
A novel covert channel detection method in cloud based on
XSRM and improved event association algorithm

Lina Wang1,2, Weijie Liu1,3, Neeraj Kumar4, Debiao He1,2, Cheng Tan1, and Debin Gao3

1Computer School, Wuhan University, Wuhan, China
2Key Laboratory of Aerospace Information Security and Trusted Computing Ministry

of Education, Wuhan, China
3School of Information Systems, Singapore Management University, Singapore

4Department of Computer Science and Engineering, Thapar University, Patiala, India

Abstract

Covert channel is a major threat to the infor-
mation system security and commonly found
in operating systems, especially in cloud com-
puting environment. Owing to the character-
istics in cloud computing environment such as
resources sharing and logic boundaries, covert
channels become more varied and difficult to
find. Focusing on those problems, this pa-
per presents a universal method for detect-
ing covert channel automatically. To achieve
a global detection, we leveraged a VM event
record mechanism in Hypervisor to gather nec-
essary metadata. Combining the shared re-
sources matrix methodology with events asso-
ciation mechanism, we proposed a distinctive
algorithm which can accurately locate and an-
alyze malicious covert channels from the re-
spect of behaviors. Compared to the popular
statistical test methods focusing on the single
covert channel, our method is capable of rec-
ognizing and detecting more covert channels in
real time. Experimental results show that this
method is not only able to detect multi-level
and multiform covert channels in cloud envi-
ronment effectively, but also facilitates the im-
plementation and deployment in practical sce-

narios without modifying the existing system.
Keywords: Cloud Security; Covert Channel

Detection; Shared Resource Matrix; Event As-
sociation Analysis

1 Introduction

Cloud Computing has raised great concern
in industry and academia for its low cost,
rapid deployment, flexibility and other advan-
tages. The characteristics such as resource dy-
namic aggregation, autonomous collaboration
and services outsourcing has turned the cloud
boundary into an ambiguous, generic and dy-
namic boundary, along with new technical chal-
lenges [1]. Traditional information systems in-
frastructure is relatively static: there are ob-
vious physical boundaries between system in-
side and outside. By deploying access con-
trol, intrusion detection, firewall, security audit
and other mechanisms, we can effectively pro-
tect the security of conventional IT infrastruc-
tures. However, in a public cloud environment,
physical separation between different data own-
ers’ networks are replaced by virtual separation
(e.g., in IaaS) and security threats are still ram-
pant.

1

As one of the core technologies of cloud com-
puting, virtualization security has attracted
a lot of attention naturally. Under normal
circumstances, malicious programs are diffi-
cult to disclose data between virtual machines
due to the isolation provided by hypervisor
[2]. Unfortunately, the attacker can use a
variety of covert channel to bypass the secu-
rity mechanisms for information leakage [3].
Okamura discovered a CPU-load based covert
channel in cloud, which not only enabled ex-
ploitation of CPU load to transfer private data
stream, but also managed to avoid being de-
tected [4]. Salaun mentioned that covert chan-
nels might exist on Xen, from XenStore shar-
ing page agreement, driver loading, and event
data transmission [5]. Since Ristenpart [6] and
Zhang [7] successfully exploited side channel
attack to obtain the target guest virtual ma-
chine’s private information in Amazon EC2,
side channel exploitation based on virtual ma-
chine co-residency becomes a hot topic. Re-
searchers gave their solutions [8, 9, 10, 11]. And
these studies take the same view that manual
maintenance and monitoring has met more dif-
ficulties in cloud. The demand for automatic
detection of covert channels also becomes more
urgent.

Massive parallelism in the cloud makes
covert channels pervasive and hard to detect.
On the other hand, the implementation of
the hardware features is usually architecture-
specific and has changed amazingly fast over
various versions of CPU and cache. Any exclu-
sive channel detection on shared hardware re-
sources will be old-fashioned. Cloud platforms
need an automated, extensible, multi-faceted
and comprehensive tool to better coping with
new attacks caused by malicious covert chan-
nel exploitation. However, our solution is ded-
icated to solving those problems.

