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Abstract. In order to detect a compromise of a running process based on it devi-
ating from its program’s normal system-call behavior, an anomalyctiatenust
first be trained with traces of system calls made by the program whemdprbv
clean inputs. When a patch for the monitored program is released, aowes
system call behavior of the new version might differ from that of thesieer it
replaces, rendering the anomaly detector too inaccurate for monitoengeth
version. In this paper we explore an alternative to collecting traces otthgro-
gram version in a clean environment (which may take effort to setngjely
adapting the anomaly detector to accommodate the differences betwead the
and new program versions. We demonstrate that this adaptation is fefasible
such an anomaly detector, given the output of a state-of-the-artyldiféerence
analyzer. Our analysis includes both proofs of properties of the adidptector,
and empirical evaluation of adapted detectors based on four softasgetudies.
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1 Introduction

One widely studied avenue for detecting the compromise obegss (e.g., by a buffer
overflow exploit) is by monitoring its system-call behaviSo-called “white-box” de-
tectors build a model of system-call behavior for the progkéa static analysis of the
source code or binary (e.g., [18,5,11,12, 2, 13]). “Black’b(or “gray-box”) detec-
tors are trained with system-call traces of the program wirecessing intended in-
puts (e.g., [7, 6, 15,16, 9, 8]). In either case, deviatioaystem-call behavior from the
model results in an alarm being raised, as this might inditizét the code executing
in the process has changed. Both white-box and black/goayapproaches offer ad-
vantages. The hallmark of white-box approaches is the fiatéar a near-zero or zero
false alarm rate [18], if static analysis uncovers evensitids system call sequence that
the program could possibly emit. Since they are trained onrfral” system-call behav-
ior, black/gray-box approaches can be more sensitive,anttiey can reflect nuances
of the local environments and usage of the monitored progfdd] and can detect be-
havioral anomalies that are nevertheless consistent hitlcontrol-flow graph of the
program. Such anomalies can indicate a compromise (elyaifid, if ignored, allow
more room for mimicry attacks to succeed [19, 17].



When a monitored program is patched, an anomaly detectoettain system-call
traces may no longer be sufficiently accurate to monitor gieated program. One way
to address this is to rebuild the model by collecting tracethe updated program.
However, these traces must be gathered in a sanitized anvént free of attacks that
is otherwise as similar as possible — e.g., in terms of theadjmgy system and relevant
device configurations and contents, as well as the progrageus- to the environment
in which the updated program will be run. This problem is coompded if there are
multiple such environments.

To avoid the effort of setting up a sanitized environmentdoltecting system-call
traces every time a patch is issued, in this paper we conaidalternative approach to
building a model of normal system-call behavior for an updgirogram. Our approach
consists of detecting the differences between the updatepigm and the previous ver-
sion, and then directly updating the system-call behaviod@hto reflect these changes.
There are several complexities that arise in doing thisdvew First, program patches
are often released as wholly new program versions, nottelpatches. Second, in
either case, program updates are typically released otilyhary format. Both of these
make it difficult to detect where the changes occur betweesiags. Third, while state-
of-the-art binary difference analyzers (e.g., [10]) catedewhere changes occur, how
to modify the system-call model to reflect those changes equire significant further
analysis. We emphasize, in particular, that we would likedapt the model to ac-
commodate these changes while decaying the model’s setygiti abnormal behavior
as little as possible. So, adaptations that increase thelfa@ize (and hence allowed
behaviors) more than the changes would warrant should bdexio

In this paper we provide an algorithm for converting thecution-grapfanomaly
detector [8] on the basis of the output of the BinHunt binaffedence analysis tool [10]
when applied to a program and its updated version. We shotvotlraalgorithm is
sound, in the sense that the resulting execution-graph alyotletector accepts only
system-call sequences that are consistent with the ceftavolgraph of the program.
Such soundness was also a requirement of the original eézreaytaph model [8], and
so our algorithm preserves this property of the convertetation graph. In addition,
we show through experiments with several patched binanisaur converted execu-
tion graphs can be of comparable size to ones generated ibingraon system-call
sequences collected from the updated program, and moréhatehe converted execu-
tion graphs accept (i.e., do not raise alarms on) those segqeeAs such, the converted
execution graphs from our algorithms are, based on our expats, good approxi-
mations of the execution graphs that would have been aahibyeraining. To our
knowledge, ours is the first work to automatically update steap-call-based anomaly
detection model in response to program patches.

2 Related work

Systems that employ binary matching techniques to reute “stiafiles” are most re-
lated to our work. Profiles of a program are representativé®w a program is used
on a specific machine by a specific user. They usually includgram counter infor-
mation, memory usage, system clock information, etc., aadygpically obtained by



executing an instrumented version of the program that géeemprofile information
as a side-effect of the program execution. Spike [4] is ammapation system that col-
lects, manages, and applies profile information to optirtizeexecution of DEC Alpha
executables. When old profiles are used to optimize a new béigdprogram, Spike
simply discards profiles for procedures that have changedrewxchanges in procedures
between two builds of a program are detected by calculatingetit distance between
signatures of the corresponding procedures. Spike is netale-use profiles of mod-
ified procedures.

Wang et al. proposed a binary matching tool, namely BMAT, rappgate profile
information from an older, extensively profiled build to anss build [20]. An opti-
mized version of the newer build is then obtained by applygiptimization techniques
on the newer build and the propagated profile. The main éiffeg between BMAT and
our proposed technique is that we skip the process of prépgghe profiles (which
roughly correspond to the system-call traces in anomalgatien) and directly prop-
agate the anomaly detection model of the older build to thahe newer build. Our
approach is better suited to anomaly detectors that use tamaton-like model be-
cause these models are closely related to the control flolegftogram (e.g., [8]), and
therefore our approach avoids potential inaccuraciesdnired in an indirect approach
in which system-call traces are derived first.

