
On Return Oriented Programming Threats

in Android Runtime

Akshaya Venkateswara Raja, Jehyun Lee, Debin Gao

Singapore Management University

{akshayavr, jehyunlee, dbgao}@smu.edu.sg

Abstract—Android has taken a large share of operating
systems for smart devices including smartphones, and has been
an attractive target to the attackers. The arms race between
attackers and defenders typically occurs on two front lines — the
latest attacking technology and the latest updates to the operating
system (including defense mechanisms deployed). In terms of at-
tacking technology, Return-Oriented Programming (ROP) is one
of the most sophisticated attack methods on Android devices. In
terms of the operating system updates, Android Runtime (ART)
was the latest and biggest change to the Android family. In this
paper, we investigate the extent to which Android Runtime (ART)
makes Return-Oriented Programming (ROP) attacks easier or
more difficulty. In particular, we show that by updating system
libraries and adopting Ahead-of-Time compiling instead of Just-
in-Time compiling in the ART architecture, a larger number
and more diverse gadgets are disclosed to ROP attackers, which
serve as direct ingredients to ROP attacks. We show that between
three and six times more gadgets are found on the ART adopted
versions of Android due to the new ART runtime. Moreover,
in constrained situations where an attacker requires specific
instructions and target registers, Android running ART provides
up to 30% more conditional coverage than pre-ART Android
does. We additionally demonstrate a sample ROP attack on post-
ART Android that would not have been possible on pre-ART
Android.

Keywords: Android Runtime, Return-Oriented Program-
ming, Software attacks

I. INTRODUCTION

The Android operating system, which has taken substantial
market share on the mobile platform, recently introduced An-
droid Run Time (ART) [1] to replace its previous runtime en-
vironment Dalvik Virtual Machine (DVM). Introduction of the
ART brought significant overall performance enhancement [2]
by replacing the Just-in-Time (JIT) compilation used in DVM
with Ahead-of-Time (AOT) compilation. AOT performs almost
all compilation of the Android applications at installation time
before they start executing. AOT compiled applications take
more space and installation time but less runtime overhead
than JIT compiled ones.

Meanwhile, improvements on runtime performance by
ART may also give chances for malicious activities. In par-
ticular, AOT compilation of Android applications makes the
fully/partially compiled versions of application code avail-
able before program execution, which might also be taken
advantage by a sophisticated attacker. One of the threats to
which we give special attention on the ART environment is
Return-Oriented Programming (ROP). ROP attacks introduced
by Shacham et. al. [3] utilize existing code sequences in the
libraries and executables that end with a return instruction.

These instruction sequences are called gadgets, and chaining
the gadgets by an injected malicious code enables arbitrary
executions. The attack has been shown available on ARM
instructions used by many Android devices as well [4], [5].
Intuitively, executable (machine) code is a necessary ingredient
to ROP attacks, and ART runtime is making such code more
readily available because such machine code, if generated at
program installation time compared to program execution time,
significantly improves user experience.

In this paper, we perform the first detailed analysis on
gadget availability in the two runtime environments (ART
and DVM). Our detailed analysis is a comprehensive study
in the following three aspects. First, we cover all potential
sources of gadgets an attacker could use, including the system
libraries and the application code. We extend our analysis
to underlying reasons of the changes to system libraries to
shed light on contributing factors to the different number of
instruction sequences found. Second, we classify instruction
sequences into different types according to their functional-
ity and present detailed statistical results according to these
different types. Instruction sequences are classified from the
perspective of attack construction so that our results show
direct implication of attack capability and difficulty. Third, our
analysis takes into consideration the programming restrictions
an attack construction would face, in particular, the different
set of registers available to the attacker. Note that although
we try to consider all practical limitations and requirements
an ROP attack has, our analysis is independent of any specific
attack objective.

Through empirical experiments using the stock Android
OS images released by Google and Android applications from
the official app market [6], we show that the number of
available instruction sequences for ROP attacks on ART is
approximately three to six times of that on DVM in their
vanilla state. Through our feasibility analysis from an attacker
perspective, we show that ART has up to 30% more coverage
on constrained attacking scenarios than DVM with diverse in-
struction sequences. Higher coverage on constrained attacking
scenarios indicates that it is easier to find suitable gadgets
under constraints an attacker possibly faces. As a concrete
example of our analysis results, we also present a sample ROP
attack on ART which are not feasible in DVM due to the
absence of necessary instruction sequences.

The rest of this paper is organized as follows. In Section II,
we briefly cover the background of ROP attacks and the
difference between ART and DVM runtime environments. As
the main finding of our analysis, we present the increased
number of useful gadgets and its diversity in ART in Sec-

tion III. In Section IV, we show how the diverse gadgets
contribute to an actual attack case which differentiates the ROP
attack feasibility. After a brief discussion on our limitation in
Section V, we conclude in Section VI.

II. BACKGROUND AND RELATED WORK

Since our analysis is about ROP on Android ART runtime,
we first briefly discuss the background of ROP and ART. We
also present the related work in this topic and how our analysis
differs from them.

A. ROP Attack in Android

ROP is an attacking technique utilizing existing code on the
victim side by hijacking the control flow directed by its return
address. After ROP was introduced by Shacham et. al. [3],
it has been shown that most of the computer systems and
instruction sets, including IA32, ARM, and MIPS, are potential
victims. ROP attacks generally exploit the epilogue mechanism
of function calls that use return addresses stored on the stack
for returning to the callee. By modifying the return addresses
on the stack, an attacker can control the address where the
current call returns.

In addition to exploiting the epilogue mechanism, free
branches and jumps can also be utilized for ROP attacks. Jump-
Oriented Programming (JOP) [7] hijacks the original control
by modifying the destination address of a jump or branch
instruction to the address of a desired gadget. Data Oriented
Programming (DOP) [8] utilizes a normal control flow but
modifies the data handled by the control flow to make the
victim routine perform requested computation.

