
Automatically Adapting a Trained
Anomaly Detector to Software Patches

Peng Li1, Debin Gao2, and Michael K. Reiter1

1 Department of Computer Science, University of North Carolina, Chapel Hill, NC, USA
2 School of Information Systems, Singapore Management University,Singapore

Abstract. In order to detect a compromise of a running process based on it devi-
ating from its program’s normal system-call behavior, an anomaly detector must
first be trained with traces of system calls made by the program when provided
clean inputs. When a patch for the monitored program is released, however, the
system call behavior of the new version might differ from that of the version it
replaces, rendering the anomaly detector too inaccurate for monitoring the new
version. In this paper we explore an alternative to collecting traces of the new pro-
gram version in a clean environment (which may take effort to set up),namely
adapting the anomaly detector to accommodate the differences between theold
and new program versions. We demonstrate that this adaptation is feasiblefor
such an anomaly detector, given the output of a state-of-the-art binary difference
analyzer. Our analysis includes both proofs of properties of the adapted detector,
and empirical evaluation of adapted detectors based on four software case studies.

Keywords: Anomaly detection, software patches, system-call monitoring, binary
difference analysis

1 Introduction

One widely studied avenue for detecting the compromise of a process (e.g., by a buffer
overflow exploit) is by monitoring its system-call behavior. So-called “white-box” de-
tectors build a model of system-call behavior for the program via static analysis of the
source code or binary (e.g., [18, 5, 11, 12, 2, 13]). “Black-box” (or “gray-box”) detec-
tors are trained with system-call traces of the program whenprocessing intended in-
puts (e.g., [7, 6, 15, 16, 9, 8]). In either case, deviation ofsystem-call behavior from the
model results in an alarm being raised, as this might indicate that the code executing
in the process has changed. Both white-box and black/gray-box approaches offer ad-
vantages. The hallmark of white-box approaches is the potential for a near-zero or zero
false alarm rate [18], if static analysis uncovers every possible system call sequence that
the program could possibly emit. Since they are trained on “normal” system-call behav-
ior, black/gray-box approaches can be more sensitive, in that they can reflect nuances
of the local environments and usage of the monitored programs [14] and can detect be-
havioral anomalies that are nevertheless consistent with the control-flow graph of the
program. Such anomalies can indicate a compromise (e.g., [3]) and, if ignored, allow
more room for mimicry attacks to succeed [19, 17].



When a monitored program is patched, an anomaly detector trained on system-call
traces may no longer be sufficiently accurate to monitor the updated program. One way
to address this is to rebuild the model by collecting traces of the updated program.
However, these traces must be gathered in a sanitized environment free of attacks that
is otherwise as similar as possible — e.g., in terms of the operating system and relevant
device configurations and contents, as well as the program usage — to the environment
in which the updated program will be run. This problem is compounded if there are
multiple such environments.

To avoid the effort of setting up a sanitized environment forcollecting system-call
traces every time a patch is issued, in this paper we consideran alternative approach to
building a model of normal system-call behavior for an updated program. Our approach
consists of detecting the differences between the updated program and the previous ver-
sion, and then directly updating the system-call behavior model to reflect these changes.
There are several complexities that arise in doing this, however. First, program patches
are often released as wholly new program versions, not isolated patches. Second, in
either case, program updates are typically released only inbinary format. Both of these
make it difficult to detect where the changes occur between versions. Third, while state-
of-the-art binary difference analyzers (e.g., [10]) can detect where changes occur, how
to modify the system-call model to reflect those changes can require significant further
analysis. We emphasize, in particular, that we would like toadapt the model to ac-
commodate these changes while decaying the model’s sensitivity to abnormal behavior
as little as possible. So, adaptations that increase the model’s size (and hence allowed
behaviors) more than the changes would warrant should be avoided.

In this paper we provide an algorithm for converting theexecution-graphanomaly
detector [8] on the basis of the output of the BinHunt binary difference analysis tool [10]
when applied to a program and its updated version. We show that our algorithm is
sound, in the sense that the resulting execution-graph anomaly detector accepts only
system-call sequences that are consistent with the control-flow graph of the program.
Such soundness was also a requirement of the original execution-graph model [8], and
so our algorithm preserves this property of the converted execution graph. In addition,
we show through experiments with several patched binaries that our converted execu-
tion graphs can be of comparable size to ones generated by training on system-call
sequences collected from the updated program, and moreoverthat the converted execu-
tion graphs accept (i.e., do not raise alarms on) those sequences. As such, the converted
execution graphs from our algorithms are, based on our experiments, good approxi-
mations of the execution graphs that would have been achieved by training. To our
knowledge, ours is the first work to automatically update a system-call-based anomaly
detection model in response to program patches.

2 Related work

Systems that employ binary matching techniques to reuse stale “profiles” are most re-
lated to our work. Profiles of a program are representatives of how a program is used
on a specific machine by a specific user. They usually include program counter infor-
mation, memory usage, system clock information, etc., and are typically obtained by



executing an instrumented version of the program that generates profile information
as a side-effect of the program execution. Spike [4] is an optimization system that col-
lects, manages, and applies profile information to optimizethe execution of DEC Alpha
executables. When old profiles are used to optimize a new buildof a program, Spike
simply discards profiles for procedures that have changed, where changes in procedures
between two builds of a program are detected by calculating the edit distance between
signatures of the corresponding procedures. Spike is not able to re-use profiles of mod-
ified procedures.

Wang et al. proposed a binary matching tool, namely BMAT, to propagate profile
information from an older, extensively profiled build to a newer build [20]. An opti-
mized version of the newer build is then obtained by applyingoptimization techniques
on the newer build and the propagated profile. The main difference between BMAT and
our proposed technique is that we skip the process of propagating the profiles (which
roughly correspond to the system-call traces in anomaly detection) and directly prop-
agate the anomaly detection model of the older build to that of the newer build. Our
approach is better suited to anomaly detectors that use an automaton-like model be-
cause these models are closely related to the control flow of the program (e.g., [8]), and
therefore our approach avoids potential inaccuracies introduced in an indirect approach
in which system-call traces are derived first.

3 Background and terminology

To better explain our algorithm for converting the execution-graph anomaly detection
model [8], here we provide some background and terminology.We first give our defi-
nitions of basic blocks and control flow graphs, which are slightly different from those
typical in the literature (c.f., [1]). Next, we outline important concepts in binary differ-
ence analysis including common induced subgraphs and relations between two matched
basic blocks and two matched functions. We also define important elements in control
flow graphs, e.g., call cycles and paths, and finally briefly define an execution graph.
The conversion algorithms and their properties presented in Section 4 rely heavily on
the definitions and lemmas outlined in this section.