3 Background and terminology

To better explain our algorithm for converting the executgraph anomaly detection
model [8], here we provide some background and terminolddg/first give our defi-
nitions of basic blocks and control flow graphs, which argtgli different from those
typical in the literature (c.f., [1]). Next, we outline imgant concepts in binary differ-
ence analysis including common induced subgraphs andéoreddietween two matched
basic blocks and two matched functions. We also define irapbalements in control
flow graphs, e.g., call cycles and paths, and finally brieffingdean execution graph.
The conversion algorithms and their properties presemteé@ection 4 rely heavily on
the definitions and lemmas outlined in this section.

Our definitions below assume that each function is entergdbyncalling it; jump-

ing into the middle of a function (e.g., usinggot 0) is presumed not to occur. We
consider two system calls the same if and only if they invdke s¢ame system-call
interface (with potentially different arguments).
Definition 1 [basic block, control-flow subgraph/graph] A basic blockis a consecu-
tive sequence of instructions with one entry point. Theilastruction in the basic block
is the first instruction encountered that is a jump, functiaii, or function return, or
that immediately precedes a jump target.

The control-flow subgraplof a function f is a directed graphfsg, = (cfsgV,
cfsgE ;). cfsgV ; contains

— adesignated.enter node and a designatgdexit node; and
— a node per basic block if. If a basic block ends in a system call or function call,
then its node is gaystem call noder function call noderespectively. Both types of



nodes are generically referred to as simpil nodes Each node is named by the
address immediately following the basic blotk.

cfsgE ; contains(v, v') if

— v = f.enter andv’ denotes the first basic block executed in the function; or

— v/ = f.exit andv ends with a return instruction; or

— v ends in a jump for which the first instruction ofis the jump target; or

— the address of the first instructionfis the address immediately following (i.e., is
the name ofp.

The control-flow graphof a programP is a directed graphfg, = (cfgVp, cfgEp)
wherecfgV p = [ p cfsgV and(v,v') € cfgEp iff
— (v,v') € cfsgE, for somef € P; or
— v’ = f.enter for somef € P andv denotes a basic block ending in a callfyoor
— v = f.exit for somef € P andv’ denotes a basic block ending in a callfto

O

We next define common induced subgraphs, which are used amybdifference
analysis of two programs [10].

Definition 2 [common induced subgraph,~, ~] Givencfsg,; = (cfsgV;, cfsgE;), an
induced subgrapbf cfsg; is a graphisg ; = (isgV,isgE ;) whereisgV,; C cfsgV, and
isgE; = cfsgE, N (isgV; x isgV ). Given two functionsf andg, acommon induced
subgraphis a pair(isg, isg,,) of induced subgraphs efsg, andcfsg,, respectively,
that are isomorphic. We use to denote the node isomorphism; i.e.yi€ isgV ; maps
to w € isgV,, in the isomorphism, then we write ~ w and say that “matches”w.
Similarly, if v ~ w, v" ~ w’, and(v,v") € isgE; (and so(w,w’) € isgE,), then we
write (v,v") ~ (w,w’) and say that edg@, v) “matches”(w, w’).

The algorithm presented in this paper takes as input antimgepartial function
m:{f:feP}—{g:g e Q} fortwo programsP and(@, and induced subgraphs
{(isgy,isgr(p)) = m(f) # L}. We naturally extend the “matching” relation to functions
by writing f ~ «(f) if n(f) # L, and say thaff “matches”=(f). Two matched
functionsf andg aresimilar, denotedf ~ g, iff isg; = cfsg; andisg, = cfsg,,. ]

Control-flow subgraphs and graphs, and common induced apbgtfor two pro-
grams, can be extracted using static analysis of binar@s\then necessary, we will
appeal to static analysis in the present work, assumingsthtit analysis is able to dis-
assemble the binary successfully to locate the instrugiimeach function, and to build
cfsg for all functions f andcfg  for the programp.

A tool that provides the common induced subgraphs requiyedub algorithm is
BinHunt [10]. When two nodes are found to match each other mHBNt, they are
functionally similar. For example, if € isgV;, w € isgV (), andv ~ w, then either
bothv andw are call nodes, or neither is; we utilize this property in algorithm.
However, BinHunt compares two nodes by analyzing the ioitrnswithin each node
only, and so the meaning ofiatchdoes not extend to functions called by the nodes.
For example, two nodes, each of which contains a siagld instruction, may match
to each other even if they call very different functions. hder to extend the meaning

3 For a function call node, this name is the return address for the call ksnak



of matchto functions called by the nodes, we introduce a new relabigiveen two
functions (and subsequently two nodes), caflgtbnded similarity

Definition 3 [e%t ] Two matched functiong and g are extended-dissimilardenoted
f 2 g,iff
— (Base cases)
o [ g or
e for two system call nodes € cfsg; andw € cfsg, such that ~ w, v andw call
different system calls; or
e for two function call nodes € cfsg; andw € cfsg, such thaty ~ w, if v calls
f andw callsg’, thenf’ # ¢'.
— (Induction) For two function call nodese cfsg; andw € cfsg, such that ~ w,

if v calls f” andw callsg’, thenf’ e%t q.

If two matched functiong andg are not extended-dissimilar, then they exéended-
similar, denotedf £ g. Two matched nodes andw are extended-similgrdenoted
v % w, if (i) neitherv norw is a call node; or (i andw make the same system call;
or (iii) v andw call f andg, respectively, angt £ qg. ]

Two extended-similar nodes exhibit a useful property thhbs stated in Lemma 1.
To state this property, we first define call cycles.