Snow et al. introduced another ROP attack called Just-In-
Time ROP, which avoids even the fine-grained address space
layout randomization (ASLR) [9]. The basic mechanism of
JIT ROP attack is finding and chaining gadgets in runtime
on exploitation code. This attack defeats ASLR by collecting
required addresses and information on runtime, although it
requires heavier exploitation code than traditional code reuse
techniques.

Behind the many technical variants, a general work flow
for such an attack is as follows [10]:

• Disassembling the vulnerable application and system
libraries.

• Finding useful instruction sequences from the vulner-
able application and disassembled system libraries.

• Chaining together the instruction sequences to formu-
late the intended attack.

• Finding a vulnerability in the program.

• Exploiting the vulnerability with the gadget sequences.

All the five steps are necessary for an ROP attack to be
successful. In this paper, we specifically focus on the second
step, i.e., finding instruction sequences for gadget construction.
Instruction sequences are the very basic resources commonly
utilized by various code reuse attacking techniques and gadget
construction tools, e.g., [11]. Note that although the locations
of libraries and functions are typically randomized through

ASLR techniques, advanced ROP attacks have been shown to
bypass ASLR and successfully use the instruction sequences
for ROP attacks [9], [12], [13].

The most important ingredient of an ROP attack is gad-
gets available. Gadgets are instruction or chained instruction
sequences that satisfy the following two conditions [14]:

• The instruction has to divert the control flow.

• The target of the control flow must be a register.

Putting this into the context of Android running on ARM
devices, such gadgets typically include instructions allowing
one to specify the target of a control transfer, e.g., POP

with R14 or R15 as its operands where R14 is the link
register (LR) for the return address and R15 is the program
counter (PC). In this example, the POP instruction writes the
popped value from the stack to the registers in its operands,
which subsequently are used as the targets of control transfers.
Branching instructions BL, BX, and BLX can also be used, as
they write the address stored in their operand register to R14

and then make a control transfer to that address. For example,
BLX R6 copies the value in R6 to R14.

Gadgets (or instruction sequences) are typically found in
the target application to be exploited or the system libraries
to perform some basic operation, which might be moving
values between registers and memory, adding values together,
performing control transfers, etc. Attackers first locate all
the available gadgets for various basic operations, and then
carefully chain them together to perform the specific attack.

B. Android Runtime (ART)

ART is the runtime architecture of Android OS which
was experimentally adopted in 4.4 (Kitkat) and officially re-
placed the Dalvik runtime (DVM) from Android 5.0 (Lollipop)
onward. The introduction of ART brought about two main
changes: how the application is executed and garbage col-
lection [1]. By replacing Just-In-Time (JIT) compilation with
Ahead-Of-Time (AOT) compilation, ART brings performance
enhancement to application execution.

On DVM, Java classes in an application are represented
in the form of Dalvik Executable (.dex) format. Each time
when the application is executed, the JIT compiler translates
the smali bytecode in the .dex file into machine instructions.
On the other hand, ART uses AOT compilation to compile the
.dex code into native code in .oat files when an application
is installed. When the application is executed, the machine
instructions from the .oat file are directly executed and no
more compilation is needed.

C. Related Work

Many efforts have been made to make ROP attacks more
difficult. For example, ROP prevention mechanisms, such as
changing memory addresses of basic blocks [15] and instruc-
tion sequences [16], [17], and detecting abnormal change of
control flow [18], [19], were proposed. These mechanisms have
shown their effectiveness, but memory address leakage [12],
[13], [20] and JIT-ROP [9] attacks still make a system vulner-
able.

Android systems have been shown to be more vulnerable to
ROP attacks due to the limited computing and battery resources
that limit fine-grained and strong ASLR techniques to be
adopted. The application runtime architecture that forks every
user application from the zygote process has been addressed as
a weakness of Android system because every application has
uniform memory layout to the zygote [21], [22]. Sun et. al.
also introduced return-to-art attack which is similar to return-
to-libc attack but is newly available in ART architecture [22]

As countermeasures to ROP attacks on Android, Retouch-
ing [23] and LR2 [24] proposed code and link randomization
methods which make the memory layout different from what
an attacker may know. However, these static methods have lim-
itations solving the uniform layout problem. Morula [21] and
Blender [22] support randomized layout for every application
forked by modifying the Android framework and patching the
class linker and boot.oat.

Other approaches focus on the ingredients of an ROP
attack, i.e., the target vulnerable binaries and their gadgets,
which are closer to what we do in this paper. The number of
and the diversity of gadgets have been shown to be critical
factors to the feasibility of ROP attacks. For example, in
Microgadgets [25], it is shown that the susceptibility to ROP
attacks highly depends on the size of the binaries and the
number and diversity of gadgets available. Joshi et. al. also
claimed that obfuscated software has more diverse gadgets,
which may increase the susceptibility to ROP attacks [26].
Onarlioglu et. al. proposed a practical defense mechanism
named G-Free [27] which modifies the instruction sequences
inside a library so that ROP attackers cannot find available
gadgets while maintaining their original functionality.

Acknowledging the importance of gadget availability in
assessing feasibility of an ROP attack as in these previous
work, our paper performs a detailed comparison between
gadget availability in Android pre-ART (version 4.4) and post-
ART (version 5.1, 6.0, and 7.1) to find out where we stand
with the latest Android runtime in terms of restricting ROP or
making ROP attacks easier.