Our definitions below assume that each function is entered only by calling it; jump-
ing into the middle of a function (e.g., using agoto) is presumed not to occur. We
consider two system calls the same if and only if they invoke the same system-call
interface (with potentially different arguments).
Definition 1 [basic block, control-flow subgraph/graph]A basic blockis a consecu-
tive sequence of instructions with one entry point. The lastinstruction in the basic block
is the first instruction encountered that is a jump, functioncall, or function return, or
that immediately precedes a jump target.

The control-flow subgraphof a functionf is a directed graphcfsgf = 〈cfsgVf ,
cfsgEf 〉. cfsgVf contains

– a designatedf .enter node and a designatedf .exit node; and
– a node per basic block inf . If a basic block ends in a system call or function call,

then its node is asystem call nodeor function call node, respectively. Both types of



nodes are generically referred to as simplycall nodes. Each node is named by the
address immediately following the basic block.3

cfsgEf contains(v, v′) if

– v = f.enter andv′ denotes the first basic block executed in the function; or
– v′ = f.exit andv ends with a return instruction; or
– v ends in a jump for which the first instruction ofv′ is the jump target; or
– the address of the first instruction ofv′ is the address immediately following (i.e., is

the name of)v.

Thecontrol-flow graphof a programP is a directed graphcfgP = 〈cfgVP , cfgEP 〉
wherecfgVP =

⋃
f∈P cfsgVf and(v, v′) ∈ cfgEP iff

– (v, v′) ∈ cfsgEf for somef ∈ P ; or
– v′ = f.enter for somef ∈ P andv denotes a basic block ending in a call tof ; or
– v = f.exit for somef ∈ P andv′ denotes a basic block ending in a call tof .

2

We next define common induced subgraphs, which are used in binary difference
analysis of two programs [10].
Definition 2 [common induced subgraph,∼, ≈ ] Givencfsgf = 〈cfsgVf , cfsgEf 〉, an
induced subgraphof cfsgf is a graphisgf = 〈isgVf , isgEf 〉 whereisgVf ⊆ cfsgVf and
isgEf = cfsgEf ∩ (isgVf × isgVf ). Given two functionsf andg, a common induced
subgraphis a pair〈isgf , isgg〉 of induced subgraphs ofcfsgf andcfsgg, respectively,
that are isomorphic. We use∼ to denote the node isomorphism; i.e., ifv ∈ isgVf maps
to w ∈ isgVg in the isomorphism, then we writev ∼ w and say thatv “matches”w.
Similarly, if v ∼ w, v′ ∼ w′, and(v, v′) ∈ isgEf (and so(w,w′) ∈ isgEg), then we
write (v, v′) ∼ (w,w′) and say that edge(v, v′) “matches”(w,w′).

The algorithm presented in this paper takes as input an injective partial function
π : {f : f ∈ P} → {g : g ∈ Q} for two programsP andQ, and induced subgraphs
{〈isgf , isgπ(f)〉 : π(f) 6= ⊥}. We naturally extend the “matching” relation to functions
by writing f ∼ π(f) if π(f) 6= ⊥, and say thatf “matches”π(f). Two matched
functionsf andg aresimilar, denotedf ≈ g, iff isgf = cfsgf andisgg = cfsgg. 2

Control-flow subgraphs and graphs, and common induced subgraphs for two pro-
grams, can be extracted using static analysis of binaries [10]. When necessary, we will
appeal to static analysis in the present work, assuming thatstatic analysis is able to dis-
assemble the binary successfully to locate the instructions in each function, and to build
cfsgf for all functionsf andcfgP for the programP .

A tool that provides the common induced subgraphs required by our algorithm is
BinHunt [10]. When two nodes are found to match each other by BinHunt, they are
functionally similar. For example, ifv ∈ isgVf , w ∈ isgVπ(f), andv ∼ w, then either
both v andw are call nodes, or neither is; we utilize this property in ouralgorithm.
However, BinHunt compares two nodes by analyzing the instructionswithin each node
only, and so the meaning ofmatchdoes not extend to functions called by the nodes.
For example, two nodes, each of which contains a singlecall instruction, may match
to each other even if they call very different functions. In order to extend the meaning

3 For a function call node, this name is the return address for the call it makes.



of matchto functions called by the nodes, we introduce a new relationbetween two
functions (and subsequently two nodes), calledextended similarity.

Definition 3 [
ext
≈ ] Two matched functionsf and g are extended-dissimilar, denoted

f 6
ext
≈ g, iff

– (Base cases)

• f 6≈ g; or
• for two system call nodesv ∈ cfsgf andw ∈ cfsgg such thatv ∼ w, v andw call

different system calls; or
• for two function call nodesv ∈ cfsgf andw ∈ cfsgg such thatv ∼ w, if v calls

f ′ andw callsg′, thenf ′ 6≈ g′.

– (Induction) For two function call nodesv ∈ cfsgf andw ∈ cfsgg such thatv ∼ w,

if v callsf ′ andw callsg′, thenf ′ 6
ext
≈ g′.

If two matched functionsf andg are not extended-dissimilar, then they areextended-

similar, denotedf
ext
≈ g. Two matched nodesv andw areextended-similar, denoted

v
ext
≈ w, if (i) neitherv norw is a call node; or (ii)v andw make the same system call;

or (iii) v andw call f andg, respectively, andf
ext
≈ g. 2

Two extended-similar nodes exhibit a useful property that will be stated in Lemma 1.
To state this property, we first define call cycles.
Definition 4 [Call cycle] A sequence of nodes〈v1, . . . , vl〉 in cfgP is acall cycle from
v iff for some functionf ∈ P , v = v1 = vl is a function call node calling tof ,
v2 = f.enter, vl−1 = f.exit, and

– (Base case) For eachi ∈ (1, l − 1), vi ∈ cfsgVf and(vi, vi+1) ∈ cfsgEf .
– (Induction) For somek, k′ ∈ (1, l − 1), k < k′,

• for eachi ∈ (1, k] ∪ [k′, l), vi ∈ cfsgVf ; and
• for eachi ∈ (1, k) ∪ [k′, l − 1), (vi, vi+1) ∈ cfsgEf ; and
• 〈vk, . . . , vk′〉 is a call cycle fromvk = vk′ .

