.10. The observed number of arguments at callee
|POB

EE | is:argmax
i

(¬b2bi) if sEE
6 = ˙rw2s6()

max(argmax
i

( ˙rw2si()), argmax
i

( ˙rwi())) otherwise

2) Caller: TypeArmor iterates over each indirect caller and
performs a backward static analysis to detect the number of
arguments prepared. If the states of all argument registers
are w(), TypeArmor stops the analysis and considers that
the caller prepares the maximum number of arguments. If
some argument registers are neither w() nor ŵ, TypeArmor
performs a recursive backward analysis on incoming control
flows. In cases where incoming control flows are via indirect
calls and therefore backward analysis fails in identifying
the caller function, TypeArmor assumes that the maximum
number of arguments is prepared. It also assumes that the
argument registers are always reset between two function calls,
and therefore analysis is terminated when a return edge is
encountered. In summary, the number of arguments at the
caller is the minimal i with state ŵi minus one.

Definition II.11. The observed number of arguments at caller
|POB

ER | is: {
argmin

i
(sER

i = ŵi)− 1 if ∃ŵi ∈ POB
ER

6 otherwise

Since there could be overestimation at callers and underes-
timation at callees, TypeArmor allows caller A to call callee
B if and only if |POB

ER−A| ≥ |POB
EE−B |.

D. τCFI’s Policy on the Width of Arguments

τCFI [23] is the follower of TypeArmor that constructs
a more fine-grained CFG by additionally considering the
widths of argument registers as function signatures. It an-
alyzes the number of bits of argument registers that are
read or written to at callees and callers, respectively. We
use |sEE | and |sER| to represent the with of arguments at
callees and callers, respectively. For example, if POB

EE =<
ẇ1(), ẇ2(), ẇ3(), ẇ4(), ˙rw5(64), ˙rw6(64) >, then |sEE

1 | =
|sEE

2 | = |sEE
3 | = |sEE

4 | = 0 and |sEE
5 | = |sEE

6 | = 64.
Since the analysis could cause overestimation at callers and

underestimation at callees, the CFI policy of τCFI is: caller
A can transfer control flow to callee B if and only if: ∀i ∈
[1, |POB

ER |], |sER
i | >= |sEE

i |.
We also denote the ground truth for the states of argument

registers at callees and callers as PGT
EE and PGT

ER , respectively.
|sEE,GT | and |sER,GT | are used to denote the ground truth
on the width of arguments.

III. EIGHT WAYS IN WHICH COMPILER OPTIMIZATION
IMPACTS FUNCTION SIGNATURE RECOVERY

In this section, we present our analysis in binary optimiza-
tion strategies and how they impact the accuracy of function
signature recovery. Specifically, we study the source code of
compilers (gcc-8 and clang-7), paying special attention
to the mechanism in which arguments are passed from callers



to callees under different optimization flags (-O0, -O1, -O2,
-O3). We also consult the Intel instruction manual [14] on
how each instruction could affect function signatures. Finally,
we compile the following eight scenarios in which compiler
optimization could impact function signature recovery by the
two most recent work, namely TypeArmor and τCFI.

A. Complications at Callees

1) Misidentifying variadic functions: As outlined in Sec-
tion II-C, TypeArmor uses ˙rw2s6() as the sole indicator
of a variadic function. Interestingly, such a policy tends to
introduce more errors in unoptimized binaries in which all
arguments are moved onto the stack and any normal function
with more than five arguments will be misidentified as vari-
adic. We denote this complication as Nor2Var. On the other
hand, optimized binaries tend to move arguments to callee-
saved registers, which reduces the chances of such errors. That
said, normal functions in optimized binaries may still use the
stack for parameter passing if the compiler determines that the
argument will be reused after the call.

Listing 2a shows a function compiled with clang -O2.
Since sEE

6 = ˙rw2s6(), b2b5 is true and b2b4 is false. TypeAr-
mor determines that coff_write_symbol is a variadic
function with 4 arguments. However, |PGT

EE−0x471a60| = 7 as
shown at Line 1.

Another complication arises when a variadic function does
not use some of the variadic arguments. An optimized binary
will not explicitly read these arguments, which will cause the
variadic function to be misidentified as normal (denoted as
Var2Nor). Note that this does not affect binaries compiled
by clang since clang always explicitly reads all variadic
arguments.

Listing 2b shows a variadic function bfd_set_error
compiled by gcc -O2. As shown at Line 6 – 7, only the first
two variadic arguments are used by this function, and therefore
gcc only moves %rsi and %rdx onto the stack (Line 16 –
17). Current approaches would find that POB

EE−0x328c0 =<
˙rw1(32), ˙rw2s2(64), ˙rw2s3(64), c4, c5, c6 > and determine

that |POB
EE−0x328c0| = 3 since %r9 is not moved onto the

stack. However, |PGT
EE−0x328c0| = 1 as shown at Line 1.

Moreover, instructions that move the variadic arguments
onto the stack in an optimized binary may not be back to back,
which results in b2b being unreliable in determining the num-
ber of arguments — an overestimation (denoted as VarOver).
Listing 2c shows the variadic function concat_copy com-
piled by gcc -O2. TypeArmor and τCFI find b2b5 to be
false and determine that it is a variadic function with 5 default
arguments, but the ground truth is that it has only 2 default
arguments as shown at Line 1.

2) Missing argument-reading instructions: When optimiza-
tion is enabled, there may not be explicit reading of an
argument if the function does not use it, leading the cor-
responding state of the argument to be c. We denote this
complication as Unread. As shown in Listing 3, since the first
and third arguments of jpeg_free_large (compiled by
clang -O2) are not used, TypeArmor and τCFI determine

1 s t a t i c b f d b o o l e a n c o f f w r i t e s y m b o l (∗ ,∗ ,∗ ,∗ ,∗ ,∗ ,∗ )
2 0000000000471 a60 <c o f f w r i t e s y m b o l >:
3 . . . . . .
4 471 a6e : mov %r9 , 0 x40(% r s p )
5 471 a73 : mov %r8 , 0 x10(% r s p )
6 471 a78 : mov %rcx ,% r15
7 471 a7b : mov %rdx ,% r14
8 471 a7e : mov %r s i ,% rbp
9 471 a81 : mov %r d i ,% r12

10 . . . . . .
11 471 c 4 f : mov 0x40(% r s p ) ,% rbx

a: Normal function misidentified as variadic
1 vo id b f d s e t e r r o r ( b f d e r r o r t y p e e r r o r t a g , . . . ) {
2 b f d e r r o r = e r r o r t a g ;
3 i f ( e r r o r t a g == b f d e r r o r o n i n p u t ) {
4 v a l i s t ap ;
5 v a s t a r t ( ap , e r r o r t a g ) ;
6 i n p u t b f d = v a a rg ( ap , b fd ∗) ;
7 i n p u t e r r o r = ( b f d e r r o r t y p e ) v a a rg ( ap , i n t ) ;
8 . . . . . .
9 }

10 }
11 00000000000328 c0 <b f d s e t e r r o r >:
12 . . . . . .
13 328 c4 : mov %edi , 0 x300186(% r i p )
14 . . . . . .
15 328 da : cmp $0x14 ,% e d i
16 328 dd : mov %r s i , 0 x28(% r s p )
17 328 e2 : mov %rdx , 0 x30(% r s p )
18 328 e7 : j e 32900

b: Variadic function misidentified as normal
1 c h a r ∗ c o n c a t c o p y ( c h a r ∗d s t , c o n s t c h a r ∗ f i r s t , . . . )
2 00000000000 dea00 <conca t copy >:
3 . . . . . .
4 dea25 : t e s t %r s i ,% r s i
5 dea28 : mov %rdx , 0 x30(% r s p )
6 dea2d : mov %rcx , 0 x38(% r s p )
7 dea32 : mov %r8 , 0 x40(% r s p )
8 dea37 : mov %rax , 0 x8(% r s p )
9 dea3c : l e a 0x20(% r s p ) ,% r a x

10 dea41 : mov %r9 , 0 x48(% r s p )

c: Number of variadic arguments overestimated

Listing 2: Examples of variadic function misidentification

1 GLOBAL( vo id ) j p e g f r e e l a r g e ( j common ptr c i n f o ,
vo id FAR ∗ o b j e c t , s i z e t s i z e o f o b j e c t ) {

2 f r e e ( o b j e c t ) ;
3 }
4 000000000041 b6b0 <j p e g f r e e l a r g e >:
5 41 b6b0 : mov %r s i ,% r d i
6 41 b6b3 : jmpq 400950 <f r e e @ p l t>
7
8 c a l l e r s i t e :
9 41 b5a0 : mov 0x70(%r14 ,% r15 , 8 ) ,% r s i

10 . . . . . .
11 41 b5d3 : mov %r12 ,% r d i
12 41 b5d6 : mov %rbp ,% rdx
13 41 b5d9 : c a l l q 41 b6b0 <j p e g f r e e l a r g e>

Listing 3: Not reading argument registers

that POB
EE−0x41b6b0 =< ẇ1(64), ˙rw2(64), c3, c4, c5, c6 >. Note

that compilers always set the argument registers at callers even
if they are not used by the callee; see Line 11 – 12.