We proceed as follows. Section 2 discusses
the related works. Section 3 introduces the fea-
tures of covert channel exploitations in cloud

and gives the threat assumption. Section 4
sketches our design and how these features can
be used to detect a covert channel. Detailed
implementations for the design are explored in
Section 5. In order to evaluate the correctness
and effectiveness of our approach, we presented
our experimental results from a simulated pro-
totype of our solution in Section 6, and Sec-
tion 7 concludes.

2 Related work

The initial concept of covert channel was pro-
posed by Lampson in 1973 [12]. Follow-up
studies divided covert channels into two cat-
egories: storage channel and timing channel
[13]. Focusing on the reason why covert chan-
nel forms, a series of covert channel identifi-
cation methods were proposed, including in-
formation flow analysis [14], non-interference
model [15], shared resources matrix method
[16] and code-level analysis techniques [17].

However, in cloud computing environment,
covert channel recognition and detection be-
comes a more difficult issue. It is extremely
complex to analyze the increasing code lines
in virtualization systems, while it is lack of
effective automated tools [18]. Secondly, the
traditional covert channel detection methods
are not suitable for cloud computing environ-
ment, which need for top-level design analysis
or source code analysis. Moreover, traditional
methods cannot guarantee real-time process-
ing. Thirdly, the exploitation of covert channel
is facing a lot of interference such as extremely
short time interval and overlapped noise.

Bates et, al. proposed co-residency water-
marking as a covert channel in virtualization
environment and put forward corresponding
detection approach [19]. Varadarajan et al. in-
vestigated the problem of placement vulnera-
bilities and quantitatively evaluate three pop-
ular public clouds for their susceptibility to co-

2

location attacks [20]. At the same time, they
found ways to detect co-location with victim
web servers located behind a load balancer. Wu
et al. proposed C2Detection [21], which cap-
tures information flow in hypervisor layer and
combines Markov and Bayesian model to de-
tect hidden channels.

Chen et al. present a mechanism called time
deterministic replay (TDR) [22] that can re-
produce the execution of a program, including
its precise timing [23]. Without TDR, repro-
ducing the timing of an execution is difficult
because there are many reasons to cause tim-
ing variation, such as preemptions, hardware
interrupts, cache effects, scheduling decisions,
etc. Our method uses VM record mechanism
as well, but we record hardware events for fur-
ther analysis rather than for replay, so that we
can omit a number of unnecessary operations
which on the contrary are vital in re-execution
of a VM. For example, in order to ensure the
accuracy of the execution result, the replay sys-
tem needs to distinguish different VM’s events,
i.e. when each VM Exit/VM Entry happens,
the system must reset the performance counter
and re-count every VM’s branch counter, which
will make a plenty of overheads.

From what has mentioned above, most re-
cent schemes start from a single covert chan-
nel, characterizing the feature on the face of
it, whose accuracy is unsatisfactory. In cloud,
following problems will appear when detecting
covert channels:

Firstly, in addition to the traditional ones,
there are drastically increasing amounts of spe-
cial channels which cannot be recognized easily
in cloud environment. Secondly, covert chan-
nel analysis becomes more difficult in super-
size cloud platform with growing code lines.
Thirdly, traditional covert channel analysis
method desperately relies on manual work.
While taking the SLA (Service-Level Agree-
ment) into account, manual analysis cannot
guarantee the service continuity, convenient

implementation, and high efficiency.

3 Covert channels in cloud

As we know, it was possible to control tim-
ing channels by limiting untrusted processes’
access to high-resolution clocks in the days of
uni-processor and single-threaded process [24].
Nevertheless, in cloud environment, inside at-
tackers become outsider attackers, and data
leakage is unlikely to be caught. Likewise, it
is not easy to accomplish mitigation on the ba-
sis of malware detection. We should find some
other ways to identify those malicious channels.