2

Lemma 1 If v and w are call nodes inP and Q, respectively, andv
ext
≈ w, then for

every call cycle fromv that results in a (possibly empty) sequence of system calls,there
is a call cycle fromw that results in the same sequence of system calls.

Lemma 1, which is proved in Appendix B, shows a useful property about extended-
similar nodes, and is used in our proofs of properties of the converted execution graph.
As we will see, some edges can be copied from the execution graph of the old binaryP
to the execution graph of the new binaryQ on the basis of nodes incfgP being extended-
similar to nodes incfgQ, since those nodes exhibit similar system-call behavior. Next,
we define paths to help refer to sequences of nodes in a controlflow graph.
Definition 5 [Path, full, pruned, silent, audible ] A path p = 〈v1, . . . , vn〉 is a se-
quence of nodes where

– for all i ∈ [1, n], vi ∈ cfgVP ; and
– for all i ∈ [1, n), (vi, vi+1) ∈ cfgEP .

We use|p| to denote the length ofp which isn.



p is pruned if no v ∈ {v2, . . . , vn} is a functionenter node, and if nov ∈
{v1, . . . , vn−1} is a functionexit node.p is full if for every function call nodev 6∈
{v1, vn} onp, v is either followed by a functionenter node or preceded by a function
exit node (but not both).

p is calledsilent if for all i ∈ (1, n), vi is not a system call node. Otherwise, it is
calledaudible. 2

Next, we define an execution graph [8], which is a model for system-call-based
anomaly detection. We begin with two technical definitions,however, that simplify the
description of an execution graph.
Definition 6 [Entry call node, exit call node] A nodev ∈ cfsgf is anentry call node
of f if v is a call node and there exists a full silent pathp = 〈f.enter, . . . , v〉. A node
v ∈ cfsgf is anexit call nodeof f if v is a call node and there exists a full silent path
p = 〈v, . . . , f.exit〉. 2

Definition 7 [support ( ;), strong support ( s
;)] A (full or pruned) pathp =

〈v, . . . , v′〉 supportsan edge(v, v′), denotedp ; (v, v′), if p is silent.p strongly sup-
ports(v, v′), denotedp

s
; (v, v′), if p ; (v, v′) and if each ofv andv′ is a system call

node or a function call node from which there is at least one audible call cycle. 2

Definition 8 [Execution subgraph/graph] An execution subgraphof a functionf is
a directed graphesgf = 〈esgVf , esgEf 〉 whereesgVf ⊆ cfsgVf consists only of call

nodes. If(v, v′) ∈ esgEf then there is a full pathp = 〈v, . . . , v′〉 such thatp
s

; (v, v′).
An execution graphof a programP is a directed graphegP = 〈egVP , egEclP ,

egEcrP , egErtP 〉 whereegEclP , egEcrP , andegErtP are sets ofcall edges, cross edges
and return edges, respectively.egVP =

⋃
f∈P esgVf and egEcrP =

⋃
f∈P esgEf .

If (v, v′) ∈ egEclP , thenv is a function call node ending in a call to the functionf

containingv′, andv′ is a entry call node. If(v′, v) ∈ egErtP , thenv is a function call
node ending in a call to the functionf containingv′, andv′ is an exit call node. 2

An execution graphegP is built by subjectingP to a set of legitimate inputs in a
protected environment, and recording the system calls thatare emitted and the return
addresses on the function call stack when each system call ismade. This data enables
the construction of an execution graph. Then, to monitor a process ostensibly runningP
in the wild, the return addresses on the stack are extracted from the process when each
system call is made. The monitor determines whether the sequence of system call (and
the return addresses when those calls are made) are consistent with traversal of a path in
egP . Any such sequence is said to be in thelanguage accepted by the execution graph.
Analogous monitoring could be performed usingcfgP , instead, and so we can similarly
define alanguage accepted by the control flow graph. An execution graphegP is built
so that any sequence in its language is also in the language accepted bycfgP [8].

4 The conversion algorithm

Suppose that we have an execution graphegP for a programP , and that a patch toP is
released, yielding a new programQ. In this section, we show our conversion algorithm
to obtainegQ. In addition to utilizingegP , our algorithm utilizes the output of a binary
difference analysis tool (e.g., [10]), specifically a partial injective functionπ and pairs
〈isgf , isgπ(f)〉 of isomorphic induced subgraphs. Our algorithm also selectively uses



static analysis onQ. Unless stated otherwise, below we usef , v and p to denote a
function, node and path, respectively, incfgP , and we useg, w, and q to denote a
function, node and path, respectively, incfgQ. In addition, we abuse notation in using
“∈” to denote a path being in a graph (e.g., “p ∈ cfgP ”), in addition to its normal use
for set membership.

Recall that we have two important requirements in designingthe conversion algo-
rithm. A first is thategQ preserves the soundness property of the original execution-
graph model, namely that it accepts only system-call sequences that are consistent with
cfgQ. A second requirement is that it decays the model’s sensitivity to abnormal behav-
ior as little as possible, and therefore preserves the advantage of black-box and gray-box
models in thategQ should not accept system-call behavior that would not have been ob-
served were it built by training, even though this behavior may be accepted bycfgQ.

We satisfy the above two requirements by

– creating counterparts of as many nodes and edges inegP as possible inegQ;
– adding new nodes and edges toegQ to accommodate changes betweenP andQ; and
– performing the above two tasks in such a way that a minimal set of system-call

behaviors is accepted byegQ.

More specifically, we first copy matched nodes and edges inesgf to esgg to the ex-
tent possible for all matched function pairsf ∼ g (Section 4.1). Next, we handle nodes
in cfsgg that are not matched and create corresponding cross edges (Section 4.2). In the
last two steps, we further process the function call nodes toaccount for the functions
they call (Section 4.3) and connect execution subgraphs together to obtain the execution
graphegQ (Section 4.4).

4.1 Copying nodes and edges whenf ∼ g

edges in cfsg

a cross edge that would not be added by copy()

common induced subgraphs

noncall

call f’()

jz

syscall3

call f’’()

syscall4

call g’()

jz

syscall3

call g’’()

f() g()
w

'w

2
w

3
w

4
w

v

'v

2
v

3
v

4
v

a cross edge under analysis in copy()

Fig. 1.Cross edge that is not copied

The first step, calledcopy(), in our con-
version algorithm is to copy matched
portions inesgf to esgg, if f ∼ g. This is
an important step as it is able to obtain a
large portion ofegQ, assuming that there
is little difference betweenP andQ, and
that the binary difference analysis that
precedes our conversion produces com-
mon induced subgraphs〈isgf , isgπ(f)〉
that are fairly complete for mostf ∈ P .
Intuitively, for two matched functionsf
andg, we simply need to copy all nodes
and edges inesgf that are matched and
update the names of the nodes (which de-
note return addresses). However, when a
cross edge is copied toesgg, we need to make sure that there is a full path incfgQ that
can result in the newly added cross edge (i.e., to make sure that it is supported by a full
path).