III. ANALYSIS ON ROP FEASIBILITY

As discussed in Section II-A, typical ROP attacks re-
quire finding useful instruction sequences and chaining them
together to formulate the intended attack. Such instruction
sequences are to be located in Android system libraries, An-
droid system .oat files, application libraries, and application
.oat files. Intuitively, the Android system .oat files and
application .oat files only exist on Android 5.0 onward where
ART replaces DVM as the default runtime environment and
uses Ahead-Of-Time (AOT) compilation, which add to the pool
of instruction sequences that are potential ingredients of ROP
attacks. This suggests that ROP may become easier because
of higher availability of useful instruction sequences and ROP
gadgets.

In this section, we analyze the extent to which this intuition
is correct. More specifically, we perform a detailed comparison
between Android 4.4 (with the last DVM) and major versions
of Android post-ART, i.e., 5.1, 6.0, and 7.1. Our comparison
will focus on analysis from the attackers’ perspective; in
particular, we analyze 1) all potential sources of attack gadgets

and reasons behind the different gadget availability from
these sources across different Android versions; 2) instruction
sequences with different functionality and their corresponding
availability; and 3) special instruction sequences that are useful
to attackers under various programming constraints.

A. Target of analysis

We target four different versions of Android, 4.4, 5.1, 6.0
and 7.1, which are the last release of major updates to the
Android OS. We obtain the corresponding Android OS images
from the Google repository for Android developers [28] and
install them on Android virtual devices supported by Android
Studio.

For each of the Android OS targets, we extract and disas-
semble all binary files that contain machine instructions that
are ready for execution, which include the system libraries and
boot.oat. Since ROP typically uses machine instructions,
these form the pool of instruction sequences for an ROP attack
to locate its ingredients from the operating system.

Besides machine instructions from the OS, ROP attacks can
also make use of instruction sequences from the application
code and library. We target the top 50 Android applications
published on Google Play [6] as in July 2016, and extract the
.odex file of these applications after their installation to our
virtual device. These .odex files are the output of the AOT
compiler, dex2oat, which contains the native code of the
applications.

After obtaining the machine instructions (from three
sources: system libraries, boot.oat, and application .odex
files), we search for special sequences ending with a control
transfer instruction (e.g., BL, BX, and BLX) using a Python
script that implements the gadget searching algorithm [29].
Note that although application libraries also contribute to ROP
attacks, they are independent of Android versions and therefore
are excluded from our analysis. We present our searching and
analysis results in the following subsections.

B. Instruction sequences from Android OS

The most important source of useful instruction sequences
from the ROP attackers’ perspective is system libraries, which
exist in two forms — .so files and boot.oat. The legacy
Linux shared libraries (.so files) exist in both Android DVM
and Android ART systems. These system libraries are mainly
built on C/C++ and are shared with all applications on demand.
boot.oat only exists in Android post-ART versions. With
the introduction of Ahead-Of-Time (AOT) compilation in ART,
Java core libraries are converted into native code and stored in
boot.oat. Since boot.oat also consists of native machine
code, attackers could make use of instruction sequences from
it to construct ROP attacks.

Fig. 1 shows detailed breakdown of the number of useful
instruction sequences found in the four Android versions,
in which we categorize instruction sequences according to
their functionality (i.e., arithmetic, logical, system call, data
transfer), and report results for .so system libraries and
the combination of .so system libraries and boot.oat.
Note that Android 4.4 has only .so libraries since system’s
boot.oat only exists post-ART.

0
2k
4k
6k

Arith. Logical Sys.call Data trans. Total

*Instruction Categories
Arithmetic: ADD, ADC SUB, SBC, RSC, MUL, MLA,

Logical: AND, BIC, ORR, ORN, EOR,
Data transfer: MOV, MVN, LDR, LDM, STR, STM, VST,

System call: SVC

0.2M
0.4M
0.6M
0.8M
1.0M
1.2M
1.4M
1.6M

N
um

be
r

of
 in

st
ru

ct
io

n
se

qu
en

ce
s

 4.4 .so syslibs
 5.1 .so syslibs
 6.0 .so syslibs
 7.1 .so syslibs
 5.1 .so syslibs + boot.oat
 6.0 .so syslibs + boot.oat
 7.1 .so syslibs + boot.oat

Fig. 1. Number of useful instruction sequences for ROP attacks among
Android OS versions

It has been a general increase of the number of .so system
libraries from Android 4.4 to Android 5.1. The number of
libraries increases from 172 to 209, with 51 libraries newly
added. Fig. 2a clearly shows that most libraries (78%) have
grown bigger in terms of the number of useful instruction
sequences for ROP attacks. An interesting observation is that
such increase is not uniformly distributed among all libraries.
In particular, two libraries, libwebviewchromium and
libgoogle_recognizer_jni_l contributed 65% of all
the additional instruction sequences useful for ROP attacks.

From Android 5.1 to Android 6.0, the number of system
libraries continues to increase from 209 to 215. Fig. 2b
demonstrates a similar statistical pattern with that in Fig. 2a,
suggesting that most libraries have more instruction sequences
for ROP attacks. However, the larger decrease of useful
instruction sequences in a few libraries coupled with the
depreciation of two big libraries (libwebviewchromium
and libgoogle_recognizer_jni_l) from Android 5.1
change the overall trend and result in the total number of
useful instruction sequences being smaller in Android 6.0 than
Android 5.1 (see Fig. 1). Upon further investigation, we
realize that libwebviewchromium (part of a large webview
project Chromium) was moved to the user space as an applica-
tion. The official reason of the change is to enhance flexibility
and security of the library by independent updates [30].

Android 7.1 also sees an increase in the number of libraries
from 215 in Android 6.0 to 244. However, their increases and
decreases of useful instruction sequences for ROP attacks more
or less cancel out, which results in only a small increase on
the overall statistics.