3) Misidentifying %rdx as an argument: Some registers
have special usage in addition to passing arguments. For
example, the third argument register %rdx can also be used
to store return values when the size of the return value is
larger than 64 bits. When there is a read operation on it,
current approaches do not distinguish reading an argument



1 l ong t e s t ( l ong a , l ong b )
2 00000000004006 a0 <t e s t >:
3 . . . . . .
4 4006 ae : c a l l q 400490 <l l d i v @ p l t>
5 4006 b3 : mov %rbx ,% r d i
6 4006 b6 : mov %rdx ,% r s i
7 4006 b9 : c a l l q ∗0 x200db1(% r i p ) # 601470 <f p t r 3>
8 4006 bf : mov %rax ,% rbx
9 4006 c2 : c a l l q ∗0 x2009a0(% r i p ) # 601068 <f p t r 4>

Listing 4: Misidentifying %rdx as an argument

1 t y p e d e f u n s i g n e d i n t JDIMENSION ;
2 vo id p r o c e s s d a t a c r a n k p o s t ( j d e c o m p r e s s p t r c i n f o ,

JSAMPARRAY o u t p u t b u f , JDIMENSION ∗o u t r o w c t r ,
JDIMENSION out rows avail ) {

3 (∗ c i n f o−>pos t−>p o s t p r o c e s s d a t a ) ( c i n f o , NULL,
NULL, 0 , o u t p u t b u f , o u t r o w c t r , out rows avail ) ;

4 }
5 00000000000165 c0 <p r o c e s s d a t a c r a n k p o s t >:
6 165 c0 : sub $0x10 ,% r s p
7 165 c4 : mov 0 x228(% r d i ) ,% r a x
8 165 cb : mov %r s i ,% r8
9 165 ce : mov %rdx ,% r9

10 165 d1 : push %r c x
11 165 d2 : xor %edx ,% edx
12 165 d4 : xor %ecx ,% ecx
13 165 d6 : xor %e s i ,% e s i
14 165 d8 : c a l l q ∗0x8(% r a x )

Listing 5: Promoted argument pushed onto the stack

from reading the higher 64 bits of a return value. It could
then result in an overestimation on the number of arguments.
This complication is denoted as rdx.

As shown in Listing 4, TypeArmor and τCFI determine that
POB
EE−0x4006a0 =< ˙rw1(64), ẇ2(32), ˙rw3(64), c4, c5, c6 >,

and that it is a normal function with 3 arguments. However,
|PGT

EE−0x4006a0| = 2 and the reading of %rdx is for the higher
64 bits of the return value of function lldiv.

4) Argument (width) promotion: Some instructions may
only work on 64-bit registers or memory, and optimization
may prefer using 64-bit registers since using 32-bit registers
would result in longer instructions. For example, the compiler
uses push to pass arguments to callees (via the stack) when
the flag “-mpush-arg” is enabled (e.g., when it is the 7th
argument). However, push only allows 64-bit registers as
operands, which leads to argument (width) promotion (denoted
as Push). Line 1 – 4 of Listing 5 shows that the fourth
argument out_row_avail, whose type is unsigned int, is
passed as the 7th argument at Line 3, and is pushed onto the
stack at Line 10 (resulting in ˙rw4(64) instead of ˙rw4(32)).

Another complication is due to the default width of operands
of certain instructions, e.g., lea [14]. Compilers prefer read-
ing a 64-bit register even if the width of the argument is
32 bits, since reading a 32-bit register requires a prefix 67H
(denoted as lea). Appendix A shows an example of it.

B. Complications at Callers

1) Missing argument-writing instructions: Similar to miss-
ing argument reading instructions at callees as discussed
above, compiler optimization may decide not to set or reset
the value of a register explicitly at callers.
• Higher 64 bits of the return value used as the third

argument (denoted as Ret). %rdx is used to store the

1 l ong t e s t 2 ( long a , l ong b ){
2 / / mesg and e r r a r e n o t i n i t i a l i z e d
3 c h a r ∗mesg ,∗ e r r ;
4 l l d i v t r e s ;
5 r e s = l l d i v (31558149LL,3600LL ) ;
6 l ong r1 = (∗ f p t r 3 ) ( a , r e s . q u o t , r e s . r e m ) ;
7 (∗ f p t r 4 ) ( mesg , e r r ) ;
8 p r i n t f ( ”%s\n ” , b u f f e r ) ;
9 r e t u r n r1 ;

10 }
11 00000000004006 a0 <t e s t 2 >:
12 . . . . . .
13 4006 ae : c a l l q 400490 <l l d i v @ p l t>
14 4006 b3 : mov %rbx ,% r d i
15 4006 b6 : mov %rax ,% r s i
16 4006 b9 : c a l l q ∗0 x200db1(% r i p ) # 601470 <f p t r 3>
17 4006 bf : mov %rax ,% rbx
18 4006 c2 : c a l l q ∗0 x2009a0(% r i p ) # 601068 <f p t r 4>

Listing 6: Missing argument-writing instructions

higher 64 bits of the return value. If the compiler finds
that a function uses this value as the third argument, it
will not explicitly reset %rdx again.

• Uninitialized variable as an argument (denoted as Uninit).
clang generates undef values for uninitialized vari-
ables and do not explicitly set these arguments [18], [22].
On the other hand, gcc initializes them to zero3.

• Indirect calls in wrapper functions (denoted as Wrapper).
Indirect callers may not reset argument registers when
their values are already in the corresponding registers
especially for inlined functions.

• Argument values not modified between two calls (denoted
as Unmodified). gcc-7 and above eliminates writing
across functions when the argument register is set to the
same value for two consecutive callers.

All the above except Wrapper leads to ŵ and results in
underestimation on the number of arguments. Here we present
one example (Listing 6) in which the higher 64-bit return
value and an uninitialized variable are used as arguments. The
state vectors for the two indirect calls are POB

ER−0x4006b9 =<
w1(64), w2(64), ŵ3, ŵ4, ŵ5, ŵ6 > and POB

ER−0x4006c2 =<
ŵ1, ŵ2, ŵ3, ŵ4, ŵ5, ŵ6 >, respectively, which lead to a finding
of |POB

ER−0x4006b9| = 2 and |POB
ER−0x4006c2| = 0. However,

by observing the source code at Line 6 – 7, we realize that
|PGT

ER−0x4006b9| = 3 and |PGT
ER−0x4006c2| = 2. Additional

examples can be found in Appendix B.
2) Registers storing temporary values: Since all argument

registers are general-purpose registers, they could also
be used as scratch registers to store temporary values,
which could result in an overestimation on the number of
arguments (denoted as Temp). Listing 7a shows an example
(compiled with clang -O0) with POB

ER−0x416015 =<
w1(64), w2(64), w3(64), w4(64), ŵ5, ŵ6 > and
|POB

ER−0x416015| = 4. However, according to the ground
truth at Line 7, we can observe that |PGT

ER−0x416015| = 3 and
the write operation on %rcx is to store a temporary
value. Note that compiler optimization can remove
many redundant instructions that are used to store
temporary values; and so it has a positive impact on

3https://github.com/gcc-mirror/gcc/blob/master/gcc/init-regs.c



1 . . . . . .
2 460 f f c : mov −0x18(% rbp ) ,% r d i
3 461000: mov −0xe8(% rbp ) ,% r s i
4 461007: mov −0xf0 (% rbp ) ,% r c x
5 46100 e : add $0x10 ,% r c x
6 461012: mov %rcx ,% rdx
7 #(∗ bed−>e l f b a c k e n d r e l o c t y p e c l a s s ) ( i n f o , o , s−>r e l a ) ;
8 461015: c a l l q ∗%r a x

a: Assembly compiled with clang -O0.

1 . . . . . .
2 438881: mov 0x30(% r s p ) ,% r d i
3 438886: mov %rbx ,% r s i
4 438889: mov %rbp ,% rdx
5 43888 c : mov 0x10(% r s p ) ,% r a x
6 #(∗ bed−>e l f b a c k e n d r e l o c t y p e c l a s s ) ( i n f o , o , s−>r e l a ) ;
7 438891: c a l l q ∗0x208(% r a x )

b: Assembly compiled with clang -O2.