There are two caveats to which we need to pay attention. The first is that a cross
edge inesgf supported by a pruned path containing edges incfsgEf \ isgEf should



not be copied toesgg, because something has changed on this pruned path and may
render the cross edge not supported incfgQ. To improve efficiency, here we restrict our
analysis withinf andg only and require that all pruned paths (instead of full paths)
supporting the cross edge to be copied be included inisgf andisgg.

For the example in Figure 1, a cross edge(v, v′) is supported by the pruned path
〈v, v2, v3, v

′〉 in cfsgf (which is also a full path). However, there is no pruned path in
isgg that supports the corresponding cross edge inesgg (so no full path incfgQ will
support it). The only pruned path〈w,w2, w4, w

′〉 in isgg does not support this cross
edge since this pruned path would unavoidably induce a system call. Thus, the cross
edge(v, v′) cannot be copied toesgg.

edges in cfg

cross edge in eg

f’’()

call f()

call f’’()

call f’()

f’’.enter

call g()

call g’’()

call g’()

f’’.exit

call f’’’()

g’’.enter

g’’.exit

call g’’’()

g’’()

w

'w

''w

v

'v

''v

'''v '''w

Fig. 2.Extended similarity incopy()

A second caveat is related to the no-
tion of extended similarity that we intro-
duced in Section 3. Assumev ∼ w, v′ ∼
w′, andv′′ ∼ w′′ (see Figure 2); also as-
sume that〈v, v′′, v′〉 ; (v, v′). To copy
(v, v′) to esgg, we need〈w,w′′, w′〉 ;

(w,w′) and thereforev′′
ext
≈ w′′ so that

any call cycle fromv′′ can be “repli-
cated” by a call cycle fromw′′, yield-
ing the same system-call behavior (c.f.,
Lemma 1).

In summary, when a cross edge
(w,w′) is created inesgg in this step, all
the nodes on the pruned paths supporting
this edge are matched, and the nodes along each pruned path not only match but are
extended-similar if they are call nodes. We are very strict when copying a cross edge
because we do not know which one of the many supporting prunedpaths was taken
during training ofegP . In order to avoid possible mistakes in copying a cross edge to
esgg that 1) is not supported by a full path incfgQ; or 2) would not have been created
had training been done onQ, we have to require that all nodes on all supporting pruned
paths be matched and extended-similar. In Figure 3, three cross edges are copied since
all the pruned paths that support them are in the common induced subgraph and call
nodes are extended-similar.

call nodes

cross edges
Added in line 104

in Algorithm 1 copy()

Added in line 206 

in Algorithm 2 diff()

fesg

func"on boundary

common induced subgraph

diff

gesg
w

'w

2
w

3
w

4
w

5
w

v

'v

2
v

3
v

4
v

Fig. 3.Converting an execution subgraph

Algorithm 1 copy(), in Appendix A,
performs the operations in this step to
copy nodes and cross edges. The follow-
ing holds for the cross edges it copies to
esgcp

g .

Lemma 2 Every cross edge added by
copy() is strongly supported by a full
path incfgQ.

Please refer to Appendix B for an outline
of the proof.



copy() creates nodes and cross edges by copying them fromesgf . The next step
(Section 4.2) shows how we create more nodes and edges foresgg by statically analyz-
ing the unmatched portion ofg.

4.2 The unmatched portion ofg

Assuming thatf andg = π(f) differ by only a small portion,copy() would have cre-
ated most of the nodes and cross edges foresgg. In this step, we analyze the unmatched
portion of g to makeesgg more complete. This step is necessary becauseesgf does
not contain information about the difference betweenf and g. Intuitively, esgf and
〈isgf , isgg〉 do not provide enough information for dealing with the unmatched portion
of g, and we need to get help from static analysis.

We identify each pruned path incfsgg that passes through the unmatched portion of
g and then build cross edges between consecutive call nodes onthis pruned path until
this path is connected to the nodes we created in Algorithm 1copy(). Three cross edges
in Figure 3 are created in this way due to the unmatched nodesw4 andw5.

This algorithm,diff(), is detailed in Appendix A.diff() results in the following
property for the cross edges it adds toesgdiff

g ; Appendix B gives an outline of the proof.

Lemma 3 Every cross edge added bydiff() is supported by a full path incfgQ.

If there is a cross edge inesgf that was not copied bycopy() to esgg, this occurred
because a supporting pruned path for this edge was changed (containing unmatched
nodes or nodes that are matched but not extended-similar) ing. Whether this pruned
path was traversed whenP emitted the system-call sequences on whichegP was trained
is, however, unknown. One approach to decide whether to copythe cross edge toesgg

is to exhaustively search (e.g., indiff()) for a full path incfgQ that supports it. That
is, any such path is taken as justification for the cross edge; this approach, therefore,
potentially decreases the sensitivity of the model (and also, potentially, false alarms).
Another possibility, which reflects the version of the algorithm in Appendix A, is to
copy the cross edge only if there is a full supporting path that involves the changed
(unmatched) part ofg. (This process is encompassed byrefine() in Appendix A, de-
scribed below in Section 4.3.) In addition to this approach sufficing in our evaluation in
Section 5, it better preserves the sensitivity of the model.

4.3 Refiningesg
g

based on called functions

Many function call nodes have been created inesgg by copy() anddiff(). Except those
extended-similar to their counterparts incfsgVf , many of these nodes are created with-
out considering the system-call behavior of the called functions. This is the reason why
Lemma 3 claims only that the cross edges created aresupportedbut notstrongly sup-
ported. In this step, calledrefine(), we analyze the system-call behavior of the corre-
sponding called functions and extend the notion of support to strong support for cross
edges created so far incopy() anddiff().



call nodes

cross edges

func!on boundary

common induced subgraph

node       is removed since

all call cycles from it are silent

diff

gesg
rfn

gesg
ww

'w 'w

2
w

2
w

3
w

3
w

4
w

4
w

5
w5

w

Fig. 4. Function call node removed and
cross edges modified

An obvious case in which function
call nodes need more processing is when
the execution subgraph of the called
function has not been created. This hap-
pens when the called functiong′ does
not have a match with any function
in P . In this case,esgg′ can be ob-
tained by statically analyzing the func-
tion itself. For simplicity in this pre-
sentation, we reusediff() to denote this
process in Appendix A, with empty
sets for the first three arguments, i.e.,
diff(∅, 〈∅, ∅〉, cfsgg′).