We further look into the reasons behind such changes on
the number of useful instruction sequences for ROP attacks
in the system libraries. The change in file size of the libraries
and the change of number of useful instruction sequences for
ROP attacks demonstrate some correlation, which seems to
suggest that bigger libraries contribute more to the instruction
sequences for ROP attack. To verify this intuition, we perform
a more thorough analysis on such correlation; see Fig. 3, which

-100

-101

-102

-103

-104

-105

System libraries sorted by increased instruction sequence number
 from Android 4.4 to Android 5.1.

 100

 101

 102

 103

 104

 105

D
el

ta
 o

f i
ns

tr
uc

tio
n

se
qu

en
ce

 n
um

be
rs

 in
 a

 li
br

ar
y

(lo
gs

ca
le

)

(a) Android 4.4 to 5.1

-100

-101

-102

-103

-104

-105

System libraries sorted by increased instruction sequence number
 from Android 5.1 to Android 6.0.

 100

 101

 102

 103

 104

 105

D
el

ta
 o

f i
ns

tr
uc

tio
n

se
qu

en
ce

 n
um

be
rs

 in
 a

 li
br

ar
y

(lo
gs

ca
le

)

(b) Android 5.1 to 6.0

-100

-101

-102

-103

-104

-105

System libraries sorted by increased instruction sequence number
 from Android 6.0 to Android 7.1.

 100

 101

 102

 103

 104

 105

D
el

ta
 o

f g
ad

ge
t n

um
be

rs
 in

 a
 li

br
ar

y
(lo

gs
ca

le
)

(c) Android 6.0 to 7.1

Fig. 2. Changes on the number of instruction sequences in each system
library between each version update.

shows two statistics — the number of instructions and the
number of useful instruction sequences for ROP attacks — for
every .so library in various Android versions1.

1A couple of outliers are excluded in the plot as they do not significantly
change the pattern.

 0
 20
 40
 60
 80

 100
 120
 140

 0 100 200 300 400 500

 Number of instructions(103)
 Number of useful instruction sequences(102)

(a) Android 4.4

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

(b) Android 5.1

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

(c) Android 6.0

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500

System library file size (KB)

(d) Android 7.1

Fig. 3. Number of instructions and useful gadgets by file size from system
libraries in Android 4.4-7.1

Fig. 3 shows that although the number of instructions
demonstrate clear correlation with the library file size (which is
true as long as the library consists of mostly executable code),
the number of useful instruction sequences for ROP attacks is
not. Instead, the number of useful instruction sequences per
one thousand instruction ranges from less than 1 to more than
80 among all the libraries. For instances, libglesv1_enc
has 1200-1700 useful instruction sequences in 4.4-6.1, while

libstagefright_soft_mpeg4dec which has a similar
number of instructions has only 100-130 useful instruction
sequences for ROP attacks in the same versions. This is a
contrasting feature of .so system libraries compared to that
of application .odex files discussed in the next subsection.
Application .odex files in Fig. 4 show a much clearer corre-
lation with between 70 and 90 of instruction sequences per one
thousand instructions. One of the key factors which affect the
number of instruction sequences is the number of returns and
branches. Even though the two libraries have the same number
of instructions, the number of useful instruction sequences
can be different along with the number of condition branches,
methods, and method calls which make branch instructions in
their compiled code.

In contrast to the .so system libraries which differ quite
substantially across multiple Android versions, boot.oat has
almost the same structure and contain 12 (in Android 6.0) or
13 (in Android 5.1 and 7.1) Java core libraries. Fig. 1 shows
that boot.oat contributes significantly to the ROP attacks
by introducing a large number of useful instruction sequences
for ROP attacks, especially on sequences for data transfer. We
stress again that unlike .so system libraries which exist in
pre- and post-ART Android, boot.oat exists only in post-
ART Android versions. In other words, the introduction of
ART newly added all these instruction sequences for attackers
to use in constructing an ROP attack.

One interesting observation, though, is that this damage
introduced by ART (in terms of new instruction sequences
for ROP attacks) is on the declining trend from Android 5.1
to 6.0 and to Android 7.1. In particular, the number of such
instruction sequences decreased in a few large sized libraries
and packages in boot.oat by removal and significant down-
scale from Android 5.1 to Android 6.0. We leave it our future
work to investigate the underlying reason for this change in
each library, be it (ROP-specific) security awareness among
the Android development team, or just coincidence of other
considerations.

C. Instruction sequences from application .odex files

One of the most significant differences between DVM and
ART is the existence of AOT compiled files, which exist in
the form of both systems boot.oat as well as application
.odex files. With the introduction of AOT compilation in
ART, .dex files of all the applications are compiled into
.odex files after installation, which contain native instruc-
tions. This subsection focuses on the analysis of such .odex

files for the Android applications to find out the extent to
which they contribute instruction sequences for ROP attacks.
We stress that these .odex files are optimized DEX in
DVM, and are in a new file format in Android ART. They
experience negligible differences among various versions post-
ART (Android 5.1, 6.0, and 7.1) though, and therefore, we
present only the result of our analysis on Android 6.0 in this
subsection. We install the top 50 applications on Google Play
(as of Jun 2016) on our virtual device running Android 6.0,
extract the resulting .odex file for each application, and then
run our Python scripts to locate all useful instruction sequences
for ROP attacks.

When we investigate the correlation between the number
of useful instruction sequences for ROP attacks and the total

number of instructions as well as the file size, we find that
unlike the .so system libraries, these .odex files are much
“better behaved”. Fig. 4 shows that for the top 50 Android ap-
plications, both numbers (that of useful instruction sequences
for ROP attacks and that of all instructions) are proportional
to the file size. We attribute this difference to the different
languages and compilers used — application .odex files are
compiled from Java while .so system libraries are compiled
from C/C++.