Listing 7: Registers to store temporary values

1 546586:mov $0x8a01b0 ,% e s i
2 54658 b : mov $0x2000 ,% edx
3 546590:mov %r14 ,% r d i
4 #(∗ g i t h a s h u p d a t e f n ) (∗ , ∗ , s i z e t l e n ) ;
5 546593: c a l l q ∗0x28(% r a x )

Listing 8: A constant and a pointer as arguments

this case; see the optimized binary in Listing 7b where
POB
ER−0x438891 =< w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 >

and |POB
ER−0x438891| = |PGT

ER−0x438891| = 3.
3) Argument (width) demotion: To the opposite of argument

promotion at callees, compilers may use a smaller-sized regis-
ter (32-bit), since a 64-bit register may need a REX prefix [14]
which increases the code size and affects the I-cache footprint.
This applies to cases where
• Arguments are constants whose sizes are up to 32 bits

(denoted as Imm);
• Arguments are pointers pointing to .rodata, .bss, and .text

sections (denoted as Pointer); and
• Arguments are NULL pointers (denoted as Null).
Listing 8 shows an example for these cases com-

piled by clang -O2. The ground truth at Line 4 shows
PGT
ER−0x546593 =< w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 >,

while TypeArmor and τCFI determine that POB
ER−0x546593 =<

w1(64), w2(32), w3(32), ŵ4, ŵ5, ŵ6 > since the second ar-
gument (0x8a01b0) is a pointer pointing to the .rodata
section, and the third argument (0x2000) is a 32-bit constant.
Appendix C shows an example of the case of NULL pointers.

Appendix E presents a summary on the complications at
both callees and callers with the last column indicating the
consequences. Appendix D shows the case Prom which is a
complication introduced by optimization although it does not
result in unmatched function signatures.

IV. EXPERIMENTAL RESULTS OF THE EIGHT
COMPLICATIONS ON REAL-WORLD PROGRAMS

Section III details our theoretical analysis by analyzing com-
piler optimization strategies. In this section, we test how the

eight complications identified in Section III present themselves
in real-world programs. Specifically, we use a test suite of
programs comprising of 552 C and 792 C++ applications
compiled with gcc-8 and clang-7 with optimization levels
from -O0 to -O3 for x86-64, and compare analysis results of
TypeArmor and τCFI with ground truths extracted. Since the
source code of τCFI is not released, we implement it ourselves
according to the description of the paper [23].

In addition to TypeArmor and τCFI which recover function
signatures for the specific purpose of Control-Flow Integrity,
we also include a well-known binary analysis framework,
Ghidra [12] v9.1.1, into our experiments since it also performs
function signature recovery for reverse engineering purposes.
Besides its general-purpose nature which leads to less em-
phasis on precision of the function signature recovery, our
preliminary analysis on its source code reveals the following
distinctions when Ghidra is compared to TypeArmor and τCFI
in their mechanisms of function signature recovery:
• Only functions with symbol information are correctly

identified as variadic, while those without symbol infor-
mation are simply assumed to be non-variadic;

• Only instructions immediately prior to (without control-
flow transfers) a call instruction are considered potentially
preparing for function arguments;

• Forward and backward analysis are constrained within
the scope of a single function; and

• Width for each argument at callers is always 64 bits.
With this preliminary understanding, we expect Ghidra to

perform less accurately compared to TypeArmor and τCFI in
recovering function signatures.

Our test suite is composed of Binutils-2.26, LLVM test-
suite, and a large number of C and C++ applications from
Github. This composition ensures that (1) it contains a wide
variety of realistic C and C++ binaries with sizes ranging from
0.07MB to slightly more than 100MB (see Appendix F for de-
tails of sizes of the binary executables); (2) it contains binaries
used in the evaluation of previous work, making it possible to
compare our results with the literature; (3) it includes real-
world applications downloaded from Github which contain
complex corner cases which “testbed” applications may not
have (see Appendix G for details of the Github applications
we choose — mainly those with many “stars”).

A. Ground Truth and Statistics on the Ground Truth

Our objective of the experiments is to compare results from
TypeArmor, τCFI, and Ghidra with ground truths to see how
the complications identified in Section III present themselves
in real-world applications. Here we first briefly explain how
we obtain the ground truth in an automatic manner.

We base our ground truth on information collected by an
LLVM [16] pass and on DWARF v4 debugging informa-
tion [7] which is the default setting for gcc and clang.
We use LLVM to collect source-level information, includ-
ing the number and types of arguments for each function
and indirect callers when the arguments are integers (using
LLVM API isIntegerTy(N)) and pointers (using LLVM



APIs isPointerTy() and isFunctionTy()4). We also
record the source line numbers of functions and indirect
callers. We then compile the test applications with DWARF in-
formation and link the source-level line numbers with binary-
level addresses using the DWARF line number table.

We implement the above with more than 500 lines of C++
code and more than 2,000 lines of python code. The result
is a ground truth file for each binary in the test suite. With
the ground truth collected, we perform statistical tests on our
test suite to ensure that applications included could potentially
present all variety of function signatures. Specifically, we
count the number of arguments (ground truth) of all functions
and make sure that there are sufficient numbers of functions
with the number of arguments from 0 to 6; see Appendix H for
details. We observe that there are more functions with between
1 and 3 arguments, and that C programs are more likely to
have variadic functions. We also check the (ground truth)
argument types for each function (see Appendix I). It appears
that pointers are heavily used as function arguments, especially
for C++ applications. This may imply that C++ applications
are less likely to present complications on argument width
demotion or promotion.

B. Metric Used and Overall Results

Since applications may have different numbers of functions
and functions may have different numbers of indirect callers,
we do not directly calculate the geometric mean as in TypeAr-
mor [32] and τCFI [23]. Instead, we calculate the geometric
mean of the likelihood that the callees and indirect callers
present a complication in their function signature recognition.
Specifically, we calculate the likelihood that the complications
discussed in Section III cause under- and overestimation on
the recovered function signatures. For example, application
addr2line compiled with clang -O0 has 2,019 normal
functions among which 101 are misidentified as variadic and
the identified number of arguments is underestimated. We first
calculate the likelihood that a function is misidentified in this
application (101/2019), and then use this number to compute
the geometric mean for all applications in our test suite; see
Figure 15 and Figure 26.

We discuss the detailed findings in the next two subsections.
Note that complication case Unmodified only appears in one
application (mupdf7 compiled with gcc) and that Uninit and
Ret do not appear at all in our test suite. We stress that
this does not indicate insufficiency in our experiment, but
rather the complications identified in our theoretical analysis
(Section III) do not necessarily present themselves in real-
world programs.

4We also check whether a struct argument has the attribute ByVal since
clang will copy it onto the stack while considering it as a pointer.

5Likelihood is calculated against the number of normal functions for
Nor2Var, against the number of variadic functions for Var2Nor and VarOver,
against the total number of functions for rdx, Unread, Push, lea and Prom.
See Appendix J for the number of various types of functions in our test suite.

6Likelihood is calculated against the total number of indirect calls. See
Appendix J for the number of indirect calls in our test suite.

7https://mupdf.com/

C. Complications at Callees

Unread: This is by far the biggest contributor to misidenti-
fication of function signatures at callees, where the fact that
many functions do not read (some of) their arguments leads to
underestimation of the number of arguments. It also potentially
leads to underestimation of the width of an argument register
whose evident reading instruction is missing while existence is
implied (due to subsequent argument registers whose reading
instructions being present). This complication presents more
heavily in C++ programs due to the simplicity of many (callee)
functions whose implementation does not require accessing
the *this argument. Another finding is that C++ applications
compiled by gcc tend to have dead code eliminated, which
makes them seemingly less vulnerable to this complication.
Note that unoptimized binaries do not have this issue at all
because compilers always insert argument reading instructions
even if the callee function does not need them.
Nor2Var: This also presents heavily in our test suite, leading
to underestimation on the number of arguments, especially in
C programs, except that compiler optimization actually helps
mitigating it. As explained in Section III-A1, unoptimized
binaries always move all arguments onto the stack, making
it more likely to present more than 5 integer arguments at
the callee which always leads to misidentification of variadic
functions. Optimization helps “skipping” some of the argu-
ments and reducing the likelihood of misidentification. Ghidra
is immune to this complication since it simply considers all
functions non-variadic.
lea, Push, and Prom: These three complications result in
overestimation on the argument width, and together present a
large thread to function signature identification of optimized
binaries. Checking into the details, we find that C programs
make heavier use of lea to perform simple computations
and more often push arguments onto the stack (especially
with gcc). Looking into the case of Prom, we find that
clang -O0 does not promote the argument width (it uses
register al or ax to store the argument) while gcc does (it
uses eax) even when optimization is turned off.
rdx: This presents more on C++ programs and leads to
overestimation on the number of arguments. Upon checking
the details, we realize that the exception handling in C++ will
call function rethrow_exception, which invokes func-
tion _Unwind_RaiseException that returns the unwind
reason code in %rdx and the exception object in %rax.
Var2Nor: As expected, Ghidra is vulnerable to this, although
not that much due to compiler optimization but the simple
treatment it employs (all functions are non-variadic). This
complication presents to TypeArmor and τCFI, and is usually
due to empty implementation of functions with more than five
compulsory arguments. We find that C programs compiled by
gcc suffer overestimation on the number of arguments on top
of function type misidentification.
VarOver: This only presents itself on binaries compiled with
gcc -O2 and -O3, where the instructions that move the
variadic arguments onto the stack are not back to back. On the



(a) C applications compiled by Clang (b) C++ applications compiled by Clang

(c) C applications compiled by GCC (d) C++ applications compiled by GCC

Figure 1: Likelihood of complications at callees

other hand, all variadic functions are identified as non-variadic
in Ghidra, so the number of arguments is overestimated.