3.1 Clocks and events

A broad definition of clock is that any approach
for measuring the progress of time can be re-
ferred to as a clock [25]. One pair of clocks is
necessary to data transmission, since one clock
should be a measure clock, the other one should
be used to issue signals, or we say, to perform
the occurrence of events. We view the passage
of time as being characterized by sequences of
events which can be distinguished one from an-
other by an observer.

There are four possible clock sources in com-
puter systems [26]: the CPU instruction-cycle
clock, the real-time clock, the I/O subsys-
tem (completion interrupts, DMA data ar-
rival rate, etc.) and the memory subsystem
(data/instruction fetch, interlocks, etc.). Most
of these clocks could be modulated. For ex-
ample, the memory subsystem provides a clock
based on the time take to perform a memory
fetch. This time depends on whether the target
data was in the cache (and, for a system with
a multi-level cache, which cache it was in), and
on the level of traffic on the memory bus and
through the memory controller. Some of these
clocks are not independent. Event sources of-
ten communicate with the external world by

3

accepting input. Especially the massively par-
allel context in cloud creates numerous implicit
high resolution clocks. As an example, con-
sider a process using DMA data arrival to con-
struct a clock. The process issues a disk read
request into a buffer, and then polls the first
byte of the buffer. When the data in that byte
changes, the process knows the DMA transfer
has started. It then polls another location, fur-
ther along in the buffer, and when the data
changes, the process knows that the transfer
has reached the other point in the buffer.

Generally speaking, the stream of events can
be considered as a clock, and these events ap-
pear at anywhere and anytime, such as during
memory accesses, with I/O operations, and in
DMA channels.

3.2 Events and covert channels

As we know, a peer to peer communi-
cation consists of three essential factors,
〈sender, receiver, channel〉. So does a covert
channel exploitation. However, a covert chan-
nel has some additional special properties.
Firstly, the sender has secret modulation ac-
tions. Secondly, the receiver can perceive
issuance of the sender’s signals. Thirdly,
both parties of communication use a variable
or multiple variables to transmit information.
Whether a given event can be distinguished
from another depends on the observer. For in-
stance, if an event consists of a boolean chang-
ing variable, then there are only two intrinsi-
cally distinguished events. However, if an ob-
server is incrementing a counter of how many
times the variable has changed state, then there
are an infinite number of possible distinguished
events for that observer. The presence of suf-
ficient internal memory allows an observer to
distinguish arbitrary numbers of otherwise in-
distinguishable events.

From the relationship between clocks, events
and covert channels, we can see the ability of

events as a clock in transmitting secret infor-
mation. Then we can envision that event as-
sociation analysis will be an effective solution
of covert channel detection in nature. So our
scheme takes the advantage of event associ-
ation analysis to discover covert channel ex-
ploitations (described in Section 4).

3.3 The perspective of observers

Since it has been explained that the event can
be perceived and modulated in information sys-
tem, then it is possible to build a covert channel
by using some specific events. However, how do
we determine whether an event can be used as
an information carrier in channel exploitation?
It involves observation perspectives.

Perspectives in observation fall into many
categories. We regard the perspective of the
sender (i.e. the modulator of signals) as interior
where we can control the internal timing, and
regard the perspective of the receiver (i.e. the
demodulator of signals) as exterior [27]. The
choice of observation perspective is significant.
When our perspective varies, the exploitabil-
ity of the corresponding channels may be dif-
ferent, and the bandwidth and the noise may
vary greatly as well [28].