Definition 4 [Call cycle] A sequence of node®, . .., v;) in cfgp is acall cycle from
v iff for some functionf € P, v = v; = v; is a function call node calling tg,
vy = f.enter,v;_1 = f.exit, and

— (Base case) For eache (1,1 — 1), v; € cfsgV, and(v;, viy1) € cfsgE,.

— (Induction) For somé, k' € (1,1 — 1), k < ¥/,

e foreachi € (1,k] U [K',1), v; € cfsgV;; and

e foreachi € (1,k) U [k, 1 — 1), (vi,viy1) € cfsgE;; and

e (vg,...,vr ) isacall cycle fromy, = vyr.

O

Lemma 1l If v andw are call nodes inP and @, respectively, and = w, then for
every call cycle fromv that results in a (possibly empty) sequence of system tadise
is a call cycle fromw that results in the same sequence of system calls.

Lemma 1, which is proved in Appendix B, shows a useful prgpaisbut extended-
similar nodes, and is used in our proofs of properties of thwerted execution graph.
As we will see, some edges can be copied from the executi@hagriehe old binaryP
to the execution graph of the new bin&@pon the basis of nodes irfig , being extended-
similar to nodes irefg,, since those nodes exhibit similar system-call behaviextN
we define paths to help refer to sequences of nodes in a céiotrograph.

Definition 5 [Path, full, pruned, silent, audible ] A pathp = (vy,...,v,) is a se-
guence of nodes where

— foralli € [1,n], v; € cfgVp; and

— foralli € [1,n), (v;,vi41) € cfgEp.

We uselp| to denote the length gf which isn.



p is prunedif no v € {va,...,v,} is a functionenter node, and if nov €
{v1,...,v,—1} is @ functionexit node.p is full if for every function call node) ¢
{v1,v,} onp, v is either followed by a functioenter node or preceded by a function
exit node (but not both).

p is calledsilentif for all i € (1,n), v; is not a system call node. Otherwise, it is
calledaudible a

Next, we define an execution graph [8], which is a model fotesyscall-based
anomaly detection. We begin with two technical definitidmaywever, that simplify the
description of an execution graph.

Definition 6 [Entry call node, exit call node] A nodewv € cfsg, is anentry call node
of f if v is a call node and there exists a full silent patk (f.enter,...,v). A node
v € cfsg; is anexit call nodeof f if v is a call node and there exists a full silent path
p={v,..., fexit). m]
Definition 7 [support ( ~-), strong support ( ~)] A (full or pruned) pathp =
(v,...,v") supportsan edggv, v'), denotedv ~ (v,v’), if p is silent.p strongly sup-
ports (v,v'), denoted ~ (v,v'), if p ~ (v,2') and if each ofy andv’ is a system call
node or a function call node from which there is at least ortétde call cycle. |
Definition 8 [Execution subgraph/graph] An execution subgrapbf a functionf is
a directed graplsg; = (esgVy, esgE ;) whereesgV,; C cfsgV, consists only of call
nodes. If(v,v") € esgE, then there is a full path = (v, ..., v') such thap & (v,0").

An execution graptof a programP is a directed grapkg, = (egVp, egEclp,
egEcrp, egErtp) WhereegEcl p, egEcrp, andegErt» are sets o€all edgescross edges
andreturn edgesrespectivelyegVp = (J;.pesgV; andegEcrp = (J;cpesgEy.

If (v,v") € egEclp, thenv is a function call node ending in a call to the functign
containingv’, andv’ is a entry call node. Ifv’, v) € egErtp, thenv is a function call
node ending in a call to the functighicontainingy’, andv’ is an exit call node. O

An execution grapleg » is built by subjectingP to a set of legitimate inputs in a
protected environment, and recording the system callsatgaemitted and the return
addresses on the function call stack when each system calide. This data enables
the construction of an execution graph. Then, to monitooagss ostensibly running
in the wild, the return addresses on the stack are extramtedthe process when each
system call is made. The monitor determines whether theeseguof system call (and
the return addresses when those calls are made) are cahgiitetraversal of a path in
egp. Any such sequence is said to be in theguage accepted by the execution graph
Analogous monitoring could be performed usitigp, instead, and so we can similarly
define alanguage accepted by the control flow graptm execution graplkgp is built
so that any sequence in its language is also in the languagetad byfg » [8].

4 The conversion algorithm

Suppose that we have an execution greph for a programP, and that a patch t& is
released, yielding a new prograih In this section, we show our conversion algorithm
to obtaineg,. In addition to utilizingeg p, our algorithm utilizes the output of a binary
difference analysis tool (e.g., [10]), specifically a parthjective functionr and pairs
(isgs,isgr(f)) Of isomorphic induced subgraphs. Our algorithm also sefggtuses



static analysis or). Unless stated otherwise, below we ysev andp to denote a
function, node and path, respectively, dfg», and we usegy, w, andg to denote a
function, node and path, respectivelydig,. In addition, we abuse notation in using
“€” to denote a path being in a graph (e.g, € cfgp”), in addition to its normal use
for set membership.

Recall that we have two important requirements in desigttiegconversion algo-
rithm. A first is thateg,, preserves the soundness property of the original exeeution
graph model, namely that it accepts only system-call sezpeetinat are consistent with
cfgy. A second requirement is that it decays the model's seitgitivabnormal behav-
ior as little as possible, and therefore preserves the gagamnf black-box and gray-box
models in thatg, should not accept system-call behavior that would not haea lob-
served were it built by training, even though this behaviayrne accepted byfg,.