D. Complications at Callers

Temp and Wrapper: These are clear examples in which com-
piler optimization helps TypeArmor and τCFI determining the
number of function arguments. In the case of Temp, optimiza-
tion eliminates redundant instructions as function arguments.
Wrapper causes fewer complications in optimized binaries due
to heavier applications of function inlining. Note that C++
applications are more vulnerable to Wrapper due to the large
number of virtual functions being called indirectly. Ghidra
generally performs worse here (considering the combined
errors in both over- and underestimation) mainly due to its
limited scope of backward analysis for indirect calls in wrap-
per functions. That said, Ghidra has superior mechanisms in
dead code elimination and only the basic block which contains
an indirect call is analyzed, which results in some argument
registers that are used for temporary storage being correctly
identified; see the complication of Temp (overestimation).
Imm and Null: C applications compiled with clang and gcc
are both likely to pass immediate values to argument registers,
which results in underestimation of the argument width by
TypeArmor and τCFI. Interestingly, the likelihood increases
upon increase of optimization levels. Digging into the details,
we realize that this is actually just an artifact because higher
optimization level results in heavier application of function
inlining (-O1 and -O2 for clang, -O1, -O2, and -O3 for
gcc) and loop unrolling (-O3 for both compilers), which
leads to a larger number of callers of the same function; see
Appendix K. Another interesting observation is that gcc -O0

and -O1 are more likely to move zero (Null) to an argument
register than using xor.

Ghidra, on the other hand, is not vulnerable to this underes-
timation but rather suffers on overestimation because it always
uses the entire 64-bit memory range as the argument width.

Pointer: This only affects applications compiled with clang
especially on C++ programs as they are more likely to
pass pointers to indirect callees. C programs compiled with
clang -O0 do not have this problem because it uses a 64-
bit register to store the pointer by adding a prefix to denote
the use of a 64-bit displacement or immediate source operand.
C++ programs, on the other hand, set a 32-bit register to the
pointer address and then move it to the argument register
for some indirect calls. We also find that C++ applications
compiled with clang -O1 have a higher likelihood on
this complication. This is because for some indirect calls
that accept pointers as arguments, clang prepares them by
moving 64-bit immediate values onto the stack first, and then
after another indirect call instruction, the argument register is
set by reading the 64-bit value from this stack address. As the
number of indirect calls in binaries compiled with -O2 and
-O3 is much larger, the likelihood for them becomes smaller.

Ghidra, again, is not vulnerable to this because it always
uses the entire 64-bit memory range as the argument width.

Applications compiled by gcc do not use pointers that point
to .text, .rodata, or .bss as arguments because gcc-7 and
above compile applications into position-independent code.

Prom: This seems to be less sensitive to compiler optimization
(compiler will always promote to the native type — 32 bits)
and only affects a small number of indirect calls.



(a) C applications compiled by Clang (b) C++ applications compiled by Clang

(c) C applications compiled by GCC (d) C++ applications compiled by GCC

Figure 2: Likelihood of complications at callers

V. OUR COMPILER-OPTIMIZATION-FRIENDLY POLICIES

In an effort to properly handle the complications arisen
due to compiler optimizations to more accurately recover
function signatures, we propose a set of improved policies.
In this section, we first discuss the details of these policies
and then present our evaluation results of applying them to
analyze our test suite of 1,344 real-world applications. Note
that most of the policies proposed here are generally accurate
for both optimized and unoptimized binaries, while others
are more specifically targeting optimized binaries. Existing
work [27], [28] and our experience (e.g., if values of all six
argument registers are moved onto the stack, then it must be
an unoptimized binary) show that detecting the compiler and
the optimization level used in well-behaved binaries can be
done accurately, and we take it as a prerequisite of enforcing
our policies specifically targeting optimized binaries.

A. Identifying Variadic Functions (Targeting Nor2Var and
VarOver)

The main problem in existing approaches is the identifica-
tion of variadic arguments using “back-to-back value assigning
instructions” (i.e., b2b) [32], which is not a sufficient condition
as we analyzed (see Section III-A) and showed in experiments
(see Section IV-C). We discover another more direct and
sufficient condition for variadic argument identification when
optimization is enabled, in which the stack addresses storing
variadic arguments are consecutive, prepared using 64-bit
registers, and read using pointers. More specifically,

Definition V.1. Let @i denote the stack address to which
argument register i is moved given ˙rw2si(). Callee function
f is a variadic function iff ∀i ∈ {5, 4, 3, 2, 1},

• |@i+1 −@i| = 8; and
• sEE

i+1 = ˙rw2si+1(64) and sEE
i = ˙rw2si(64); and

• @i+1 and @i are read via pointers.
with |POB

EE−f | being the maximal i violating the above. Oth-
erwise, f is a normal function and |POB

EE−f | is:
6 if ˙rw2s6() and @6 is

not read via a pointer

max(argmax
i

( ˙rw2si()), argmax
i

( ˙rwi())) if sEE
6 6= ˙rw2s6()

We use the example in Listing 2a to show how our policy
works. During analysis, we find that POB

EE−0x471a60 =<
˙rw1(64), ˙rw2(64), ˙rw3(64), ˙rw4(64), ˙rw2s5(64), ˙rw2s6(64) >

and @6 is not read via a pinter; therefore, we conclude that
|POB

EE−0x471a60| = 6. Note that although |PGT
EE−0x471a60| = 7,

|POB
EE−0x471a60| = 6 is an accurate and best approximation

based on the limited information present in the binary. The
details about the analysis result by TypeArmor and our new
policy can be found in Appendix L.

The policy described above does not work well when
optimization is disabled, in which all arguments are copied
onto the stack at consecutive addresses. Our policy to deal
with unoptimized binaries is described in Appendix M.

B. Argument (Width) Promotion and Demotion (Targeting
Push, lea, Imm, Pointer, and Null)

Our improved policy solves the argument promotion and
demotion complications by analyzing the context of the in-
structions. More specifically,
• Push: Let p = 32 in ˙rwi(p) if the corresponding

argument reading instruction is push.



• lea: Let p in ˙rwi(p) be the minimum of the width of the
source and destination registers (instead of that of the
source only as in TypeArmor and τCFI).

• Imm: Let p = 64 in ˙rwi(p) if register i holds a constant.
• Pointer: Let p = 64 in ˙rwi(p) if register i holds a pointer

value pointing to .rodata, .bss, or .text section.
• Null: Let p = 64 in ˙rwi(p) if register i is involved in an
xor instruction.

Note that this improved policy guarantees that all legal
callers be matched with legal callees since there is no un-
derestimation at callers or overestimation at callees, but could
lead to some imprecise (but conservative) results. For example,
demoting the argument width to 32 bit for a register read using
push may result in underestimation; see the case of Push in
Figure 1. We believe that this is a good tradeoff where an
absolutely precise solution does not exist, especially since the
intended control flow is never broken with our improved CFI
policy.

C. Register Overloading (Targeting rdx)

Since the overloading of rdx is for storing function return
values, we simply consider any first reading of %rdx after a
call to a library function (let’s denote the callee f ) as w3(). It
may first sound counter-intuitive, but this must be reading the
return value of f since the compiler has to make a conservative
assumption that f has reset %rdx. This improved policy solves
the complication rdx at callees with 100% accuracy.

D. Registers Storing Temporary Values (Targeting Temp)

Recall that the analysis of callers considers all instructions
involving an argument-passing register instead of focusing
on only the first instruction (Section II-B). Although that
is technically correct, it also introduces complications since
registers storing temporary values could be miscounted as
passing parameters to a callee (Temp). Our improved policy
takes into consideration the reading of registers (rather than
focusing only on writing in the original policy) as well as
the sequence of the instructions. More specifically, we let
sER
i = ŵi if register i is moved to another argument register

after the write operation when the value of register i is not
zero (a special case where the compiler will directly move
register i to another argument register since the compiler does
not prefer passing zeros to a register directly).

For example, as shown in Listing 7a, %rcx is moved to
%rdx at Line 6 after the write operation at Line 4. With this,
we conclude that %rcx is not used to pass arguments and
|POB

ER−0x461015| = 3.
In order to be conservative, we only apply this policy to

basic blocks where indirect calls are located. Note that this
policy can also help correctly recover the number of arguments
for indirect calls in wrapper functions.