 0

 2

 4

 6

 8

 10

 12

 14

 0 10 20 30 40 50 60 70 80

.odex file size of Android apps (MB)

 Number of instructions(106)
 Number of useful instruction sequences(105)

Fig. 4. Number of instructions and useful instruction sequences for ROP
attacks from application .odex files for top 50 apps

It is quite intuitive that the larger .odex files contain
more useful instruction sequences for ROP attacks. Besides
that, another factor determining the number of such instruction
sequences could be the average size of methods inside the
applications, since every such instruction sequence has to
end with a control-transfer instruction. Fig. 5 demonstrates
this relationship. In general, applications written with smaller
methods tend to have more useful instruction sequences for
ROP attacks — this confirms our intuition since smaller
methods tend to have (on average) more control transfers.
This result suggests that compilers could use more function
inlining opportunities to generate more secure software, from
the perspective of reducing instruction sequences for ROP
attacks.

D. ROP construction in constrained scenarios

So far, our analysis has been focusing on available in-
struction sequences for ROP attack construction, and we had
considered instruction sequences for different functionality
(see Fig. 1). In this subsection, we go into more fine-grained
categorization of these instruction sequences and consider
more realistic attacking scenarios where attackers are facing
various constraints.

While performing an ROP attack, an attacker may have
various constraints in addition to the specific functionality of
instruction sequences. For instance, the attacker could only
write to a small subset of the registers (probably due to the
fact that other registers are containing critical information that
ensures continuous normal execution of the application). In
such a scenario, not all available instruction sequences for the

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 76 78 80 82 84 86 88 90 92

A
ve

ra
ge

 n
um

be
r

of
 in

st
ru

ct
io

ns
 in

 a
 m

et
ho

d

Number of useful instruction sequences per a thousand instructions

Average number of instructions in a method

Fig. 5. Relation between normalized number of useful instruction sequences
for ROP attacks and the average size of methods in application .oat files of
top 50 Android apps

needed functionality might help — the attacker needs one that
operates on some specific registers.

To analyze such scenarios, we perform a finer-grained
categorization on the instruction sequences found from the
Android OS (including those from .so system libraries and
boot.oat) at two dimensions — one along their specific
functionality (e.g., the add function or the and function)
and the other along the specific registers used (i.e., R0, R1,
etc.). We perform this analysis on the four different Android
versions 4.4, 5.1, 6.0, and 7.1, and present the results in
Table I. Dark-gray-shaded cells indicate the scenario in which
the instruction sequence only exists in ART versions, and light-
gray-shaded cells indicate the opposite. There are a lot more
dark-gray cells than light-gray cells in Table I.

Results show that, with certain constraints, only specific
versions of the Android OS are vulnerable to a certain type
of ROP attack, and ART versions generally are much more
vulnerable (provide more instruction sequence opportunities)
than the DVM version.

For more straight-forward comparison, we introduce a
measurement metric constraint coverage which represents
the extent to which an Android version is vulnerable. It is
measured by the proportion of unique constraints out of the
352 conditions (16 registers by 22 functionality) under which
the corresponding Android OS provides available instruction
sequences. 100% coverage means that an attacker can find
at least one instruction sequence under all the 352 different
types of constraints from system libraries. Results of such a
measurement are presented in Fig. 6.

We can see the huge increase on this constraint coverage
from Android 4.4 to Android 5.1. Although it drops signif-
icantly in Android 6.0 and Android 7.1, the values are still
greater than that in Android 4.4. This result is consistent with
our earlier findings in a more coarse-grained categorization
(see Fig. 1).

40%

45%

50%

55%

60%

65%

70%

75%

80%

4.4 syslib.

5.1 syslib.

6.0 syslib.

7.1 syslib.

5.1 syslib.+boot.oat
6.0 syslib.+boot.oat
7.1 syslib.+boot.oat

C
on

st
ra

in
t c

ov
er

ag
e

Fig. 6. Constraint coverage for various Android OS versions

IV. EMPIRICAL EVALUATION

Our analysis so far in Section III shows that post-ART
Android versions suffer from more ROP opportunities due
to the more readily available instruction sequences an ROP
attacker can use to construct an attack, even at various con-
strained scenarios. In this section, we verify this analysis result
by performing an actual ROP attack which is feasible on
Android 6.0 but not on Android 4.4 due to the lack of available
instruction sequences.

A. Vulnerability and exploit strategy

In this sample ROP attack, we utilize a well-known vulner-
ability introduced earlier [10]; see Source Code 1. We insert
this buffer-overflow vulnerability into the native library of a
simple Android app Standup Timer, an open-source android
application that acts as a stop watch. Due to the vulnerability
introduced, we are able to overflow a local buffer and overwrite
the adjacent control flow information to execute the attack.

Source Code 1 Buffer overflow vulnerable code for test ROP
attack scenario
Params: JNIEnv* env, jobject obj
Return: jstring

1: struct foo {
char buffer [200];
jmp buf jb;
};

2: procedure JAVA COM EXAMPLE VULNAPP

NEWACTIVITY STRINGFROMJNICPP
3: // A binary file is opened (not depicted)
4: . . .
5: foo *f = new foo;
6: i = setjmp(f− > jb);
7: if (i! = 0) then
8: return 0;
9: end if

10: fgets(f− > buffer, sizeOfFile, sF ile);
11: longjmp(f− > jb, 2);
12: end procedure

In Source Code 1, function setjmp on the sixth line
creates a special data structure jmp_buf to store the register

values from R4 to R15, including the stack pointer, link
register, and program counter. Therefore, when we overwrite
jmp_buf before calling longjmp, the program counter (PC)
value in R15 is changed and control is then transferred to the
desired address without corrupting the return address. Through
this buffer-overflow vulnerability, we attempt to execute a
system call with a manipulated parameter through a syscall
routine implemented in libc — a pretty standard and general
exploit that many attacks attempt to perform. For performing
a malicious action, we multiply the value in R0 by a given
scale. For demonstration purposes, we further narrow down
the constraint that the attacker faces to a smaller range, R12
to R15.