We satisfy the above two requirements by
— creating counterparts of as many nodes and edgas-ias possible irg,;

— adding new nodes and edges4p, to accommodate changes betwdeandQ; and
— performing the above two tasks in such a way that a minimabksystem-call
behaviors is accepted leg,.

More specifically, we first copy matched nodes and edgesgipto esg,, to the ex-
tent possible for all matched function pajfs- g (Section 4.1). Next, we handle nodes
in cfsg, that are not matched and create corresponding cross edggo(4.2). In the
last two steps, we further process the function call nodextount for the functions
they call (Section 4.3) and connect execution subgrapleghegto obtain the execution
grapheg, (Section 4.4).

4.1 Copying nodes and edges whefi ~ g

The first step, calledopy(), in our con-
version algorithm is to copy matched
portions inesg s toesg,,, if f ~ g. Thisis

large portion okg,, assuming that there '

is little difference betwee® and(, and @ &

that the binary difference analysis that d

precedes our conversion produces com-

f()

mon induced subgraphfisg;,isg, ) —— edgesin cfsg
that are fairly complete for mogt € P. —--—» across edge under analysis in copy()
Intuitively, for two matched functiong 777> across edge that would not be added by copy()

commoninduced subgraphs

andg, we simply need to copy all nodes
and edges irsg that are matched and _ . _
update the names of the nodes (which de- Fig. 1. Cross edge that is not copied
note return addresses). However, when a
cross edge is copied tsg,, we need to make sure that there is a full pathfiy, that
can result in the newly added cross edge (i.e., to make satd th supported by a full
path).

There are two caveats to which we need to pay attention. Téteidithat a cross
edge inesg; supported by a pruned path containing edgessgE, \ isgE, should



not be copied tasg,, because something has changed on this pruned path and may
render the cross edge not supportedfgy,. To improve efficiency, here we restrict our
analysis withinf and g only and require that all pruned paths (instead of full paths
supporting the cross edge to be copied be includésginandisg,,.

For the example in Figure 1, a cross edgev’) is supported by the pruned path
(v,v9,v3,v") In cfsg, (Which is also a full path). However, there is no pruned path i
isg, that supports the corresponding cross edgesgy (so no full path incfg, will
support it). The only pruned patfw, ws, wy, w') in isg, does not support this cross
edge since this pruned path would unavoidably induce amsys#dl. Thus, the cross
edge(v, v') cannot be copied tesg,,.

A second caveat is related to the no-
tion of extended similarity that we intro- w
duced in Section 3. Assume~ w, v’ ~
w’, andv” ~ w” (see Figure 2); also as %
sume that(v,v”,v') ~ (v,v’). To copy ‘v

W
callg”()

(v,v') to esg,, we need(w,w”,w’) ~»

(w,w’) and therefore)” = w"” so that
any call cycle fromv” can be “repli-
cated” by a call cycle fromw”, yield-
ing the same system-call behavior (c.f.,
Lemma 1).

In summary, when a cross edge
(w,w') is created iresg,, in this step, all Fig. 2. Extended similarity ircopy()
the nodes on the pruned paths supporting
this edge are matched, and the nodes along each pruned pathlypenatch but are
extended-similar if they are call nodes. We are very stricemcopying a cross edge
because we do not know which one of the many supporting prpatts was taken
during training ofeg . In order to avoid possible mistakes in copying a cross edge t
esg, that 1) is not supported by a full path dfig,; or 2) would not have been created
had training been done dp, we have to require that all nodes on all supporting pruned
paths be matched and extended-similar. In Figure 3, thess&dges are copied since
all the pruned paths that support them are in the common é@dtlaabgraph and call
nodes are extended-similar.

Algorithm 1 copy(), in Appendix A,  “8s
performs the operations in this step to
copy nodes and cross edges. The follow-
ing holds for the cross edges it copies to
esggP.

—— edgesin cfg
=-=-» crossedgeineg

5
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N
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e
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Lemma 2 Every cross edge added by
copy() is strongly supported by a full

<

§

i (D Added in line 104 ® call nodes
path n Cng ' in Algorithm 1 copy() ~==> cross edges
@ Addedin line 206 <> function boundary
Please refer to Appendix B for an outline i Algorithm 2 diff() common induced subgraph

of the proof.
Fig. 3. Converting an execution subgraph



copy() creates nodes and cross edges by copying them &gm The next step
(Section 4.2) shows how we create more nodes and edgesgfoby statically analyz-
ing the unmatched portion gf

4.2 The unmatched portion ofg

Assuming thatf andg = = (f) differ by only a small portioncopy() would have cre-
ated most of the nodes and cross edgesdgy. In this step, we analyze the unmatched
portion of g to makeesg, more complete. This step is necessary becasge does
not contain information about the difference betwefeand g. Intuitively, esg, and
(isg,isg,) do not provide enough information for dealing with the unchat portion
of g, and we need to get help from static analysis.

We identify each pruned path éfisg, that passes through the unmatched portion of
g and then build cross edges between consecutive call nodidsgoruned path until
this path is connected to the nodes we created in Algoritkopg(). Three cross edges
in Figure 3 are created in this way due to the unmatched nogdesdws.

This algorithm,diff(), is detailed in Appendix Adiff() results in the following
property for the cross edges it addssg$™; Appendix B gives an outline of the proof.

Lemma 3 Every cross edge added Biff () is supported by a full path infg,.