For example, there is an ordinary and com-
mon bus contention-based channel on most vir-
tualization platforms. To understand the pro-
cedures of this covert channel exploitation, con-
sider the following scenarios. We assume that
the sender and the receiver have been able to
control the memory bus, and their operations
are strictly alternate. When we inspect the
CPU load, we can perceive intensive bus con-
tentions. That is because when the sender oc-
cupies the memory bus frequently, the CPU
load will be much higher than that in a nor-
mal situation. However, this observation ap-
proach is not accurate, and the bandwidth of
this kind of covert channel exploitation is low.
Another way of observation is cancelling the

4

output. When using this approach, the re-
ceiver requests a memory bus related task, and
cancels the task after a certain time, then ob-
serves the output. Because the task execution
and other references to bus are asynchronous, if
there is a contention bus, then the cancellation
will be postponed. Such a delay can be per-
ceived by the external receiver because there
is a transition phase in the memory, and it is
possible to be observed or perceived by other
requests. The information obtained in this way
of observation is completely different from the
previous one. This covert channel exploitation
has a better grasp of time and a higher band-
width.

After all, in terms of covert channel detec-
tion, we should take a global point to dis-
cover unknown channels at behavior level to
the greatest extent. Therefore, in our solution,
we utilized a global observation scheme which
is deployed on the Hypervisor layer by pre-
senting machine environment and operations in
VM events.

3.4 Threat assumption in cloud

Owing to physical isolation boundaries be-
tween traditional physical hosts, we have to
communicate through networks in traditional
computing environment. However, in virtual-
ization environment/cloud computing environ-
ment, there are logical boundaries between vir-
tual machines that belong to the identical phys-
ical host. VMs can exchange data in many
other ways (in Figure 1). Malicious virtual
machines can leverage these covert channels to
steal sensitive information out of other guest
virtual machines.

In [21], three kinds of covert channels
were discussed, which are intra-domain, inter-
domain (cross-VM) and cross-platform covert
channels. For intra-domain covert channels,
the hidden process can be detected via Hyper-
visor [29, 30]. For cross-platform covert chan-

Figure 1: Collusive attack model in cloud

nels, processes Pi and Pj can only communi-
cate by network. This kind of covert chan-
nels can be detected with the method based
on Markov model or others [31]. So our work
just aims at inter-domain (cross-VM) channels
and does not mention any deeper researches
about those intra-domain and cross-platform
channels. Here we give the further categoriza-
tion:

(i) Hardware layer covert channels for physi-
cal layer attacks.

Normally, this kind of covert channel ex-
ploitations take advantage of the timing
signal caused by CPU scheduler, mem-
ory or cache preemption, and I/O inter-
rupts [4, 32], or leverage the access la-
tency caused by memory missing page or
memory bus contention [33] to transfer in-
formation. Moreover, they may construct
covert channels based on cold boot attacks
or just some parts of shared cache and un-
protected memory.

(ii) System-level covert channels for Hypercall
and VMM sharing mechanism attacks [34].

To accomplish the inter-domain communi-
cation and cooperation, the virtualization
platform generally uses sharing resources
methods, and that the most common ways
are event channel, Foreign Map mecha-
nism [35] and cross-VM sharing resources
[36]. If the sender domain controls the fill-

5

ing timing of sharing memory and the re-
ceiver domain observes the time when ob-
tains data, then it can construct timing
channels according to the features of time
uncertainty.

As a result of the above categorization, we
give covert channel definitions in cloud envi-
ronment:
Definition 1 Covert Channel
〈V, T, A, Ph, P l〉
V = {variable | Each variable represents one

kind of resources in current cloud computing
system.}
T = {type | Each type represents one cate-

gory of covert channels in cloud environment.}
A = {attribute | Each attribute represents

one special feature of a covert channel.}
Ph and Pl, are denoted as the two parties

which have different security levels in covert
channel communication. Differed from in tra-
ditional computing environment, there are sev-
eral levels in cloud. Therefore, many available
perspectives can be adopted in observation, re-
sulting in more variables. When you want to
detect covert channel exploitations, it may be
difficult to locate them accurately. Besides, be-
cause all covert channels are constructed by the
knowledge of system asynchronous events, so
the storage nature and timing nature can be
the attributes of a covert channel. If we in-
troduce the channel type T and attribute A,
we can divide the covert channels into various
categories by using the predefined types and
attributes. This can greatly improve the effi-
ciency and correctness of our detection solu-
tion.
T and A can be defined by expert system or

cloud providers; type refers to the category of a
covert channel. Namely it represents whether
it is a timing channel or storage channel, a
memory leak channel or an inter-VM channel,
etc. Then, attribute refers to some obscure
indicators and properties of a covert channel.