B. Instruction sequences needed for gadget construction

The following is an example of the attack gadget which
consists of instruction sequences satisfying the requirement.

Sequence A2: MUL R0, R0, R12; BX R14
Sequence A1: system()

Because R15 (PC) is used for the control flow hijacking,
the only available registers for the addresses and the argument
are R12, R13, and R14. To make a control transfer to
Sequence A1 which consists of the target function to be called,
we need to find an instruction sequence which performs a
MUL type of actions and stores its result to R0. Sequence A2
satisfies this requirement since R12 is among the registers that
the vulnerable code could overwrite (from R12 to R15) and
the source register for branch instruction R14 is also within
the constrained range.

This example demonstrates a realistic attacking sce-
nario in which instruction sequences satisfying certain con-
straints (in this example, the constraints are about a
range of registers as the source, since those are the only
ones that the vulnerable code is able to overwrite) are
needed. We manage to find these instruction sequences from
libstagefright_soft_aacenc.so system library in
Android 6.0, but could not find them (including variations of
them satisfying our requirements) from any system libraries in
Android 4.4. The reasons are clearly demonstrated in Table I
where we see many more instruction sequences targeting
specific registers found only in Android post-ART.

For the same functionality, we may consider another way
by using three instruction sequences as follows.

Sequence B3: MOV R3, R0; BLX R13
Sequence B2: MUL R0, R12, R3; BX R14
Sequence B1: system()

Sequence B2 is the only instruction sequence available in
Android 4.4 which potentially satisfies our attacking require-
ment. To utilize Sequence B2 for the same purpose, the value
of R3 must be the same as (or a multiple of) R0. Therefore, we
need an additional sequence like Sequence B3 (hypothetical);
however, such an instruction sequence is, again, unavailable in
Android 4.4 libraries.

TABLE I. THE NUMBER OF INSTRUCTION SEQUENCES FROM SYSTEM LIBRARIES BY WRITE-TARGET REGISTERS AND ACTIONS

ADD ADC SUB SBC RSB RSC MUL MLA AND BIC ORR ORN EOR MOV MVN LDR LDM STR STM VST SVC

R0

4.4 10046 1310 625 1 164 0 79 152 297 105 347 2 185 93053 818 9841 0 7703 11 1 0
5.1 11955 1440 903 0 291 0 108 194 430 198 1591 5 312 311799 1353 265843 2 8367 27 0 0
6.0 5627 393 435 0 138 0 65 86 255 79 813 1 103 219002 1013 279610 1 4726 42 0 0
7.1 27116 83 1136 7 94 0 91 103 991 143 1250 5 349 163014 900 411027 0 19126 62 0 0

R1

4.4 2332 17 59 6 46 0 8 31 12 20 52 0 10 11748 26 19784 0 5725 1 0 0
5.1 8469 56 229 41 56 9 31 51 120 61 286 0 30 273867 89 32669 4 10972 12 0 0
6.0 1782 135 190 23 18 26 5 15 9 3 125 0 4 84557 205 18330 4 4370 2 0 0
7.1 6216 257 332 171 11 33 13 22 104 65 488 0 36 32860 261 33699 0 41546 10 0 0

R2

4.4 1199 3 43 0 52 0 11 6 10 13 25 0 5 4200 8 22418 1 5430 0 0 0
5.1 3173 6 236 1 84 0 34 25 31 48 211 0 10 136916 82 33180 1 10943 4 0 0
6.0 415 1 49 0 12 0 11 5 15 5 19 0 3 117577 42 13361 0 3279 7 0 0
7.1 1356 1 135 0 1 0 21 5 33 11 30 0 4 5809 8 17886 1 35113 3 0 0

R3

4.4 1084 25 38 1 55 0 7 3 20 5 44 0 6 3196 9 27669 1 8872 4 0 0
5.1 3675 35 130 8 88 0 18 7 57 37 125 0 13 64328 187 49513 1 10842 23 0 0
6.0 333 21 19 6 13 0 161 5 8 2 53 0 3 43260 92 13477 0 3914 8 0 0
7.1 850 6 27 0 0 0 105 3 28 12 39 0 2 2972 16 8104 5 23267 3 0 0

R4

4.4 103 0 40 0 2 0 0 1 2 1 1 0 0 1695 28 4930 1 2632 6 0 0
5.1 962 1 136 1 24 2 6 10 9 6 43 0 6 2457 14 9463 11 4604 106 0 0
6.0 82 1 25 1 0 2 4 0 2 4 8 0 0 1095 7 3813 2 1966 41 0 0
7.1 127 0 19 2 1 0 8 1 3 2 6 0 3 882 16 999 2 5010 8 0 0

R5

4.4 183 4 14 0 1 0 0 0 4 1 1 0 2 1397 23 3071 1 4080 3 0 0
5.1 1764 7 119 0 30 0 7 6 31 49 36 0 9 2002 13 8778 2 6152 26 0 0
6.0 51 0 12 0 4 0 1 0 4 2 1 0 2 813 16 3397 0 1752 10 0 0
7.1 78 1 19 1 0 0 6 3 1 3 4 0 0 1304 19 993 0 1555 8 0 0

R6

4.4 136 0 11 0 0 0 1 0 3 1 2 0 2 652 3 2802 0 1366 1 0 0
5.1 1216 3 81 1 11 0 11 5 38 8 20 0 6 4351 10 9530 2 3671 47 0 0
6.0 56 0 9 0 4 0 0 0 4 3 0 0 0 1184 10 2953 0 1082 5 0 0
7.1 52 2 19 0 0 0 8 3 1 2 15 0 2 2618 8 1551 0 766 0 0 0