If there is a cross edge isg ; that was not copied byopy() to esg,, this occurred
because a supporting pruned path for this edge was changethifing unmatched
nodes or nodes that are matched but not extended-similgt)\Whether this pruned
path was traversed wheénhemitted the system-call sequences on whigh was trained
is, however, unknown. One approach to decide whether to tepgross edge tesg,,
is to exhaustively search (e.qg., diff()) for a full path incfg, that supports it. That
is, any such path is taken as justification for the cross edge; thisoagh, therefore,
potentially decreases the sensitivity of the model (and, gdstentially, false alarms).
Another possibility, which reflects the version of the altom in Appendix A, is to
copy the cross edge only if there is a full supporting path theolves the changed
(unmatched) part of. (This process is encompassedrbfine() in Appendix A, de-
scribed below in Section 4.3.) In addition to this approadficng in our evaluation in
Section 5, it better preserves the sensitivity of the model.

4.3 Refiningesg, based on called functions

Many function call nodes have been createesig), by copy() anddiff(). Except those
extended-similar to their counterpartsciiagV/ ;, many of these nodes are created with-
out considering the system-call behavior of the calledfions. This is the reason why
Lemma 3 claims only that the cross edges created@pportedbut notstrongly sup-
ported In this step, calledefine(), we analyze the system-call behavior of the corre-
sponding called functions and extend the notion of suppostriong support for cross
edges created so far topy() anddiff().



An obvious case in which function
call nodes need more processing is when
the execution subgraph of the called
function has not been created. This hap-
pens when the called functiogl does
not have a match with any function
in P. In this case,esg, can be ob-
tained by statically analyzing the func-
tion itself. For simplicity in this pre- noge w,is removedsince ®  callnodes

---> cross edges

sentation, we reuseiff() to denote this ' call cycles from it are silent e—— ¢ tion boundary

process in Appendix A, with empty commoninduced subgraph
sets for the first three arguments, i.e.,
diff (0, (0, 0), cfsg,). Fig. 4. Function call node removed and

Another scenario in which the func-cross edges modified
tion call nodes need more processing is
when the called function does not make a system call. Rewlla call nodew is cre-
ated incopy() anddiff() but we might not have analyzed the called functiérat that
time and simply assumed that system calls are madg {(and therefore these cross
edges arsupportednstead of beingtrongly supported If ¢’ may not make a system
call, then we need to either delaie(in the case wherg’ never makes a system call,
shown in Figure 4 where all call cycles fromy are silent) or add cross edges from
predecessor call nodes ofto successor call nodes of (in the case wherg’ may or
may not make a system call).

Lemma 4 After refine(), every cross edge iesg,, is strongly supported by a full path
incfgg.

Please refer to Appendix B for the proof of Lemma 4.

4.4 Connecting execution subgraphs

. ) /) g /&Y
At this stage, we create call and returp ®
edges to connect adisg, to form eg,. ®,7
Some of these call edges are created py =~ gl ,’@ ~2
“copying” the edges from theg,, e.g., () g0
when the corresponding call node is cre-
ated incopy() and is extended-similar to

its counterpart ireg » (case 1 in Figure 5
where f’ = g'). If a call nodew has a

' (D Addedin line 405

in Algorithm 4 connect(). ——> calledge

. L. " @ Addedin line 411 ®  call nodes
matchv but is not extended-similar to it, inAlgorithm 4 connect(). <= function boundary
(3 Addedin line 420 commoninduced subgraph
we Create an edg@ﬂ, ’LU/) Only for eaCh in Algorithm 4 connect().

entry call nodew’ in the function called

by w that matches an entry call nodé Fig. 5. Using call and return edges to con-
for which (v,v") € egEclp (case 2 in nect execution subgraphs

Figure 5, wheref” e%t g'"), or to all en-

try call nodes in the called function if there is no su¢hFor other call nodes, the call



and return edges cannot be created via copying, and we dagtigak between this call
node and all the entry call nodes of the called function (SaseFigure 5). We create
return edges in a similar way.

Appendix A briefly gives an implementation ofnnect(), and please refer to Ap-
pendix B for an outline of the proof of Lemma 5.

Lemma 5 Every call or return edge added lagnnect() is strongly supported by a full
path incfg,.

Therefore, after running our conversion algorithm, we haw®nverted execution
graph of the new prograrg, with all the nodes being system call nodes or function
call nodes with at least one audible call cycle from each girittie edges being strongly
supported byfg,. Finally, we can state the soundness of our conversionittigur

Lemma 6 The language accepted by, is a subset of the language acceptedtfay,.

This result is trivial given Lemmas 2-5, and consists prilpdn arguing that any
pathq traversed ireg, can be “mimicked” by traversing a full path fig, that travels
from each node of to the next, say fromw to w’, by following the full path incfg,
that strongly support&w, w’).

5 Evaluation

In this section, we evaluate the performance of our coneerprocedure. Our con-
version program takes in the execution graph of the old iegp, the control flow
graph for both binariesfg, andcfg,, and the output of the binary difference ana-
lyzer BinHunt, and outputs the converted execution graph of the new binary. We
implemented Algorithms 1-4 with approximately 3000 linéd©eaml code.

We evaluated execution graphs obtained by our conversgmmitiim by comparing

them to alternatives. Specifically, for each case study,amepared the converted exe-
cution graph for the patched progragnwith (i) an execution graph fof) obtained by
training and (ii) the control flow graph @p. We performed four case studies.
tar Version 1.14 of tar P) has an input validation error. Version 1.14-2¢3) (differs
from P by changing alo {} while( ) loop into awhile( ) do {} loop (seeht t p:
/I ww. securityfocus. com bi d/ 25417/ i nf 0). This change is identified by
BinHunt, but it involves only a function call that does notkaaany system calls. As
such, the system-call behavior of the two programs remanstanged, and so does
the execution graph obtained by our conversion algorithliff.(| adds a new node and
the corresponding cross edges for the function call invbivethe change, which are
subsequently deleted mafine() because all call cycles from it are silent.)

ncompress In version 4.2.4 of ncompres$’{, a missing boundary check allows a
specially crafted data stream to underflow a buffer withckita's data. A check was
added in version 4.2.4-1%)) to fix this problem (seét t p: / / ww. debi an. or g/
security/ 2006/ dsa- 1149). The check introduces a new branch in the program
in which an error message is printed when the check failssiogua new system call



to be invoked. With the same benign inputs for training, tkecation graphs for both
programs are the same. Our conversion algorithm, howeves, to include this new
branch by performing limited static analysis, and consatyexpands the execution
graph by 3 nodes and 23 edges.