For example, attributes in A usually consist of
the characteristics of a covert channel in com-
munications, such as the conditional entropy,
throughput, etc. And if the channel is con-
structed by shared hardware resources, then A
may contain CPU load, I/O interrupt interval,
the timing of VM Exit/VM Entry, etc.

4 A novel covert channel de-
tection method in cloud
computing environment

According to the above idea, we proposed a
new covert channel detection method. The dis-
tinguished contributions made in this paper are
as follows:

(i) The method is different from traditional
ones which analysis time series such as ac-
cess interval time by using statistical mod-
els like Markov model or Bayes classifier
[21]. We take a new way, from the per-
spective of behavior, which takes the fun-
damental characteristics of covert channels
into account to detect covert channel ex-
ploitations.

(ii) Due to the traditional SRM method is un-
realistic to analyze covert channel [25], we
improved the method so that it can be
used in real time covert channel detection.
Furthermore, we proposed the event cor-
relation analysis method based on XSRM
(extended shared resources matrix).

On the basis of the matrix data struc-
ture, we made some improvements for
our event correlation analysis algorithm,
which makes it more suitable for the prac-
tical application. That is because: firstly,
matrix data structure can be transformed
to vertical data structure that is more suit-
able for the association mining algorithm;

6

secondly, we optimize the algorithm by us-
ing the idea of partitioning, greatly reduc-
ing system overhead.

(iii) In our method, we leveraged VM record
mechanism [22] and VMI (Virtual Ma-
chine Introspection) [37] to collect VM’s
behaviors. Underlying events will be
logged to make further analysis. On the
other hand, the method is applied on the
VMM layer, which means it is transpar-
ent for guest-VMs. Our method also has a
global view over all external observers and
thus has a better understanding of guest-
VM’s behaviors. It is beneficial for discov-
ering most cross-VM covert channels.

4.1 Framework overview

In order to describe such method in a better
way, we present our detection framework, as
shown in Figure 2. Firstly, it collects infor-
mation from cloud platforms, including VMM
event logs, logs of some daemon processes,
network configurations and security policies.
Then, this framework extracts information in
terms of a defined event format from the above-
mentioned files. By using the shared resources
matrix method and extracting the event meta-
data, the characteristics of covert channel ex-
ploitations could stand out. The third step is
event merging. Associated events that comply
with certain conditions will be merged into one
event flow. In order to do that, we need to
carry out association analysis for these events
to find out the features inside, and establish
a series of matching policies. And then, the
framework matches the features of covert chan-
nels in the form of event flows. Finally, alarms
are reported and the detection is accomplished.

4.2 Information gathering

By using active scanning mode, we collect mul-
tifarious files, which mainly include event logs

and security configurations from cloud plat-
forms. Based on that, we need to collect more
detail data, including platform basic status
(such as the pattern of contention on the hard-
ware resources), task response delay, event logs,
network configuration, network security strate-
gies, network connections, traffic information
and so on.

4.2.1 Event recording

To describe our framework more clearly, we de-
fined events:
Definition 2 Event
Event e= 〈eventId, time, vmId, processId,

sharedV ariableName, type, attributes,
return〉

Where, sharedV ariableName ∈ V , which
represents the object of the operation in an
event; type ∈ T , which is used to de-
scribe which category of the event belongs;
attributes refers to elaborative event fea-
tures which have been defined in Definition
1. For hardware events, attributes may in-
clude 〈CPU load, memory access interval〉;
For system events, attributes may include
〈HypercallId, grantTableNumber〉. For con-
venience, we define E as the collection set of
all the events in cloud computing system. It
is clear that the definition of events is extensi-
ble. We can add any fields we want to join in
attributes.