R7

4.4 135 2 10 0 0 0 2 0 1 1 0 0 1 605 2 2529 0 782 0 0 0
5.1 801 0 68 0 16 0 15 9 74 4 987 0 5 2368 12 8271 0 2048 9 0 0
6.0 28 3 19 0 0 0 1 1 0 1 1 0 0 1021 4 3809 1 679 2 0 0
7.1 48 2 19 0 0 0 3 0 2 1 9 0 0 1237 2 3238 0 457 1 0 0

R8

4.4 45 0 12 0 3 0 0 0 0 0 0 0 0 320 0 183 1 263 2 0 0
5.1 292 2 36 0 10 0 4 5 6 0 3 0 3 1404 10 656 1 514 18 0 0
6.0 40 1 1 0 0 0 0 1 0 0 216 0 0 679 2 322 1 288 0 0 0
7.1 14 0 1 0 0 0 1 0 0 1 1 0 0 771 1 204 0 365 4 0 0

R9

4.4 47 0 7 0 1 0 0 0 0 0 0 0 0 244 0 147 0 124 0 0 0
5.1 711 3 11 0 5 0 0 2 12 2 2 0 0 442 4 479 2 567 2 0 0
6.0 27 1 4 0 0 0 0 0 1 0 120 0 1 150 1 483 0 230 2 0 0
7.1 9 0 0 0 0 0 0 1 0 0 0 0 0 54 0 90 1 300 8 0 0

R10

4.4 23 0 2 0 2 0 1 0 0 2 0 0 0 198 0 70 2 68 0 0 0
5.1 203 0 33 0 11 0 0 7 5 2 3 0 2 1517 1 290 0 363 2 0 0
6.0 23 0 5 0 0 0 0 1 1 2 1 0 1 717 0 101 1 199 0 0 0
7.1 13 0 2 0 0 0 0 1 0 2 2 0 2 454 0 94 0 213 6 0 0

R11

4.4 29 1 2 0 1 0 0 0 0 0 0 0 1 113 0 62 0 57 0 0 0
5.1 183 4 14 0 1 0 0 3 8 1 7 0 2 719 3 237 0 317 1 0 0
6.0 786 0 1 0 1 0 0 0 1 0 0 0 0 291 0 77 0 224 0 0 0
7.1 5 0 0 0 0 0 1 0 0 4 0 0 0 396 0 46 0 232 0 0 0

R12

4.4 18 0 5 0 125 0 0 1 1 5 35 0 1 11 4 50 0 554 2 0 0
5.1 222 3 21 0 112 0 5 14 8 17 39 0 14 160 1 32626 2 1768 37 0 0
6.0 19 0 7 0 28 0 0 0 2 0 11 0 0 65 2 16707 4 831 20 0 0
7.1 69 0 4 0 0 0 0 0 6 0 7 0 0 93 2 17833 1 822 8 0 0

R13

4.4 33224 0 182 0 0 0 0 0 2 0 0 0 0 6 0 1 0 1 0 0 0
5.1 194447 1 837 0 0 0 0 1 3 0 0 0 2 53 0 3 3 1 10 0 0
6.0 134067 0 1082 0 0 0 0 0 0 0 0 0 0 41 0 22 0 2 27 0 0
7.1 119229 0 736 0 0 0 0 0 0 0 0 0 0 8 0 25 0 0 23 0 0

R14

4.4 13 0 6 0 24 1 0 0 2 0 0 0 0 3 2 43 0 150 2 0 0
5.1 120 1 10 0 11 0 0 0 2 0 1 0 2 22 2 586244 1 389 1 0 0
6.0 7 0 4 0 1 0 0 0 1 0 3 0 0 22 3 633733 5 349 12 0 0
7.1 7 0 1 0 4 0 0 0 1 0 0 0 0 37 2 581864 0 150 1 0 0

R15

4.4 1 0 0 0 0 0 0 0 4 0 0 0 0 2 0 1 0 3 0 0 0
5.1 0 0 5 0 2 2 0 0 3 0 1 0 3 1 1 9 0 0 0 0 0
6.0 0 4 1 0 1 5 0 0 0 0 0 0 0 1 1 12 1 0 0 0 0
7.1 19 0 1 0 1 1 0 0 5 0 0 0 1 2 0 0 0 0 0 0 0

Note: Functionality of instruction types on column header

ADD: Add, ADC: Add with carry, SUB: Subtract, SBC: Subtract with carry, RSB: Reverse subtract, RSC: Reverse subtract with carry, MUL: Multiply, MLA: Multiply accumulate

AND: Logical AND, BIC: Bit clear by logical AND NOT, ORR: Logical OR, ORN: Logical OR NOT, EOR: Logical Exclusive OR

MOV: Move, MVN: Move NOT, LDR: Load, LDM: Load multiple registers, STR: Store, STM: Store multiple registers, VST: Vector store

SVC: Supervisor calls

V. LIMITATIONS AND FUTURE WORK

Useful instruction sequences which are the source of ROP
gadgets are an important factor for ROP feasibility in a system.
However, the practicality of each instruction sequence is diffi-
cult to be fully presented only with the numbers and diversity
of them demonstrated in our analysis. Some additional factors,
such as the distance between the instruction sequences, being
able to read and write to the heap space, static values inside a
sequence, etc., can also be critical to their usefulness when an
attacker tries to construct an attack gadget. The measurement
of ROP feasibility considering those practical factors from

the attacker perspective may give more precise and abundant
insight. Figuring out the conditions and characteristics of a
victim system that make an attack difficult to attack can be
one of our future work.