Another scenario in which the func-
tion call nodes need more processing is
when the called function does not make a system call. Recall that a call nodew is cre-
ated incopy() anddiff() but we might not have analyzed the called functiong′ at that
time and simply assumed that system calls are made ing′ (and therefore these cross
edges aresupportedinstead of beingstrongly supported). If g′ may not make a system
call, then we need to either deletew (in the case whereg′ never makes a system call,
shown in Figure 4 where all call cycles fromw4 are silent) or add cross edges from
predecessor call nodes ofw to successor call nodes ofw (in the case whereg′ may or
may not make a system call).

Lemma 4 After refine(), every cross edge inesgg is strongly supported by a full path
in cfgQ.

Please refer to Appendix B for the proof of Lemma 4.

4.4 Connecting execution subgraphs

Added in line 405 

in Algorithm 4 connect().

Added in line 411

in Algorithm 4 connect().

Added in line 420

in Algorithm 4 connect().

call nodes

func!on boundary

common induced subgraph

call edge

f() g()f’() g’()

f’’() g’’()
g’’’()

Fig. 5. Using call and return edges to con-
nect execution subgraphs

At this stage, we create call and return
edges to connect allesgg to form egQ.
Some of these call edges are created by
“copying” the edges from theegP , e.g.,
when the corresponding call node is cre-
ated incopy() and is extended-similar to
its counterpart inegP (case 1 in Figure 5,

wheref ′
ext
≈ g′). If a call nodew has a

matchv but is not extended-similar to it,
we create an edge(w,w′) only for each
entry call nodew′ in the function called
by w that matches an entry call nodev′

for which (v, v′) ∈ egEclP (case 2 in

Figure 5, wheref ′′ 6
ext
≈ g′′), or to all en-

try call nodes in the called function if there is no suchv′. For other call nodes, the call



and return edges cannot be created via copying, and we add call edges between this call
node and all the entry call nodes of the called function (case3 in Figure 5). We create
return edges in a similar way.

Appendix A briefly gives an implementation ofconnect(), and please refer to Ap-
pendix B for an outline of the proof of Lemma 5.

Lemma 5 Every call or return edge added byconnect() is strongly supported by a full
path incfgQ.

Therefore, after running our conversion algorithm, we havea converted execution
graph of the new programegQ with all the nodes being system call nodes or function
call nodes with at least one audible call cycle from each, andall the edges being strongly
supported bycfgQ. Finally, we can state the soundness of our conversion algorithm:

Lemma 6 The language accepted byegQ is a subset of the language accepted bycfgQ.

This result is trivial given Lemmas 2–5, and consists primarily in arguing that any
pathq traversed inegQ can be “mimicked” by traversing a full path incfgQ that travels
from each node ofq to the next, say fromw to w′, by following the full path incfgQ

that strongly supports(w,w′).

5 Evaluation

In this section, we evaluate the performance of our conversion procedure. Our con-
version program takes in the execution graph of the old binary egP , the control flow
graph for both binariescfgP and cfgQ, and the output of the binary difference ana-
lyzer BinHunt, and outputs the converted execution graphegQ of the new binary. We
implemented Algorithms 1-4 with approximately 3000 lines of Ocaml code.

We evaluated execution graphs obtained by our conversion algorithm by comparing
them to alternatives. Specifically, for each case study, we compared the converted exe-
cution graph for the patched programQ with (i) an execution graph forQ obtained by
training and (ii) the control flow graph ofQ. We performed four case studies.

tar Version 1.14 of tar (P ) has an input validation error. Version 1.14-2.3 (Q) differs
from P by changing ado {} while( ) loop into awhile( ) do {} loop (seehttp:
//www.securityfocus.com/bid/25417/info). This change is identified by
BinHunt, but it involves only a function call that does not make any system calls. As
such, the system-call behavior of the two programs remains unchanged, and so does
the execution graph obtained by our conversion algorithm. (diff() adds a new node and
the corresponding cross edges for the function call involved in the change, which are
subsequently deleted inrefine() because all call cycles from it are silent.)

ncompress In version 4.2.4 of ncompress (P ), a missing boundary check allows a
specially crafted data stream to underflow a buffer with attacker’s data. A check was
added in version 4.2.4-15 (Q) to fix this problem (seehttp://www.debian.org/
security/2006/dsa-1149). The check introduces a new branch in the program
in which an error message is printed when the check fails, causing a new system call



to be invoked. With the same benign inputs for training, the execution graphs for both
programs are the same. Our conversion algorithm, however, tries to include this new
branch by performing limited static analysis, and consequently expands the execution
graph by 3 nodes and 23 edges.

ProFTPD ProFTPD version 1.3.0 (P ) interprets long commands from an FTP client as
multiple commands, which allows remote attackers to conduct cross-site request forgery
(CSRF) attacks and execute arbitrary FTP commands via a longftp:// URI that
leverages an existing session from the FTP client implementation in a web browser. For
the stable distribution (etch) this problem has been fixed inversion 1.3.0-19etch2 (Q)
by adding input validation checks (seehttp://www.debian.org/security/
2008/dsa-1689). Eight additional function calls are introduced in the patched part,
most to a logging function for which the execution subgraph can be copied from the
old model. The converted execution graph for the patched version thus only slightly
increases the execution graph size.

unzip When processing specially crafted ZIP archives, unzip version 5.52 (P ) may
pass invalid pointers to a C library’sfree() routine, potentially leading to arbi-
trary code execution (CVE-2008-0888). A patch (version 5.52-1 (Q)) was issued with
changes in four functions (seehttp://www.debian.org/security/2008/
dsa-1522). Some of the changes involve calling to a new function for which there is
no corresponding execution subgraph for the old version. All four changes resulted in
static analysis in our conversion algorithm, leading to execution subgraphs constructed
mostly or entirely by static analysis. This increased the number of nodes and edges in
the resulting execution graphegQ more significantly compared to the first three cases.