Event recording plays a crucial role in our
scheme. In virtualized platforms such as Xen
and KVM, some logs of VMM can be obtained
directly from daemon processes, for instance
the logs of Xend and XenStore (detailed in
Section 5.2). However, deterministic and non-
deterministic events in some systems are not
recorded. Therefore, we recorded these events
by using VMI and VM record, and outputted
them in the form of events for later analysis.

7

Event Merging

Ln

... ...

L R L1

Xi Xj

Rule Matching

Rule base

EventNode CC rule 1 P

EventNode CC rule 2 P

EventNode CC rule 3 O

Data Cleansing

< V, T, A, Ph, Pl>

Variable

1

Variable

2
...

Process

1
R

Process

2
R

... W

Process

N
R

Variable

N

R

r

Information Gathering

Applications

File systems

File

selecting

File

monitoring

E4

LOG Event FlowMeta Data

Cloud Computing Environment

E3

E2

Item

E1

Figure 2: Framework Overview

4.3 Extended Shared Resources Ma-
trix

After the previous information gathering and
log file filtering steps, the condensed data was
obtained. But the data is not only too massive
and fragmented, but also useless for extracting
attacker’s behaviors. At this point, we used
the Shared Resources Matrix method [16] for
reference. Suspicious events can be extracted
for further processing.

We extended the definition of shared re-
sources matrix, and applied it to our scheme.
Definition 3 the eXtended Shared Re-
sources Matrix

Assume S as the information system;
Define the extended shared resources matrix

XSRM = (aij)m×n. The XSRM is also a con-
cept lattice having the following constrains:

In cloud environment, many data sets are
mixed-data sets, which consist of both nu-
merical attributes and categorical attributes.
Here our XSRM is a mixed data table. More
formally, XSRM is described by a quadruple
XSRM = (E, A, V, f) [38], where A and
E have already defined in Definition 1 and
Definition 2. Meanwhile, A is a nonempty
set of attributes with A = Ar ∪ Ac . Ar is
a numerical attribute set which includes CPU
load, time interval of cache/memory access,
and so on. Ac is a categorical attribute set
which consists of shared variable’s name, pa-
rameters of Syscall/Hypercalls, and so on; V is

the union of attribute values, i.e., V =
⋃

a∈A Va

, where Va is the value domain of attribute a;
f : E×A→ V is an information function such
that, for any a ∈ A and e ∈ E, f (e, a) ∈ Va.

Fill in the events as shown in Table 1 (each
event is filled in with the corresponding at-
tributes as a line). Denote row {ai1, ai2, ..., ain}
as A (i, :) , column {a1j , a2j , ..., amj} as A (:, j)
. Each row in XSRM represents an event
in the current information system. Each col-
umn represents the states of an attribute at
that timestamp. Meanwhile, there is an ex-
ception that the first column represents the
sharedV ariable, which is a special attribute
and an extension of the concept lattice.

Table 1: eXtended Shared Resources Matrix
XSRM sharedV ariable a attr b attr c...
Event e1
Event e2
Event e3

Usually, the shared resources matrix method
is used to detect storage channels. However,
it also can be used to detect timing channels
after our improvement. That is because our
scheme uses events instead of TCB primitives
as column in original SRM method. Each col-
umn of XSRM will be operated in our event
association analysis algorithm (detailed in Sec-
tion 4.4.1). We make this modification mainly
due to the following two points.

(i) Timing channels are directly related with
asynchronous events. In other words,

8

there must be correlations between the
sender process activities (i.e. asyn-
chronous events) and the occurrence of
two clocks. It is possible that their occur-
rence timings are close, or they used the
same objects (shared variables), etc. Of
course, this correlation exists not only in
the procedure of attacker’s signal modula-
tion, but also in the procedure of demod-
ulation.