VI. CONCLUSION

In this paper, we analyze and show the ROP feasibility
exacerbated by the change of runtime architecture from DVM
to ART. Not only more gadgets caused by larger system
libraries but also AOT compiled applications contribute to a
larger number and more diverse and useful gadgets than the

DVM architecture. In particular, an attacker can find specific
types of gadgets performing a certain action to a required
register only from ART adopted versions. We show that some
attacks which are not possible in previous versions of Android
are now becoming possible in new versions. We believe that
the intuitions from our analysis results are helpful to designing
future systems and countermeasures.

REFERENCES

[1] A. Frumusanu, “A closer look at android runtime (art) in android l,”
AnandTech. Retrieved July, vol. 5, 2014.

[2] R. Yadav and R. S. Bhadoria, “Performance analysis for android runtime
environment,” in Communication Systems and Network Technologies
(CSNT), 2015 Fifth International Conference on. IEEE, 2015, pp.
1076–1079.

[3] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh,
“On the effectiveness of address-space randomization,” in Proceedings

of the 11th ACM conference on Computer and communications security.
ACM, 2004, pp. 298–307.

[4] M. Tran, M. Etheridge, T. Bletsch, X. Jiang, V. Freeh, and P. Ning,
“On the expressiveness of return-into-libc attacks,” in International

Workshop on Recent Advances in Intrusion Detection. Springer, 2011,
pp. 121–141.

[5] M. Prandini and M. Ramilli, “Return-oriented programming,” IEEE

Security & Privacy, vol. 10, no. 6, pp. 84–87, 2012.

[6] Google Inc., “Google Play,” https://play.google.com.

[7] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang, “Jump-oriented
programming: a new class of code-reuse attack,” in Proceedings of the

6th ACM Symposium on Information, Computer and Communications

Security. ACM, 2011, pp. 30–40.

[8] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 969–986.

[9] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and
A.-R. Sadeghi, “Just-in-time code reuse: On the effectiveness of fine-
grained address space layout randomization,” in Security and Privacy

(S&P), 2013 IEEE Symposium on. IEEE, 2013, pp. 574–588.

[10] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-

cations security. ACM, 2010, pp. 559–572.

[11] Jonathan Salwan, “ROPgadget,” http://shell-storm.org/project/
ROPgadget/.

[12] N. Carlini and D. Wagner, “Rop is still dangerous: Breaking modern
defenses.” in USENIX Security, vol. 14, 2014.

[13] K. Lu, C. Song, B. Lee, S. P. Chung, T. Kim, and W. Lee, “Aslr-
guard: Stopping address space leakage for code reuse attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and

Communications Security. ACM, 2015, pp. 280–291.

[14] T. Kornau, “Return oriented programming for the arm architecture,”
Ph.D. dissertation, Masters thesis, Ruhr-Universität Bochum, 2010.

[15] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin, “Binary stirring:
Self-randomizing instruction addresses of legacy x86 binary code,” in
Proceedings of the 2012 ACM conference on Computer and communi-
cations security. ACM, 2012, pp. 157–168.

[16] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson, “ILR:
Where’d my gadgets go?” in Security and Privacy (S&P), 2012 IEEE
Symposium on. IEEE, 2012, pp. 571–585.

[17] V. Pappas, M. Polychronakis, and A. D. Keromytis, “Smashing the
gadgets: Hindering return-oriented programming using in-place code
randomization,” in Security and Privacy (S&P), 2012 IEEE Symposium

on. IEEE, 2012, pp. 601–615.

[18] ——, “Transparent ROP exploit mitigation using indirect branch trac-
ing,” in USENIX Security, vol. 30, 2013, p. 38.

[19] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant,
D. Song, and W. Zou, “Practical control flow integrity and random-
ization for binary executables,” in Security and Privacy (S&P), 2013
IEEE Symposium on. IEEE, 2013, pp. 559–573.

[20] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection.” in USENIX Security, vol. 14, 2014.

[21] B. Lee, L. Lu, T. Wang, T. Kim, and W. Lee, “From zygote to morula:
Fortifying weakened aslr on android,” in Security and Privacy (SP),
2014 IEEE Symposium on. IEEE, 2014, pp. 424–439.

[22] M. Sun, J. C. Lui, and Y. Zhou, “Blender: Self-randomizing address
space layout for android apps,” in International Symposium on Research
in Attacks, Intrusions, and Defenses. Springer, 2016, pp. 457–480.

[23] H. Bojinov, D. Boneh, R. Cannings, and I. Malchev, “Address space
randomization for mobile devices,” in Proceedings of the fourth ACM

conference on Wireless network security. ACM, 2011, pp. 127–138.

[24] K. Braden, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
and A.-R. Sadeghi, “Leakage-resilient layout randomization for mobile
devices,” in Network and Distributed Systems Security Symposium

(NDSS), 2016.

[25] A. Homescu, M. Stewart, P. Larsen, S. Brunthaler, and M. Franz,
“Microgadgets: size does matter in turing-complete return-oriented pro-
gramming,” in Proceedings of the 6th USENIX conference on Offensive
Technologies. USENIX Association, 2012, pp. 7–7.

[26] H. P. Joshi, A. Dhanasekaran, and R. Dutta, “Impact of software
obfuscation on susceptibility to return-oriented programming attacks,”
in Sarnoff Symposium, 2015 36th IEEE. IEEE, 2015, pp. 161–166.

[27] K. Onarlioglu, L. Bilge, A. Lanzi, D. Balzarotti, and E. Kirda, “G-free:
defeating return-oriented programming through gadget-less binaries,”
in Proceedings of the 26th Annual Computer Security Applications

Conference. ACM, 2010, pp. 49–58.

[28] Google Inc., “Android system image repository,” https://dl.google.com/
android/repository/sys-img/google apis/.

[29] H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th

ACM conference on Computer and communications security. ACM,
2007, pp. 552–561.

[30] Chromium project group, “WebView for Android,” https://developer.
chrome.com/multidevice/webview/overview/.