ProFTPD ProFTPD version 1.3.0K) interprets long commands from an FTP client as
multiple commands, which allows remote attackers to cohchass-site request forgery
(CSRF) attacks and execute arbitrary FTP commands via aflopg// URI that
leverages an existing session from the FTP client impleatiamtin a web browser. For
the stable distribution (etch) this problem has been fixegension 1.3.0-19etch2))

by adding input validation checks (seét p: / / ww. debi an. or g/ security/
2008/ dsa- 1689). Eight additional function calls are introduced in theghetd part,
most to a logging function for which the execution subgraph be copied from the
old model. The converted execution graph for the patchesiaithus only slightly
increases the execution graph size.

unzip When processing specially crafted ZIP archives, unzip gar5i52 ) may
pass invalid pointers to a C librarykr ee() routine, potentially leading to arbi-
trary code execution (CVE-2008-0888). A patch (versior25L5Q)) was issued with
changes in four functions (sd# t p: // ww. debi an. or g/ security/ 2008/
dsa- 1522). Some of the changes involve calling to a new function foiclwhhere is
no corresponding execution subgraph for the old versiohfollr changes resulted in
static analysis in our conversion algorithm, leading tocetien subgraphs constructed
mostly or entirely by static analysis. This increased theber of nodes and edges in
the resulting execution gragig,, more significantly compared to the first three cases.

Experimental results are shown
in Table 1 and Table 2. In Ta

borrowed frome not borrowed frone
ble 1, we show the, number of # of nodes# of egges# of nodes # of edggez
nodes and edges img, that tar 173 1430 0 0
have their counterparts iagp ncompress 151 189 3 53
and those that do not. More prefproETRPDI 775 1850 6 28
cisely, if w € egV, and there [ unzip 374 1004 50 195
is somev € egVp such that
v ~ w, thenw is accounted for Table 1. Evaluation: nodes and edgese'gk2

in the “borrowed” column in Ta-

ble 1. Similarly, if (w,w") € egEcly, U egErtg U egEcrg and there is somgv,v’) €
egEclp UegErtp UegEcrp such thalv, v') ~ (w,w’), then(w, w’) is accounted for in
the “borrowed” column. Nodes and edgesif, not meeting these conditions are ac-
counted for in the “not borrowed” columns. As this table shpincreased use of static
analysis (e.g., in the case of unzip) tends to inflate thewgi@tgraph.

Table 2 comparesg, obtained by conversion with one obtained by training. As
we can seesg, obtained by training is only marginally smaller than the ob¢ained
by conversion for the first three cases. They differ sligintigre in size in the unzip
case, due to the more extensive use of static analysis. Wieesgthas obtained by
conversion is substantially larger thagp, as in the unzip case, this is an indication
that rebuildingeg, by training might be prudent.



Old binary P New binaryQ
model ||egp (trained cfgp ego (converted) |eg, (trained cfgg
node$ edgegnodesedgegnodesedgedtime (s)node$ edgegnodesedges
tar 478 | 1430 (2633|7607 | 478 |1430| 14.5 | 478 | 1430 | 2633|7607
ncompress 151 | 489 | 577 |1318| 154 | 512 | 13.1 | 151 | 489 | 578 |1322
ProFTPDJ|| 775 | 1850 |3343|9160|| 781 |1878| 17.4 | 776 | 1853 |3351 9193
unzip 374 | 1004 | 491 [1464| 424 |1199| 41.6 | 377 | 1017 | 495 |1490
Table 2. Statistics for four case studies. Numbers of nodesgor andeg,, are highlighted as
representatives for size comparison.

Both converteceg, and traineckg, are smaller tharfg,, which, in our experi-
ments, includesfsg, for eachy reachable from the first function executed in the binary,
including library functions. The numbers presented dfy, do notinclude non-call
nodes, function call nodes that do not give rise to audiblecyales, enter nodes, or
exit nodes, to enable a fair comparison wégy, (sinceeg, does not contain these
nodes). Sinceg,, when trained, is a function of the training inputs, the gepneen
the sizes otfg, andeg,, would presumably narrow somewhat by training on a wider
variety of inputs (though we did endeavor to train thoroyghte Appendix C). Abso-
lute sizes aside, however, Table 2 suggests that our caoneatgorithm often retains
the precision offered by the execution graph from which itds) no matter how well
(or poorly) trained.

An important observation about our converted executioplygan these case stud-
ies is that the language each accepts includes all systitrsecmences output b
when provided the training inputs. We cannot prove thatwhiisalways hold with our
conversion algorithm, due to limitations on the accuracthefbinary difference analy-
sis tool from which we build [10]. Nevertheless, this emgatly provides evidence that
this property should often hold in practice.

The conversion time shown in Table 2 for eagh, (converted) is in seconds on
a 2.8 GHz CPU platform with 1GB memory, and includes only dgodthm time,
excluding binary difference analysis and the constructibofg,. (Binary difference
analysis with BinHunt overwhelmingly dominated the totaiheersion time.) As shown
in Table 2, as the changes betwerand ) increase in size, more time is spent on
analyzingcfg,, and buildingeg,, statically. In the cases of ncompress and unzip, the
static analysis needs to be applied to the libraries as well.