(ii) Events, logged along with a program exe-
cution, provide the most intimate details
of the program’s code path. Whereas,
in most virtualization systems, users of
guest-VM cannot directly perceive exter-
nal interrupts, but they can perceive some
events that happened during interrupt
handling processes. Our target is to cap-
ture the events that we can perceive in-
side, to compare the actual outside events,
and to try our best to fill in this percep-
tion gap between the host and VMs, then
we can determine the existence of covert
channels.

4.4 Matching with association

Suspicious events acquired in the previous step
are still mixed and disorderly, so they need to
be merged into a single event sequence in order
to better analyze the behavior extracted from
the subject of events. And in that way, when a
new sequence of events occurs, we can find the
trace that covert channel left behind by match-
ing the event flow with specific rules.

4.4.1 Event merging based on associa-
tion analysis

Since the covert channel is also a kind of chan-
nels, it has the characteristics of a normal chan-
nel. Hence, causalities between attacker’s be-
havior and resulting events exist when a covert
channel forms. Namely, there are associations

between the resulting events. As mentioned in
Section 3, from the relationship between events
and covert channel, we can understand that
the event flow can be used as relative clocks
in covert channel exploitations. And it may
contain a lot of information about the channel.
For instance, attackers who exploit the covert
channel must perform synchronization and ne-
gotiation steps before the communication step,
which will leave some obscure traces behind.

Besides, the sequence of events could rep-
resent the covert channel observer’s (or re-
ceiver’s) clocks. For that reason, our scheme
tries to combine the features of the traces,
which will be helpful to infer attackers’ behav-
iors. These event sequence patterns are also
helpful when building the matching rules [39].
In order to obtain those patterns, and based
onDefinition 2, we defined Associated Events
and Event Flow:
Definition 4 Associated Events
∀Event e1, e2
If e1.type == e2.type

&& e1.attributes [i] ==
e2.attributes [i] && |e1.time− e2.time| 6
TW

then e1 and e2 are considered associated, de-
noted as e1⇒ e2.
Definition 5 Event Flow
EventF low eventflow =
〈eventF lowName, eventF lowId, eventList,
TW 〉

Wherein, eventList is a linked list of event
nodes, which represents the timing relation-
ships between events in the corresponding
event flow. eventF lowType refers to a com-
mon type of all events in the event flow; TW
(Time Window) indicates the maximum delay
of the flow of events from the first event to the
last.

Now it is necessary that we have to figure
out the relationship between the events, asso-
ciation analysis algorithm is the best choice.
However, note that the traditional data mining

9

algorithm does not work here, thus it needs to
be improved in order to adapt to the applica-
tion scenarios in cloud computing environment.

As a result, we proposed an improved fre-
quent itemsets association analysis algorithm
for XSRM based on vertical data format. The
database for storing events is actually a Con-
cept Lattice matrix, which can be joined with
the shared resources matrix. The vertical data
format can be processed efficiently in a frequent
itemsets association algorithm, and such a ma-
trix data structure is flexible to be transformed
to vertical data format. In this paper, a combi-
nation scheme is adopted to solve the problem
of a large data mining which commonly hap-
pens in real-world detection scenarios.

The improvements we have made are as fol-
lows.

(i) The introduction of shared resource ma-
trix reduces the cost of the search for item
merging to a minimum, which greatly im-
proves the efficiency of the algorithm.

We searched frequent itemsets with vec-
tor “and” operation and generated event
flows after merging the events. When
the algorithm executes the intersection
operation Tidsets (R) = Tidsets (Xi) ∩
Tidsets (Xj), because of this special data
structure (the Concept Lattice matrix)
of XSRM, there is no need to tra-
verse all objects in Tidsets (Xi) and
Tidsets (Xj). We just need to compare
the objects in the same row of Tidsets (Xi)
and Tidsets (Xj). If they are equal,
then put them in the result intersection
Tidsets (R).

(ii) Our scheme draws on the idea of matrix
dividing, and adds a priori constraint into
it to further optimize the association anal-
ysis algorithm.