borrowed fromegP not borrowed fromegP

# of nodes# of edges# of nodes # of edges
tar 478 1430 0 0

ncompress 151 489 3 23

ProFTPD 775 1850 6 28

unzip 374 1004 50 195

Table 1.Evaluation: nodes and edges inegQ

Experimental results are shown
in Table 1 and Table 2. In Ta-
ble 1, we show the number of
nodes and edges inegQ that
have their counterparts inegP

and those that do not. More pre-
cisely, if w ∈ egVQ and there
is somev ∈ egVP such that
v ∼ w, thenw is accounted for
in the “borrowed” column in Ta-
ble 1. Similarly, if (w,w′) ∈ egEclQ ∪ egErtQ ∪ egEcrQ and there is some(v, v′) ∈
egEclP ∪ egErtP ∪ egEcrP such that(v, v′) ∼ (w,w′), then(w,w′) is accounted for in
the “borrowed” column. Nodes and edges inegQ not meeting these conditions are ac-
counted for in the “not borrowed” columns. As this table shows, increased use of static
analysis (e.g., in the case of unzip) tends to inflate the execution graph.

Table 2 comparesegQ obtained by conversion with one obtained by training. As
we can see,egQ obtained by training is only marginally smaller than the oneobtained
by conversion for the first three cases. They differ slightlymore in size in the unzip
case, due to the more extensive use of static analysis. When the egQ as obtained by
conversion is substantially larger thanegP , as in the unzip case, this is an indication
that rebuildingegQ by training might be prudent.



Old binaryP New binaryQ
model egP (trained) cfgP egQ (converted) egQ (trained) cfgQ

nodes edgesnodesedgesnodesedgestime (s)nodes edgesnodesedges

tar 478 1430 2633 7607 478 1430 14.5 478 1430 2633 7607

ncompress 151 489 577 1318 154 512 13.1 151 489 578 1322

ProFTPD 775 1850 3343 9160 781 1878 17.4 776 1853 3351 9193

unzip 374 1004 491 1464 424 1199 41.6 377 1017 495 1490
Table 2. Statistics for four case studies. Numbers of nodes foregP andegQ are highlighted as
representatives for size comparison.

Both convertedegQ and trainedegQ are smaller thancfgQ, which, in our experi-
ments, includescfsgg for eachg reachable from the first function executed in the binary,
including library functions. The numbers presented forcfgQ do not include non-call
nodes, function call nodes that do not give rise to audible call cycles,enter nodes, or
exit nodes, to enable a fair comparison withegQ (sinceegQ does not contain these
nodes). SinceegQ, when trained, is a function of the training inputs, the gap between
the sizes ofcfgQ andegQ would presumably narrow somewhat by training on a wider
variety of inputs (though we did endeavor to train thoroughly, see Appendix C). Abso-
lute sizes aside, however, Table 2 suggests that our conversion algorithm often retains
the precision offered by the execution graph from which it builds, no matter how well
(or poorly) trained.

An important observation about our converted execution graphs in these case stud-
ies is that the language each accepts includes all system-call sequences output byQ
when provided the training inputs. We cannot prove that thiswill always hold with our
conversion algorithm, due to limitations on the accuracy ofthe binary difference analy-
sis tool from which we build [10]. Nevertheless, this empirically provides evidence that
this property should often hold in practice.

The conversion time shown in Table 2 for eachegQ (converted) is in seconds on
a 2.8 GHz CPU platform with 1GB memory, and includes only our algorithm time,
excluding binary difference analysis and the constructionof cfgQ. (Binary difference
analysis with BinHunt overwhelmingly dominated the total conversion time.) As shown
in Table 2, as the changes betweenP andQ increase in size, more time is spent on
analyzingcfgQ and buildingegQ statically. In the cases of ncompress and unzip, the
static analysis needs to be applied to the libraries as well.

6 Conclusion

We have presented an algorithm by which anexecution graph, which is a gray-box
system-call-based anomaly detector that uses a model trained from observed system-
call behaviors, can be converted from the program for which it was originally trained
to a patched version of that program. By using this algorithm, administrators can be
spared from setting up a protected and identically configured environment for collecting
traces from the patched program. Our algorithm retains desirable properties of execu-
tion graphs, including that the system-call sequences accepted by the execution graph
are also consistent with the control-flow graph of the program, and that the sequences



accepted tend to capture “normal” behavior as defined by the training sequences. We
have demonstrated the effectiveness of our algorithm with four case studies.

As our paper is the first to study adapting anomaly detectors to patches, we believe
it introduces an important direction of new research. Thereare numerous system-call-
based anomaly detectors in the literature. Our initial studies suggest that many other
such detectors pose challenges to conversion beyond those we have addressed here.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

2. S. Basu and P. Uppuluri. Proxi-annotated control flow graphs: Deterministic context-
sensitive monitoring for intrusion detection. pages 353–362. springer,2004.

3. E. Buchanan, R. Roemer, H. Schacham, and S. Savage. When good instructions go bad: Gen-
eralizing return-oriented programming to RISC. InProceedings of the 15th ACM Conference
on Computer and Communications Security, October 2008.

4. R. S. Cohn, D. W. Goodwin, and P. G. Lowney. Optimizing Alpha executables on Windows
NT with Spike.Digital Tech. J., 9:3–20, 1998.

5. H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing sensitivity in static
analysis for intrusion detection. InProceedings of the 2004 IEEE Symposium on Security
and Privacy, May 2004.

6. H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection using call stack
information. InProceedings of the 2003 IEEE Symposium on Security and Privacy, pages
62–75, May 2003.

7. S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for Unix processes.
In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 120–128, May
1996.

8. D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of executiongraph for anomaly
detection. InProceedings of the 11th ACM Conference on Computer & Communication
Security (CCS 2004), 2004.

9. D. Gao, M. K. Reiter, and D. Song. On gray-box program tracking for anomaly detection.
In Proceedings of the 13th USENIX Security Symposium, 2004.

10. D. Gao, M. K. Reiter, and D. Song. BinHunt: Automatically finding semantic differences in
binary programs. InProceedings of the 10th International Conference on Information and
Communications Security (ICICS 2008), 2008.

11. J. Giffin, S. Jha, and B. Miller. Detecting manipulated remote call streams. InProceedings
of the 11th USENIX Security Symposium, August 2002.

12. J. Giffin, S. Jha, and B. Miller. Efficient context-sensitive intrusiondetection. InProceedings
of the ISOC Symposium on Network and Distributed System Security, February 2004.