6 Conclusion

We have presented an algorithm by which eecution graphwhich is a gray-box
system-call-based anomaly detector that uses a modetdréiiom observed system-
call behaviors, can be converted from the program for whieteis originally trained
to a patched version of that program. By using this algorjthdministrators can be
spared from setting up a protected and identically confijerezironment for collecting
traces from the patched program. Our algorithm retaingalglsi properties of execu-
tion graphs, including that the system-call sequencespdeddy the execution graph
are also consistent with the control-flow graph of the progrand that the sequences



accepted tend to capture “normal” behavior as defined byr#ieing sequences. We
have demonstrated the effectiveness of our algorithm witih €ase studies.

it i

As our paper is the first to study adapting anomaly detectopsitches, we believe
ntroduces an important direction of new research. Tlaeeenumerous system-call-

based anomaly detectors in the literature. Our initial isiduggest that many other

su

ch detectors pose challenges to conversion beyond treobawe addressed here.
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A Algorithms

The notation used in the following algorithms follow the gention we stated at the
beginning of Section 4: we usg v andp to denote a function, node and path, respec-
tively, in cfg », and we use, w, andq to denote a function, node and path, respectively,
in cfg. We also continue to useto denote not only set membership, but a path being
in a graph, as well.

Algorithm 1 copy() picks cross edges from the old function execution subgraph,
when we have matches for the two ends of a cross edge and wdrerigmo change that
would potentially affect this edge. We copy the edge intortee function execution
subgraph (line 104).

Algorithm 1 copy()

Input: esg;, (isg;, isg,), cfsg;, cfsg,

100: for all (v,v") € esgE; do

101:  if Jw,w’ : v ~wandv’ ~ w' then

102: esgVyP — esgVeP U {w,w'}
103: if Vp e cfsgf,p«s» (v,0") Jg €isg, : V" € pIw” € q: 0" 2w’ then
104: esgEy’ «— esgE:” U {(w,w’)}

Output: esg’

In this implementation of Algorithm 1, we examine all prungaths that strongly
support the cross edge to be copieddg, (line 103). When the two functionsandg
are similar, it is more efficient to examine the differencesaeenf andg to discover
the cross edges that should not be copied. When the diffesdreteveenf andg are
small, this equivalent algorithm is more efficient, in ouperence.

Algorithm 2 diff () modifiesesg;® created incopy(). It analyzes each pruned path
that passes through the unmatched portiop,@nd tries to create a part of execution
graph along each such pruned path and connect it to the rést ekecution subgraph.

Algorithm 3 refine() uses the system call behavior of each called function ta-dete
mine if any cross edges should be removed and others usegiiipthces. (Analysis in
Algorithm 2 does not account for the behavior of called fiortd when adding edges.)

Finally, Algorithm 4 connect() tries to copy call edges and return edges from the
execution graph of the old program when we have sufficienthirag support (line 405



Algorithm 2 diff()
Input: esgg’, (isg;, isg, ), cfsg,
200: esg‘;ifF — esgy’
201U « {w|wecfsgV, N (w¢ isng\/(HU:UNw/\v?dtw))}
202: U’ {w | w € esgV" V (w € U Aw is a call nodg}
203: for all w € U do
204: forall g = (wi,...,wq) €cfsg,:w € qA
(Vie(1,]q]) wi #w=w; €U") NMwi,wq} CU do
205: esgV‘;ifr — esgV;ifr U{w; | i €[1,|q]] Aw;isacall nodé
206: eng‘;ifF — eng‘;iff U {(ws,wy) | 4,7 € [1,]q]] Aws,w; are call nodes\: < j A
Vk € (i,7) : wy is not a call nodg

diff
g

Output: esg

Algorithm 3 refine()

Input: {esg}y, H = {eSggifF}m cfgg

300: while H # () do

301: pick Onaesg‘;'_ﬁ in H

302: esgg” — esg‘_;'Ff

303: forall w € esgVy" : wis afunction call node\

w ¢ {w’\w’EesgVZ"/\Elv':v'ertw'}do

304: letg’ be the function called by

305: if no call cycle fromw is audiblethen

306: esergf" — esng” \ {w}

307: forall w’,w"” : (w',w) € esgEl" A (w,w") € esgE}" do
308: esgEl" — esgEl" U {(w', w")}

309: forall w’ : (w,w’) € esgE}" do

310: esgEl" — esgEl" \ {(w, w’)}

311: forall w’ : (w', w) € esgE}" do

312: esgEl" — esgEl" \ {(w',w)}

313: else ifall call cycles fromw are audibleghen

314: if esgli" ¢ H then

315: H — H U {diff(0, (0,0), cfsg,/)}

316: else

317: forall w’,w"” : (w',w) € esgEl" A (w,w") € esgE}" do
318: esgEl" — esgEl" U {(w', w")}

319: if esgl/" ¢ H then

320: H — H U {diff(0, (0, 0), cfsg,/)}

321: H«— H)\ {esgi™}
Output: {esg]"},

and 407). Otherwise, we build call and return edges basethtio analysis (lines 411,
413, 416, 418, 420, and 421).