E. Additional Binary Analysis to Extract our Policies

We have presented what our improved CFI policies are so
far in this section. Here we briefly discuss how it is done with
the additional binary analysis we perform.

Our improved policy for Nor2Var requires that we trace the
data flow of a stack memory to check whether it is read without
being overwritten. This is done by following the CFG of a
function and check whether the stack memory is used as the
source operand without being used as a destination operand.

Our improved policy for Imm requires that we identify
whether one register holds a constant. Specifically, during the
backward analysis, if we encounter a 32-bit argument register
being written to, we will record its source recursively and
check whether it is an immediate value. Our experiences show
that this recursive tracing typically reports a success within the
same basic block and does not result in excessive overhead.

F. Evaluation of our Improved Policies

We apply our new policies on the same test suite consisting
of 1,344 C and C++ applications and use the same metric as
described in Section IV-B to evaluate it; see the bars named
“Improved” in Figure 1 and Figure 2. The comparison shows
that our new policies result in significant improvement over
most of the complication cases. In particular, we completely
mitigate the complication cases of VarOver, rdx, lea, and
Pointer, and significantly reduce the chances of running into
Nor2Var.

For cases of Imm, Null, and Push, our policy guarantees
that valid calls are never inadvertently blocked, but it could
also potentially make the recovered function signatures more
conservative. For example, we promote the argument width at
indirect callers for cases Imm and Null, which may result in
overestimation on argument widths as shown in Figure 2 with
likelihood less than 10.1% and 1.7%, respectively. Similarly,
our policy to deal with Push may cause argument width
underestimation at the callees, and the likelihood is about
0.2%. This raises an interesting question whether it is possible
for CFI policies recovered from binary executables to be more
accurate and approach the accuracy of source-based solutions;
we discuss this in Section VI-A.

For Nor2Var, the likelihood of misidentifying normal func-
tions to variadic for unoptimized binaries is reduced from
3.3% to 1.2%, with that for optimized binaries dropped to
0.1%.

Since we only apply the policy for Temp to basic blocks
where indirect calls are located, there can be overestimations
if the argument registers storing temporary values are in other
predecessors. The same policy also helps identify the number
of arguments for indirect calls in wrapper functions as shown
in the case of Wrapper in Figure 2 — the likelihood of
overestimation on the number of arguments is reduced from
11.5% to 5.4% for C applications compiled by gcc -O0.

G. Potential revisions to deal with other complications

To handle Var2Nor, we could revise our policy on identi-
fying variadic functions to find the argument register with the
highest index i that is moved onto the stack. However, this
will result in (potentially unnecessary) checking of registers
at a smaller index, and lead to substantially higher overhead
in the processing. Since we only observe one variadic function



1 5 a0d32 : xor %e s i ,% e s i
2 5 a0d34 : xor %edx ,% edx
3 5 a0d36 : mov %rbp ,% r d i
4 # s t r u c t r e f ∗(∗ g e t r e f s l i s t ) ( s t r u c t t r a n s p o r t ∗

t r a n s p o r t , i n t fo r push , c o n s t s t r u c t a r g v a r r a y
∗ r e f p r e f i x e s ) ;

5 5 a0d39 : c a l l q ∗0x10(% r a x )

Listing 9: Immediate zero and NULL as arguments

(bfd_set_error in Binutils) being misidentified as a
normal function and causing overestimation on the number of
arguments in our large test suite, we do not suggest enforcing
this policy.

Similarly for Unmodified, we could perform backward
analysis from the indirect caller until another indirect call is
encountered. We do not enforce this policy because there is
only one application in our test suite that has this problem
(with only two indirect calls), and this policy could result in
a large number of overestimation on the number of arguments
at indirect callers.

VI. DISCUSSIONS AND SECURITY IMPLICATIONS

In this section, we first discuss an interesting question
whether policies recovered from binary executables could
approach the accuracy of source-based solutions, and then
further evaluate the security implications of having inaccurate
CFI policies.

A. Comparison with Source-Level Solutions

Section V-F shows that even our improved policy inevitably
results in some over- and underestimation, which raises an
interesting question whether it is possible to further improve
the policies so that their accuracy approaches that of source-
level solutions. Here we present three scenarios where a
compiler makes the task of accurately recovering function
signatures undecidable, and therefore show that binary-level
techniques can never achieve the accuracy of source-based
solutions.

1) Immediate value zero vs. NULL pointer: A simple
example demonstrating the limitation of binary analysis in
this context is the differentiation between an immediate value
zero and the NULL pointer. Line 4 of Listing 9 shows a
callee function with the second and third arguments being
integer and pointer type, respectively, while Line 1 – 2 show
the caller preparation with identical instructions for these
two arguments. It clearly demonstrates that binary analysis is
unable to distinguish the two cases and would have to make
approximations in recovering the caller signature.

2) Arguments unused: Another scenario arises in the case
of unused arguments at the callee (corresponding to complica-
tion case Unread), where binary analysis cannot differentiate
• Listing 10a: a callee function with an argument passed

in but the argument is not used; and
• Listing 10b: a callee function without arguments.

Binary analysis would not be able to differentiate the two
cases as observations on their parameter-passing registers are
identical.

1 b f d p l u g i n c o r e f i l e f a i l i n g s i g n a l ( b fd ∗ab fd )
2 482000: push %r a x
3 482001: mov $0x4dc9e1 ,% e d i
4 482006: mov $0x1ac ,% e s i
5 48200 b : c a l l q 405230 <b f d a s s e r t>

a: Argument passed in but not used
1 vo id b f d s e c t i o n a l r e a d y l i n k e d t a b l e f r e e ( )
2 48 aa60 : mov $0x7172f8 ,% e d i
3 48 aa65 : jmpq 406860 <b f d h a s h t a b l e f r e e>

b: No argument

Listing 10: Function argument unused

1 51 e199 : mov %eax ,% e s i
2 51 e19b : t e s t %r15 ,% r15
3 51 e19e : j e 51 e1ad
4 51 e1a0 : l e a 0 xe0(% r s p ) ,% r d i
5 #( f p t r T ) ( func one (&cc , c ) ) ;
6
7 51 e1a8 : c a l l q ∗%r15

a: %esi used to pass
argument

1 43 ae62 : mov %ebp ,% e s i
2 43 ae64 : t e s t %rax ,% r a x
3 43 ae67 : j e 43 a e 6 f
4 43 ae69 : mov %ebp ,% e d i
5 # g e t e l f b a c k e n d d a t a ( ab fd )

−>o b j a t t r s o r d e r ( i ) ;
6 43 ae6b : c a l l q ∗%r a x

b: %esi used to store
temporary

Listing 11: Example of argument register usage

3) Registers overloading: Registers are used for passing
arguments as well as any other general purposes (correspond-
ing to complication case Temp), and binary analysis usually
cannot distinguish the two cases. Listing 11 shows two indirect
callers with
• Listing 11a: a caller that uses %esi to pass the second

argument to callee.
• Listing 11b: a caller that uses %esi to store a temporary

value.
Again, binary analysis would not be able to tell apart these
two cases and an approximation has to be made in extracting
function signatures.

We stress that this is not an exhaustive list of cases where
binary analysis may fail, but the three scenarios identified
are specific to funciton signature recovery where compiler
optimization makes binary analysis undecidable.

B. Security Implication with Imprecise Function Signature
Recovered

The undecidability in binary analysis results in inevitable
errors in function signature recovery from (optimized) binary
executables. An immediate question, therefore, is on the extent
to which such errors impact security applications. In this
subsection, we evaluate this security implication from two
perspectives.

a) Imprecision on the set of callees allowed: Our first
evaluation focuses on the number of callees allowed in a CFI
enforcement, and here we consider six solutions:
• AT [36]: A binary-level solution that allows indirect

callers to target any “Address-Taken” functions;
• TypeArmor [32]: A binary-level solution with function

signatures capturing the number of arguments;



Table I: Number of callees allowed by different policies
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clang

C
O0 543 412 290 246 114 7
O1 540 446 242 213 124 8
O2 394 318 147 147 93 7
O3 380 300 130 120 99 8

C
++

O0 3,379 2,734 2,343 2,186 1052 37
O1 3,290 2,631 1,879 1,805 998 35
O2 702 552 304 270 251 44
O3 710 543 296 284 247 44

gcc

C

O0 546 499 336 257
O1 446 373 272 239
O2 418 318 147 147
O3 406 332 231 200

C
++

O0 4,505 3,920 3,278 3,219
O1 686 498 314 301
O2 698 477 294 281
O3 656 527 315 299

Geomean 767 612 395 353 232 19

• τCFI [23]: A binary-level solution with function signa-
tures capturing the number of arguments and width of
arguments;

• Our improved policy: A binary-level solution with func-
tion signatures capturing the number of arguments and
width of arguments, targeting optimized binaries; and

• IFCC [31]: A (relatively old) source-level solution with
function signatures capturing the number of arguments;
in LLVM-3.4.