13. R. Gopalakkrishna, E. H. Spafford, and J. Vitek. Efficient intrusion detection using automa-
ton inlining. InProceedings of the 2005 Symposium on Security and Privacy, pages 18–31,
2005.

14. S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of system
calls. Journal of Computer Security, pages 151–180, 1998.

15. R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based method for
detecting anomalous program behaviors. InProceedings of the 2001 IEEE Symposium on
Security and Privacy, pages 144–155, May 2001.

16. K. Tan and R. Maxion. “Why 6?”– Defining the operational limits of stide, an anomaly-based
intrusion detector. InProceedings of the 2002 IEEE Symposium on Security and Privacy,
pages 188–201, May 2002.



17. K. Tan, J. McHugh, and K. Killourhy. Hiding intrusions: From the abnormal to the nor-
mal and beyond. InProceedings of the 5th International Workshop on Information Hiding,
October 2002.

18. D. Wagner and D. Dean. Intrusion detection via static analysis. InProceedings of the 2001
IEEE Symposium on Security and Privacy, May 2001.

19. D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection systems. In
Proceedings of the 9th ACM Conference on Computer and CommunicationsSecurity, 2002.

20. Z. Wang, K. Piece, and S. Mcfarling. BMAT – a binary matching tool for stale profile
propagation.The Journal of Instruction-Level Parallelism, 2:2000, 2000.

A Algorithms

The notation used in the following algorithms follow the convention we stated at the
beginning of Section 4: we usef , v andp to denote a function, node and path, respec-
tively, in cfgP , and we useg, w, andq to denote a function, node and path, respectively,
in cfgQ. We also continue to use∈ to denote not only set membership, but a path being
in a graph, as well.

Algorithm 1 copy() picks cross edges from the old function execution subgraph,
when we have matches for the two ends of a cross edge and when there is no change that
would potentially affect this edge. We copy the edge into thenew function execution
subgraph (line 104).

Algorithm 1 copy()
Input: esgf , 〈isgf , isgg〉, cfsgf , cfsgg

100: for all (v, v′) ∈ esgEf do
101: if ∃w, w′ : v ∼ w andv′ ∼ w′ then
102: esgVcp

g ← esgVcp
g ∪ {w, w′}

103: if ∀p ∈ cfsgf , p
s

; (v, v′) ∃q ∈ isgg : ∀v′′ ∈ p ∃w′′ ∈ q : v′′ ext
≈ w′′ then

104: esgEcp
g ← esgEcp

g ∪ {(w, w′)}
Output: esgcp

g

In this implementation of Algorithm 1, we examine all prunedpaths that strongly
support the cross edge to be copied toesgg (line 103). When the two functionsf andg

are similar, it is more efficient to examine the differences betweenf andg to discover
the cross edges that should not be copied. When the differences betweenf andg are
small, this equivalent algorithm is more efficient, in our experience.

Algorithm 2 diff() modifiesesgcp
g created incopy(). It analyzes each pruned path

that passes through the unmatched portion ofg, and tries to create a part of execution
graph along each such pruned path and connect it to the rest ofthe execution subgraph.

Algorithm 3 refine() uses the system call behavior of each called function to deter-
mine if any cross edges should be removed and others used in their places. (Analysis in
Algorithm 2 does not account for the behavior of called functions when adding edges.)

Finally, Algorithm 4connect() tries to copy call edges and return edges from the
execution graph of the old program when we have sufficient matching support (line 405



Algorithm 2 diff()

Input: esgcp
g , 〈isgf , isgg〉, cfsgg

200: esgdiff
g ← esgcp

g

201: U ← {w | w ∈ cfsgVg ∧ (w /∈ isgVg ∨ (∃v : v ∼ w ∧ v 6
ext
≈ w))}

202: U ′ ← {w | w ∈ esgVcp
g ∨ (w ∈ U ∧ w is a call node)}

203: for all w ∈ U do
204: for all q = 〈w1, . . . , w|q|〉 ∈ cfsgg : w ∈ q ∧

(∀i ∈ (1, |q|) : wi 6= w ⇒ wi 6∈ U ′) ∧ {w1, w|q|} ⊆ U ′ do
205: esgVdiff

g ← esgVdiff
g ∪ {wi | i ∈ [1, |q|] ∧ wi is a call node}

206: esgEdiff
g ← esgEdiff

g ∪ {(wi, wj) | i, j ∈ [1, |q|] ∧ wi, wj are call nodes∧ i < j ∧
∀k ∈ (i, j) : wk is not a call node}

Output: esgdiff
g

Algorithm 3 refine()

Input: {esgcp
g }g, H = {esgdiff

g }g, cfgQ

300: while H 6= ∅ do
301: pick oneesgdiff

g in H

302: esgrfn
g ← esgdiff

g

303: for all w ∈ esgVrfn
g : w is a function call node∧

w /∈
n

w′ | w′ ∈ esgVcp
g ∧ ∃v

′ : v′ ext
≈ w′

o

do

304: letg′ be the function called byw
305: if no call cycle fromw is audiblethen
306: esgVrfn

g ← esgVrfn
g \ {w}

307: for all w′, w′′ : (w′, w) ∈ esgErfn
g ∧ (w, w′′) ∈ esgErfn

g do
308: esgErfn

g ← esgErfn
g ∪ {(w

′, w′′)}

309: for all w′ : (w, w′) ∈ esgErfn
g do

310: esgErfn
g ← esgErfn

g \ {(w, w′)}

311: for all w′ : (w′, w) ∈ esgErfn
g do

312: esgErfn
g ← esgErfn

g \ {(w
′, w)}

313: else ifall call cycles fromw are audiblethen
314: if esgdiff

g′ /∈ H then
315: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}
316: else
317: for all w′, w′′ : (w′, w) ∈ esgErfn

g ∧ (w, w′′) ∈ esgErfn
g do

318: esgErfn
g ← esgErfn

g ∪ {(w
′, w′′)}

319: if esgdiff
g′ /∈ H then

320: H ← H ∪ {diff(∅, 〈∅, ∅〉, cfsgg′)}

321: H ← H \
˘

esgdiff
g

¯

Output: {esgrfn
g }g

and 407). Otherwise, we build call and return edges based on static analysis (lines 411,
413, 416, 418, 420, and 421).