Algorithm 4 connect()

Input: R= {esg'gf"}g, egEclp, egErtp
400: for all esg" € R do
401: forall w € esgV}" do

402: letg’ be the function to whichw calls

403:  if Jv: v X wthen

404: forall v’ : (v,v") € egEclp do

405: egEcl, «— egEcly U {(w,w")} wherev’ X'

406: forall v’ : (v"”,v) € egErtp do

407: egErty « egErty U {(w",w)} wherev” ESRNG

408: elseifFv:v~wAwv ?dt w then

400: forall v’ : (v,v") € egEcl, do

410: if Juw’ € esgV;f? :v' ~w' Aw'isan entry call nodéhen

411: egEcl, — egEcly U {(w,w')}

412: else

413: egEcl, — egEcl, U {(w,w’) | w’ € esgV]" is an entry call node
414: forall v’ : (v",v) € egErtp do

415; if Jw” € esgV : v ~w” Aw” is an exit call nodehen

416: egErty « egErty U {(w”, w)}

417: else

418: egErt, — egErt, U{(w”,w) | w” € esgV7 is an exit call nodg
419: else

420: egEcl, — egEcly, U {(w,w’) | w’ € esgV}y" is an entry call node
421: egErt, — egErty, U{(w”,w) |w" € esgVl is an exit call nodg
Output: egg

B Proofs

Proof of Lemma 1Sincev & w, by Definition 1, 2, 3, for a call cyclév, va, . . ., v, v)
in cfgp, there will be a call cycléw, wo, ..., w,,w) in cfgg such thaty; ~ w; : i €
[2,n], and ifv; andw; are system call nodes, they must make the same system call, so
these two call cycles result in the same (possibly emptyQiesece of system calls. O

Proof of Lemma 2If (w,w’) is added tcesgEg” in line 104, then consider the cross
edge(v,v’) € esgE, chosen in line 100. Since,v’) € esgE,, there is a full, silent
pathp’ = (v,...,v') in P that was exercised in training. Consider the pruned path
from v to v’ obtained by collapsing each call cyclephto its function call node. By
line 103, there is a correspondings isg, on which every node is extended-similar to
its corresponding one in (and hence € isg;, as well). Then, by Lemma 1 there is a

full path ¢’ that strongly support&w, w’). O
Proof of Lemma 3If an edge(w;, w;) is added tesgES™ at line 206, theny; andw;
are call nodes with no call node in between themyoAs such,(w;, ..., w;) is a full,
silent path that supportav;, w;). |

Proof of Lemma 4We first argue that anjw’, w”) € eng;f” at the completion of
refine() is supported by a full path. First, {fw’, w") was added tesgEg” in line 104



and then copied forward (lines 200, 302), oftif , w" ) was added tesgES" in line 206
and then copied forward (line 302), thém’, w"’) is supported by a full path per Lem-
mas 2 and 3. Now, suppose that’, w”) was added in line 308 or 318. Then line 305
(respectively, 316) says that some call cycle franis silent. So, if the cross edges
(w’,w), (w,w") were supported by full paths, then the new cross édgew”) is also
supported by a full path. It follows by induction, with Lema2-3 providing the base
cases, that any cross edges added in lines 308 and 318 ameteddpy a full path.

We now show that any such edge is strongly supported. Cansigefunction call
nodew € esgVL[]Fn at the completion ofefine. If w € esgV¢®, then it was added in
line 102 because it matched soméline 101) from which an audible call cycle was

ext

traversed during training afg . If v =~ w, then by Lemma 1, there is an audible call

cycle fromw, as well. Ifv e%t worw ¢ esgVg®, thenw satisfied the condition in

line 303 and, if there is no audible call cycle framwas removed in lines 306—-312.
Proof of Lemma 5Consider an edge added in line 405. Since ho@mdv’ were wit-
nessed during trainineg , each is a system call node or has some audible call cycle.

ext

Becauser = w andv’ X w’, Lemma 1 implies that each af andw’ is a system
call node or has some audible call cycle. Moreover, Lemmaataniees that’ is an
entry call node since’ is, and so the call edgev, w’) created at line 405 is strongly
supported by a full path. By similar reasoning, each retulgeeadded at line 407 is
strongly supported by a full path.

In all other cases in which an edge, w’) is added taegEcl, (in line 411, 413, or
420), connect() explicitly checks whethew’ is an entry call node for the functiagi
called byw (line 402), and so there is a full path supportiag w’). Similarly, for each
edge(w”, w) added teegErt ), there is a full path supporting this edge. Since all nodes

in eachesgV'gf" are either system call nodes or function call nodes from kvttiere is
an audible call cycle, these edges are strongly supported. O

C Training

In this appendix we briefly explain how we collected the tssfoe the four case studies,
since training plays an important role in building the exemugraphs. For ncompress
and unzip, we tried all operation types and options listeth@online manuals. How-

ever, for tar and ProFTPD, we did not train as exhaustivelyaslid for the previous

two cases due to the complexity of tar operations and ProFdd?ifigurations. Never-

theless, for tar and ProFTPD, we did follow guidelines togerde the repeatability of
the training procedure, as described below.

tar Following the manual (se® t p: / / ww. gnu. or g/ sof t war e/ t ar/ manual /
tar. pdf ), we trained tar for its three most frequently used openatioreatelist and
extrac) that are introduced in Chapter 2 and with all options désctiin Chapter 3.
The directory and files we adopted for applying those opamativere the downloaded
source of tar-1.14.

ncompress We trained ncompress on its own source directory for vergi@m, us-
ing all operations and options described in its online ma(eehtt p: / /1 i nux.
about . conf od/ commands/ a/ bl cndl 1_conpr es. ht m,



ProFTPD We trained ProFTPD configured using the sample configuréteshipped
with the source, and with all commands described in the enfianual (sebtt p: //

| i nux. about . conf od/ comrands/ | /bl cndl 1_ft p. ht m). We chose to trans-
fer files within the ProFTPD-1.3.0 source directory.

unzip Similar to the training on ncompress, we followed the unzitire manual
(seehttp://1inux.about.com od/ comrands/| /bl cndl 1_unzi p. ht m
and trained the program on the .zip package of version 5.52.