• LLVM-CFI8: A (latest) source-level solution with more
precise function signatures (the number of arguments and
their primitive types, function return type) captured; in
LLVM-10.0.

Table I shows the median of the number of callees allowed
for each indirect caller for the 1,344 applications in our
test suite under different policies. We can see that compared
to AT, TypeArmor, τCFI, and our improved policies reduce
the number of legal control-transfer targets by about 20%,
49%, and 54%, respectively, while none of the binary-level
solutions could achieve precision of source-level techniques. In
particular, LLVM-CFI achieves much better accuracy because
it uses finer-grained types of arguments — char* and const
char*, struct A* and struct B* are considered different types
— which cannot be differentiated at binary level.

b) Effectiveness in allowing/disallowing COOP gadgets:
With Table I showing the number of mistakes each solution
makes, we next evaluate the extent to which these mistakes
result in initial COOP gadgets an attacker could use to
construct code-reuse attacks. This time, we only focus on τCFI
and our improved policy as they run relatively close in the
previous evaluation. We use the same heuristics proposed in
the corresponding papers to find potential Main-Loop Gadgets
(ML-G) [29] and RECursive Gadgets (REC-G) [8] for all C++
applications in our test suite. Table II shows the total number
of such gadgets as well as the number of such gadgets whose

8https://clang.llvm.org/docs/ControlFlowIntegrity.html

Table II: Potential ML-G and REC-G gadgets

Opt ML-G REC-G
icall τCFI Improved icall τCFI Improved

clang

O0 93 53 64 73 41 45
O1 58 50 50 56 44 44
O2 70 46 52 60 41 44
O3 70 42 53 49 35 39

gcc

O0 96 50 68 71 32 46
O1 98 71 80 74 50 56
O2 113 100 103 33 21 30
O3 106 79 84 22 15 17

Geomean 83 56 65 58 37 43

function signatures are correctly identified by τCFI and our
improved policy. Bigger numbers indicate better effectiveness
of CFI in disallowing the corresponding code-reuse attacks.

As we can see, τCFI correctly identifies 68% and 64% ML-
and REC- gadgets, respectively, while our improved policy
achieves 78% and 74% effectiveness, respectively. We believe
that this evaluation provides a good indicator on the security
impact of our improved CFI policies.

c) Severity of each mistake: For each mistake in recov-
ering function signature of the caller, we check how far the
mistake is from the ground truth, which also has a direct
implication on the amount of flexibility an attacker has when
using the corresponding caller to construct an code-reuse
attack. Figure 3 shows the result of this evaluation, again, on
our test suite of 1,344 applications, with x-axis labels being:
• +t: the average number of indirect callers whose number

of arguments is overestimated by t; and
• width: the average number of indirect callers whose

function signature (number and width of arguments) is
correctly recovered.

Besides showing the consistently better results from our
improved policy compared to those from τCFI, we also notice
that our improved policy performs most significantly better on
“+5”, which means our improved policies manage to correct
a larger number of more severe mistakes made by τCFI.

VII. RELATED WORK AND LIMITATIONS

A. Control-Flow Integrity

Control-Flow Integrity forces control-flow transfers in the
program to follow policy presented by the CFG. Due to
the difficulty in accurately recovering the CFG from the
binary, most approaches enforce a coarse-grained policy by
conservatively considering all functions as potential targets
of an indirect caller. Usually, they mark valid targets of
indirect control transfers with unique identifiers (ID) and
then insert ID-checks into the program before each indirect
branch transfer. An indirect branch is allowed to jump to any
destination with the correct ID. For example, CFIMon [33]
makes use of static analysis and online training to get valid
targets for return, indirect call, and indirect jump instructions.
Branch Trace Store (BTS) is used to collect in-flight control
transfers to perform CFI check. BinCFI [36] uses two IDs for
all indirect branch transfers: one for return and indirect jump
instructions, and the other for indirect call instructions. All



(a) Applications compiled by Clang (b) Applications compiled by GCC

Figure 3: Amount of flexibility of code-reuse attacks in each mistake in function signature recovery of indirect callers

indirect branches are instrumented to jump to the correspond-
ing address translation routine that determines the targets of
the transfers. CCFIR [35] implements a 3-ID approach which
extended the 2-ID approach by further separating returns into
sensitive and non-sensitive functions. All control-flow targets
of indirect branches are collected and randomly allocated on a
springboard section, and indirect branches are only allowed to
use control flow targets contained in the springboard section.
These approaches allow an indirect call to target any function,
which makes them vulnerable to many state-of-the-art code-
reuse attacks [4], [9], [11], [13], [29].

Fine-grained CFI approaches based on function signature
matching are proposed and they rely on the availability of
source code to obtain function signature. MCFI [25] and
πCFI [26] instrument each indirect branch transfer during
compile time to consult tables that store legitimate targets.
These tables are updated when modules are dynamically
loaded by making use of the auxiliary type information
obtained at compilation. Forwarding CFI [31] protects bi-
naries by inserting checks before all forward edge control
flow transfers to check whether the function signature (the
number of arguments) is correct. Cryptographically enforced
CFI [20] enforces another form of fine-grained CFI by adding
a message authentication code (MAC) that is computed with
type information to control flow elements, which prevents the
usage of unintended control-flow transfers in the CFG.

B. Function Signature Recovery

Besides TypeArmor [32], liveness analysis and heuristic
methods based on calling conventions and idioms were used to
recover function signatures. EIWazeer et al. [10] apply liveness
analysis to recover arguments, variables, and their types.
TIE [17] infers variable types in binaries through formulating
the usage of different data types. Caballero et al. [3] make use
of dynamic liveness analysis to recover function arguments
for execution traces. Since it is a dynamic analysis, it cannot
guarantee the full coverage of unused arguments during an
execution trace. Recently, Zeng et al. [34] propose to perform
type inference based on debugging information generated by
the compiler so that a high-precision CFG can be constructed
to help CFI enforcement. Another direction is to make use of
machine learning approaches to recover function signatures.

For example, EKLAVYA [6] uses a three layers Recurrent
Neural Network to learn the number and types of arguments
from disassembled binary code.

C. Limitations

Currently, we only focus on function signature recovery for
integer arguments with floating-point arguments passed via
XMM registers not taken into consideration. This may give the
attacker more chances to find valid gadgets that can be used
to construct code-reuse attacks. Current CFI policies based on
argument width cannot be directly used when floating-point
arguments are analyzed since static analysis cannot reveal the
order between integer and floating-point arguments. We leave
it as our future work to extend our static analysis to include
floating-point registers.

New optimization strategies employed by compilers makes
function signature recovery more difficult and the analysis
engines need to be continuously updated so that they can be
used to analyze binaries compiled by these new versions of
compilers.

VIII. CONCLUSION

In this paper, we study how compiler optimization im-
pacts function signature recovery implemented TypeArmor
and τCFI. Our study shows that compiler optimization has
important impact on function signature recovery and poten-
tially results in unmatched function signatures at callees and
callers. In order to better deal with these optimizations, a set
of improved policies is proposed, with results showing that
most complications identified earlier being mitigated.
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[13] Enes Göktas, Elias Athanasopoulos, Herbert Bos, and Georgios Portoka-

lidis. Out of control: Overcoming control-flow integrity. In Proceedings
of the 2014 IEEE Symposium on Security and Privacy, pages 575–589.
IEEE, 2014.

[14] INC INTEL. Intel R© 64 and ia-32 architectures software developers
manual. 2018.

[15] Christopher Kruegel, William Robertson, Fredrik Valeur, and Giovanni
Vigna. Static disassembly of obfuscated binaries. In Proceedings of the
13th USENIX Security Symposium. USENIX Association, 2004.

[16] Chris Lattner and Vikram Adve. LLVM: A compilation framework
for lifelong program analysis & transformation. In Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization. IEEE Computer Society,
2004.

[17] JongHyup Lee, Thanassis Avgerinos, and David Brumley. Tie: Princi-
pled reverse engineering of types in binary programs. In Proceedings
of the Network and Distributed System Security Symposium, 2011.

[18] Juneyoung Lee, Yoonseung Kim, Youngju Song, Chung-Kil Hur, Sanjoy
Das, David Majnemer, John Regehr, and Nuno P Lopes. Taming unde-
fined behavior in llvm. In ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 633–647. ACM, 2017.

[19] Christian Lindig. Random testing of c calling conventions. In Proceed-
ings of the 6th international symposium on Automated analysis-driven
debugging, pages 3–12. ACM, 2005.

[20] Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières.
Ccfi: Cryptographically enforced control flow integrity. In Proceedings
of the 22nd ACM Conference on Computer and Communications Secu-
rity, pages 941–951. ACM, 2015.