Algorithm 4 connect()

Input: R = {esgrfn
g }g, egEclP , egErtP

400: for all esgrfn
g ∈ R do

401: for all w ∈ esgVrfn
g do

402: letg′ be the function to whichw calls

403: if ∃v : v
ext
≈ w then

404: for all v′ : (v, v′) ∈ egEclP do

405: egEclQ ← egEclQ ∪ {(w, w′)} wherev′ ext
≈ w′

406: for all v′′ : (v′′, v) ∈ egErtP do

407: egErtQ ← egErtQ ∪ {(w
′′, w)} wherev′′ ext

≈ w′′

408: else if∃v : v ∼ w ∧ v 6
ext
≈ w then

409: for all v′ : (v, v′) ∈ egEclP do
410: if ∃w′ ∈ esgVrfn

g′ : v′ ∼ w′ ∧ w′ is an entry call nodethen
411: egEclQ ← egEclQ ∪ {(w, w′)}
412: else
413: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
414: for all v′′ : (v′′, v) ∈ egErtP do
415: if ∃w′′ ∈ esgVrfn

g′ : v′′ ∼ w′′ ∧ w′′ is an exit call nodethen
416: egErtQ ← egErtQ ∪ {(w

′′, w)}
417: else
418: egErtQ ← egErtQ ∪ {(w

′′, w) | w′′ ∈ esgVrfn
g′ is an exit call node}

419: else
420: egEclQ ← egEclQ ∪ {(w, w′) | w′ ∈ esgVrfn

g′ is an entry call node}
421: egErtQ ← egErtQ ∪ {(w

′′, w) | w′′ ∈ esgVrfn
g′ is an exit call node}

Output: egQ

B Proofs

Proof of Lemma 1.Sincev
ext
≈ w, by Definition 1, 2, 3, for a call cycle〈v, v2, . . ., vn, v〉

in cfgP , there will be a call cycle〈w,w2, . . . , wn, w〉 in cfgQ such thatvi ∼ wi : i ∈
[2, n], and ifvi andwi are system call nodes, they must make the same system call, so
these two call cycles result in the same (possibly empty) sequence of system calls.2

Proof of Lemma 2.If (w,w′) is added toesgEcp
g in line 104, then consider the cross

edge(v, v′) ∈ esgEg chosen in line 100. Since(v, v′) ∈ esgEg, there is a full, silent
pathp′ = 〈v, . . . , v′〉 in P that was exercised in training. Consider the pruned pathp

from v to v′ obtained by collapsing each call cycle inp′ to its function call node. By
line 103, there is a correspondingq ∈ isgg on which every node is extended-similar to
its corresponding one inp (and hencep ∈ isgf , as well). Then, by Lemma 1 there is a
full path q′ that strongly supports(w,w′). 2

Proof of Lemma 3.If an edge(wi, wj) is added toesgEdiff
g at line 206, thenwi andwj

are call nodes with no call node in between them onq. As such,〈wi, . . . , wj〉 is a full,
silent path that supports(wi, wj). 2

Proof of Lemma 4.We first argue that any(w′, w′′) ∈ esgErfn
g at the completion of

refine() is supported by a full path. First, if(w′, w′′) was added toesgEcp
g in line 104



and then copied forward (lines 200, 302), or if(w′, w′′) was added toesgEdiff
g in line 206

and then copied forward (line 302), then(w′, w′′) is supported by a full path per Lem-
mas 2 and 3. Now, suppose that(w′, w′′) was added in line 308 or 318. Then line 305
(respectively, 316) says that some call cycle fromw is silent. So, if the cross edges
(w′, w), (w,w′′) were supported by full paths, then the new cross edge(w′, w′′) is also
supported by a full path. It follows by induction, with Lemmas 2–3 providing the base
cases, that any cross edges added in lines 308 and 318 are supported by a full path.

We now show that any such edge is strongly supported. Consider any function call
nodew ∈ esgVrfn

g at the completion ofrefine. If w ∈ esgVcp
g , then it was added in

line 102 because it matched somev (line 101) from which an audible call cycle was

traversed during training ofegP . If v
ext
≈ w, then by Lemma 1, there is an audible call

cycle fromw, as well. If v 6
ext
≈ w or w 6∈ esgVcp

g , thenw satisfied the condition in
line 303 and, if there is no audible call cycle fromw, was removed in lines 306–312.2

Proof of Lemma 5.Consider an edge added in line 405. Since bothv andv′ were wit-
nessed during trainingegP , each is a system call node or has some audible call cycle.

Becausev
ext
≈ w andv′

ext
≈ w′, Lemma 1 implies that each ofw andw′ is a system

call node or has some audible call cycle. Moreover, Lemma 1 guarantees thatw′ is an
entry call node sincev′ is, and so the call edge(w,w′) created at line 405 is strongly
supported by a full path. By similar reasoning, each return edge added at line 407 is
strongly supported by a full path.

In all other cases in which an edge(w,w′) is added toegEclQ (in line 411, 413, or
420),connect() explicitly checks whetherw′ is an entry call node for the functiong′

called byw (line 402), and so there is a full path supporting(w,w′). Similarly, for each
edge(w′′, w) added toegErtQ, there is a full path supporting this edge. Since all nodes

in eachesgVrfn
g are either system call nodes or function call nodes from which there is

an audible call cycle, these edges are strongly supported. 2

C Training

In this appendix we briefly explain how we collected the traces for the four case studies,
since training plays an important role in building the execution graphs. For ncompress
and unzip, we tried all operation types and options listed inthe online manuals. How-
ever, for tar and ProFTPD, we did not train as exhaustively aswe did for the previous
two cases due to the complexity of tar operations and ProFTPDconfigurations. Never-
theless, for tar and ProFTPD, we did follow guidelines to enhance the repeatability of
the training procedure, as described below.

tar Following the manual (seehttp://www.gnu.org/software/tar/manual/
tar.pdf), we trained tar for its three most frequently used operations (create, list and
extract) that are introduced in Chapter 2 and with all options described in Chapter 3.
The directory and files we adopted for applying those operations were the downloaded
source of tar-1.14.

ncompress We trained ncompress on its own source directory for version4.2.4, us-
ing all operations and options described in its online manual (seehttp://linux.
about.com/od/commands/a/blcmdl1_compres.htm),



ProFTPD We trained ProFTPD configured using the sample configurationfile shipped
with the source, and with all commands described in the online manual (seehttp://
linux.about.com/od/commands/l/blcmdl1_ftp.htm). We chose to trans-
fer files within the ProFTPD-1.3.0 source directory.

unzip Similar to the training on ncompress, we followed the unzip online manual
(seehttp://linux.about.com/od/commands/l/blcmdl1_unzip.htm)
and trained the program on the .zip package of version 5.52.