[21] Michael Matz, Jan Hubicka, Andreas Jaeger, and Mark Mitchell. System
v application binary interface. AMD64 Architecture Processor Supple-
ment, Draft v0, 99, 2014.

[22] Alyssa Milburn, Herbert Bos, and Cristiano Giuffrida. Safelnit: Compre-
hensive and practical mitigation of uninitialized read vulnerabilities. In
Proceedings of the Network and Distributed System Security Symposium,
pages 1–15, 2017.

[23] Paul Muntean, Matthias Fischer, Gang Tan, Zhiqiang Lin, Jens
Grossklags, and Claudia Eckert. τcfi: Type-assisted control flow
integrity for x86-64 binaries. In International Symposium on Research
in Attacks, Intrusions, and Defenses, pages 423–444. Springer, 2018.

[24] Nergal. The advanced return-into-lib(c) exploits. http://phrack.org/
issues/58/4.html, 2001.

[25] Ben Niu and Gang Tan. Modular control-flow integrity. In Proceedings
of the 21st ACM Conference on Computer and Communications Security,
pages 577–587. ACM, 2014.

[26] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceed-
ings of the 22nd ACM Conference on Computer and Communications
Security, pages 914–926. ACM, 2015.

[27] Nathan Rosenblum, Barton P Miller, and Xiaojin Zhu. Recovering
the toolchain provenance of binary code. In Proceedings of the 2011
International Symposium on Software Testing and Analysis, pages 100–
110. ACM, 2011.

[28] Nathan E Rosenblum, Barton P Miller, and Xiaojin Zhu. Extracting
compiler provenance from program binaries. In Proceedings of the 9th
ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 21–28. ACM, 2010.

[29] Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi,
Ahmad-Reza Sadeghi, and Thorsten Holz. Counterfeit object-oriented
programming: On the difficulty of preventing code reuse attacks in c++
applications. In Proceedings of the 2015 IEEE Symposium on Security
and Privacy, pages 745–762. IEEE, 2015.

[30] Hovav Shacham et al. The geometry of innocent flesh on the bone:
return-into-libc without function calls (on the x86). In Proceedings of
the 14th ACM conference on Computer and communications security,
pages 552–561. ACM, 2007.

[31] Caroline Tice, Tom Roeder, Peter Collingbourne, Stephen Checkoway,
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APPENDIX

A. Example of complication lea
Here we show an example where instruction lea takes

a promoted operant. In Listing 12, the state of the second
argument is ˙rw2(64); however, the ground truth is a 32-bit
parameter (unsigned int).



1 b f d c h e c k o v e r f l o w ( enum c o m p l a i n o v e r f l o w how ,
2 unsigned int bitsize , u n s i g n e d i n t r i g h t s h i f t , u n s i g n e d i n t

a d d r s i z e , bfd vma r e l o c a t i o n )
3
4 000000000048 ca60 <b f d c h e c k o v e r f l o w >:
5 48 ca60 : mov %ecx ,% eax
6 48 ca62 : mov %edx ,% r9d
7 48 ca65 : l e a −0x1(% r s i ) ,% ecx
8 48 ca68 : mov $ 0 x f f f f f f f f f f f f f f f e ,% rdx

Listing 12: Promoted operand of instruction lea

B. Additional examples of missing argument-writing instruc-
tions at callers

Listing 13 shows indirect calls in a wrapper
function. Since there is no direct caller for
function bfd_elf64_swap_dyn_in, TypeArmor
and τCFI determine that POB

ER−0x416845 =<
w1(64), w2(64), w3(64), w4(64), w5(64), w6(64) >, which
results in an overestimation on the number of arguments
while |PGT

ER−0x416845| = 1.

1 0000000000416830 <b fd e l f 64 swa p dyn in >:
2 416830: push %r15
3 . . . . . .
4 416835: mov %rdx ,% r14
5 416838: mov %r s i ,% r15
6 41683 b : mov %r d i ,% rbx
7 41683 e : mov 0x8(% r d i ) ,% r a x
8 416842: mov %r s i ,% r d i
9 416845: c a l l q ∗0x68(% r a x )

Listing 13: An indirect call in a wrapper function

Listing 14 shows that PGT
ER−0x1aae2c =<

w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 >. However,
POB
ER−0x1aae2c =< w1(64), ŵ2, w3(64), ŵ4, ŵ5, ŵ6 >

and |POB
ER−0x1aae2c| = 1 since the value of %rsi is not

changed by the function at 0x1a95f0, and the compiler
does not reset it explicitly.

1 1 aae0a : mov 0 xb38(%r13 ,% r14 , 1 ) ,% r d i
2 1 aae12 : mov %rbp ,% r s i
3 1 aae15 : c a l l q 1 a95f0
4 1 aae1a : mov (% r s p ) ,% r a x
5 1 aae1e : l e a (%rax ,% r14 , 1 ) ,% rdx
6 1 aae22 : mov (% rbx ) ,% r a x
7 1 aae25 : mov 0xb8(% r a x ) ,% r d i
8 # c a l l funcs−>c r e a t e ( c f f s i z e−>f ace−>memory , &p r i v , &

i n t e r n a l−>s u b f o n t s [ i − 1] )
9 1 aae2c : c a l l q ∗(% r12 )

Listing 14: Arguments not modified between two calls

C. Exmample of a NULL pointer as an argument
The example with a NULL pointer being an argument is

shown in Listing 15. According to the ground truth at Line 5,
the second argument should be a pointer; but a NULL pointer
is passed at the caller, and the compiler uses xor to prepare
for it.

D. Argument (width) promotion at both callees and callers
(Prom)

There are other argument (width) promotions at both callees
and callers that would not result in inaccuracies in matching

1 57 f50e : t e s t %rbp ,% rbp
2 57 f511 : j e 57 f531
3 57 f513 : mov 0 x333a46(% r i p ) ,% r d i
4 57 f51a : xor %e s i ,% e s i
5 #(∗ a d v e r t i s e ) (∗ r , ∗) ;
6 57 f51c : c a l l q ∗0x8(% rbp )

Listing 15: A NULL pointer as an argument

function callees with callers since the argument promotion
happens in a matching manner. This refers to promotions of
types smaller than the native type of the target platform’s
Arithmetic Logic Unit (ALU) to make arithmetic and logical
operations possible or more efficient. C and C++ perform such
promotions for objects of boolean, character, wide character,
enumeration, and short integer types. As shown in Listing 16,
the type of the third argument is unsigned char (8-bits) as
shown at Line 1, but the analysis engine would determine its
state being ˙rw3(32) due to the promotion performed by the
compiler.

1 s t a t i c b f d b o o l e a n a d d l i n e i n f o ( s t r u c t
l i n e i n f o t a b l e ∗ t a b l e , bfd vma a d d r e s s , u n s i g n e d

c h a r op index , c h a r ∗ f i l e n a m e , u n s i g n e d i n t
l i n e , u n s i g n e d i n t column , u n s i g n e d i n t

d i s c r i m i n a t o r , i n t end sequence )
2
3 000000000044 c2d0 <a d d l i n e i n f o >:
4 44 c2d0 : push %rbp
5 . . . . . .
6 44 c2e7 : mov %edx ,% r12d
7 44 c2ea : mov %r s i ,% r13
8 44 c2ed : mov %r d i ,% r a x
9 44 c2 f0 : mov (% r d i ) ,% r d i

10 44 c2 f3 : mov %rax , 0 x8(% r s p )
11 44 c2 f8 : mov 0x30(% r a x ) ,% r a x
12 44 c 2 f c : mov %rax , 0 x10(% r s p )
13 44 c301 : mov $0x28 ,% e s i
14 44 c306 : c a l l q 408 a80 <b f d a l l o c>

Listing 16: Promotion of small integral types

E. Summary of complications at callees and callers

Table III summaries the complications at both callees and
callers with the last column indicating the impact that these
cases can cause.

F. Sizes of binary executables in our test suite

Table IV shows the sizes of the binary executables in our
test suite under various optimization flags for both C and C++
programs. Note that the C++ programs are typically larger than
the C programs.

G. Github applications in our test suite

Table V shows the Github applications we include in our
test suite. We typically choose those with a large number of
stars.

H. Number of arguments in functions in our test suite

Table VI shows the percentage of functions with specific
number of arguments, as well as the geometric mean of the
number of variadic functions in each application.



Table III: Summary of complications introduced by compiler optimization

Site Category Complication Impact

Callee

Misidentifying variadic functions
Normal to variadic (Nor2Var) |POB

EE | < |P
GT
EE |

Variadic to Normal (Var2Nor) |POB
EE | > |P

GT
EE |

Back-to-back condition unreliable (VarOver) |POB
EE | > |P

GT
EE |

Missing argument reading instructions Arguments are not used by a function (Unread) |POB
EE | < |P

GT
EE |

|sEE
i | < |sEE,GT

i |

Misidentifying %rdx as an argument Reading the higher 64 bits of a return value (rdx) |POB
EE | > |P

GT
EE |

Argument (width) promotion Arguments are pushed onto the stack (Push) |sEE
i | > |sEE,GT

i |

Default width of the operand of certain instructions is 64-bit (lea) |sEE
i | > |sEE,GT

i |

Caller

Missing argument writing instructions

Higher 64 bits of a return value as the third argument (Ret) |POB
ER | < |P

GT
ER |

Uninitialized variables as arguments (Uninit) |POB
ER | < |P

GT
ER |

Indirect calls in wrapper functions (Wrapper) |POB
ER | > |P

GT
ER |

Argument values not modified between two calls (Unmodified) |POB
ER | < |P

GT
ER |

Registers storing temporary values Argument registers are used to store temporary values (Temp) |POB
ER | > |P

GT
ER |

Argument (width) demotion
Argumets are constant whose sizes are up to 32-bit (Imm) |sER

i | < |sER,GT
i |

Argument are pointers pointing to data and text sections (Pointer) |sER
i | < |sER,GT

i |

Arguments are NULL pointers (Null) |sER
i | < |sER,GT

i |

Both Small integral type promotion Small integral types are promoted to native types (Prom) |sEE
i | > |sEE,GT

i |

|sER
i | > |sER,GT

i |

Table IV: Sizes of the binary executables in our test suite

Language Opt
Size (MB)

clang gcc
min median max min median max

C

O0 0.07 0.69 44.75 0.08 0.68 44.72
O1 0.07 0.71 45.61 0.12 0.98 50.52
O2 0.08 0.84 50.09 0.11 1.02 51.79
O3 0.08 0.84 48.95 0.13 1.55 54.30

C++

O0 0.11 7.51 65.77 0.12 14.60 73.22
O1 0.11 7.22 68.82 0.17 10.32 99.95 9
O2 0.13 6.31 65.70 0.18 16.96 105.50
O3 0.13 6.15 66.79 0.19 17.12 109.83

Table V: Github applications in our test suite

App Language description
git C Distributed version control system

darknet C An open source neural network framework
netdata C A real-time performance monitoring
redis C An in-memory database
sqlite C SQL database engine
vim C UNIX text editor

gnupg C Complete implementation of the OpenPGP standard
openssl C TLS/SSL and crypto library
mupdf C & C++ A lightweight PDF, XPS, and E-book viewer
vorbis C A general purpose audio and music encoding format
aria2c C++ A lightweight multi-protocol download utility

cppcheck C++ Static analysis of C/C++ code
hpx C++ C++ Standard Library for Parallelism and Concurrency
xpdf C++ A PDF viewer and toolkit

I. Argument types of functions in our test suite

Table VII shows the percentage of functions having a
specific type as its arguments.

Table VI: Number of arguments of functions in our test suite

L
an

gu
ag

e

Opt

Number of Arguments (%)

#
va

ri
ad

ic

0 1 2 3 4 5 6

C

O0 6.92 29.35 29.73 17.46 7.47 4.33 1.77

8.45O1 6.01 28.64 29.87 17.32 7.73 4.71 1.95
O2 6.78 28.05 27.85 18.11 8.22 4.92 1.88
O3 5.99 26.52 29.04 18.20 8.55 5.17 2.11

C++

O0 4.31 47.84 26.78 12.97 3.64 2.47 0.64

2.43O1 4.44 46.06 27.76 13.34 3.80 2.54 0.67
O2 3.09 45.27 20.77 12.58 7.09 5.48 1.87
O3 3.13 45.84 20.88 12.45 6.95 5.09 1.86

J. Number of various types of functions and indirect calls in
our test suite

Table VIII shows the number of various types of functions
and indirect calls in our test suite.

K. Likelihood that indirect calls in C programs use immediate
values as arguments

Table IX shows the likelihood that indirect calls use imme-
diate values as arguments for different reasons.

L. Analysis of variadic function in Binutils

Table X shows the details about the analysis in identifying
a variadic function by TypeArmor and our new policy.

M. Our improved policy for identifying variadic functions in
unoptimized binaries

Definition A.1. Callee function f is a variadic function iff
∀i ∈ {5, 4, 3, 2, 1},
• |@i+1 −@i| = 8; and



Table VII: Argument types of functions in our test suite

Type Opt Arg for C (%) Arg for C++ (%)
1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th

8-bits

O0 0.186 0.374 0.123 0.261 0.338 0.353 0.024 0.318 1.517 0.271 0.831 0.944
O1 0.140 0.307 0.225 0.286 0.535 0.555 0.080 0.563 1.596 0.384 0.431 0.546
O2 0.106 0.242 0.301 0.225 0.753 0.779 0.024 0.310 1.475 0.258 0.786 0.920
O3 0.103 0.252 0.261 0.291 0.598 0.609 0.024 0.319 1.517 0.271 0.831 0.944

16-bits

O0 0.091 0.188 0.127 0.135 0.169 0.294 0.003 0.038 0.224 0.242 0.444 0.498
O1 0.108 0.235 0.168 0.119 0.134 0.266 0.043 0.075 0.112 0.216 0.392 0.307
O2 0.097 0.205 0.100 0.164 0.143 0.325 0.003 0.037 0.215 0.231 0.420 0.486
O3 0.113 0.243 0.149 0.134 0.0.136 0.292 0.003 0.038 0.224 0.242 0.444 0.499

32-bits

O0 9.382 19.582 25.330 29.654 33.498 28.794 0.823 9.663 19.566 26.018 29.271 17.364
O1 8.549 19.747 25.292 30.307 37.600 32.971 0.554 4.602 15.191 15.572 21.027 16.804
O2 8.305 18.407 24.213 28.380 32.706 25.609 0.809 9.438 19.095 24.890 27.834 16.979
O3 7.480 19.233 24.910 30.479 38.844 33.333 0.823 9.663 19.566 26.018 29.271 17.364

64-bits

O0 2.314 7.248 11.359 10.373 10.853 10.000 0.144 5.131 10.820 17.138 13.026 10.472
O1 1.971 6.166 10.929 9.175 9.005 7.744 0.834 7.540 14.866 11.212 7.373 6.294
O2 2.240 6.994 12.193 11.079 10.771 9.834 0.144 4.956 10.920 17.207 13.042 10.312
O3 1.938 5.952 10.653 9.309 8.688 7.572 0.144 5.131 10.820 17.138 13.026 10.472

ptr

O0 88.023 72.633 62.610 59.425 54.988 60.441 98.031 84.445 67.557 54.700 56.154 70.205
O1 89.223 73.398 62.936 59.839 52.482 58.221 98.280 86.986 67.613 70.732 70.199 75.771
O2 89.240 73.958 62.766 59.793 55.448 63.389 98.056 84.866 67.992 55.853 57.659 70.799
O3 90.355 74.140 63.576 59.482 51.475 57.950 98.031 84.445 67.557 54.700 56.154 70.205

Table X: Analysis of the non-variadic function in Binutils

Line Number Operation TypeArmor Our improved policy
4 Move %r9 to stack 0x40(%rsp) %r9 is a variadic argument May be a variadic argument
5 Move %r8 to stack 0x10(%rsp) %r8 is a variadic argument Non-consecutive stack addresses; not a variadic argument

11 0x40(%rsp) is read not overwritten Not a variadic argument
Conclusion Variadic function with 4 arguments Normal function with 6 arguments

Table IX: Likelihood that indirect calls in C programs use
immediate values as arguments

Compiler Opt Non-inline Inline Loop-unroll Func-copy

clang

O0 24 0 0 3
O1 23 0 0 6
O2 13 52 0 3
O3 13 49 45 4

gcc

O0 81 (25) 0 0 3
O1 75 (23) 59 0 5
O2 26 28 0 3
O3 22 33 3 3

Numbers in brackets correspond to functions that pass the value 0 to
an argument register.
“Func copy” refers to multiple copies of the same function called from
different modules.
Results shown are likelihood results multiplied by 1,000, rounded to
the nearest integer.

Table VIII: Number of functions and indirect calls

Opt #func #normal func #variadic #icalls

clang

C

O0 543 486 21 64
O1 540 495 19 60
O2 394 346 19 85
O3 380 352 19 93

C++

O0 3,379 3,229 15 121
O1 3,290 3,085 13 74
O2 702 652 13 439
O3 710 640 13 452

gcc

C

O0 546 483 24 70
O1 446 420 19 69
O2 418 386 21 67
O3 406 370 22 83

C++

O0 4,505 4,113 22 152
O1 686 608 13 336
O2 698 613 13 312
O3 656 606 13 299

• sEE
i+1 = ˙rw2si+1(64) and sEE

i = ˙rw2si(64).
with |POB

EE−f | being the maximal i violating the above. Oth-
erwise, f is a normal function with 6 arguments.