As the program is running, XSRM is gen-
erated continuously. And consecutive parts of

Table 2: Event merging algorithm
Input: XSRM truncated by time window, smin

Output: Frequent itemset L consisting of all event flows
1 scan event database to get initial frequent itemset L1

2 i = 1, j = 2, n = 1
3 EventMerge (Ln) :
4 for Xi ∈ L1 do
5 for Xj ∈ L1 && j > i do
6 generate new candidate itemsets R = Xi ∪Xj

7 Tidsets (R) = Tidset (Xi) ∩ Tidset (Xj),
where Tidset (Xi) and Tidset (Xj) are colums
A (:, i) and A (:, j) in truncated XSRM

8 if |Tidset (R)| > smin

then i = i+ 1, j = j + 1, else break;
9 Ln+1 = Ln ∩R
10 if n 6 k, then EventMerge (Ln+1)

XSRM generated in a certain time can be taken
out for covert channel detection adequately. So
it is very suitable for this scheme to use the
idea of partitioning, pruning, and recombina-
tion with frequent item set mining.

Practical operations are as follows. We an-
alyze each small scale XSRMs during a cer-
tain period of time (such as every 10s), rather
than wait for a long time to generate a whole
large XSRM. However, the partitioned frequent
itemsets generated in the XSRM within a cer-
tain period of time are not totally necessary
for global analysis. In other words, they con-
tain some noisy data. Therefore, we learned
from the classical Apriori algorithm, using a
priori nature in our algorithm, add in a prun-
ing step to remove some useless candidate fre-
quency itemsets. After mining some of small
XSRMs with the threshold minimum support,
we cut the frequent itemsets obtained from the
next XSRM according to the previous ones.
Deleted objects are those that have not oc-
curred in the previous blocks. Ultimately, we
obtained the global results by merging all local
frequent itemsets.

According to our algorithm, firstly, we scan
the same the events within a predetermined
time window, counting the itemset number

10

which is denoted as q. Then calculate the inter-
section of the frequent n itemsets and do the
trimming for generating frequent n + 1 item-
sets. Iterate those steps until only one itemset
remains. When determining the minimum con-
fidence threshold cmin, where cmin = k/q, we
can set an appropriately high cmin to reduce
the false negative rate. Meanwhile, in terms
of detailed matching rules for covert channels,
minimum support threshold smin can be suit-
ably large to reduce the false positive rate. The
procedures are shown in Algorithm 2.

4.4.2 Rule construction

After merging the suspicious events, we need
proceed our exploitation detection manually by
using various analysis approaches. However,
manual analysis will cause out of service, which
is not allowed in cloud business model. Accord-
ingly, automatic detection must be included in
our solution. To achieve that goal, some defi-
nitions are given as follows.
Definition 6 Sub-rule

Each sub-rule is written in accordance with
the format, and represents a restriction for
some attributes. The BNF-like Form of a sub-
rule is as follows:
sub-rule = ruleHeader(“ruleOptions");
ruleHeader = action type Ph Pl ;
action = (“pass”,“alert”,“activatedBy”,“revert");
ruleOption = (keywords“:”StringValue“;”) * ;
keywords = (general, attribute, processing);
general = (metadata, VMid, Pid, reference

*);
attribute = (CPULoad, memoryAccess,

shareMemoryRequest, others);
processing = (countFunc, frequencyCalc-

Func, expectationCalcFunc, entropyCalcFunc,
others);
Definition 7 Matching Rule
rulei = { subrulei,1 ∩ subrulei,2 ∩ ... ∩

subrulei,n }
Definition 8 Rules Set

Rules = { rule1, rule2, ..., rulen }

4.4.3 Event flow matching

The procedure of event flow matching com-
prises a series of steps of calculating the at-
tributes in each event and matching the rules
with the result (in Figure 3). After acquiring
the concise event flow data, we made use of
well-defined rules to match the attribute key-
words. A covert channel may correspond to
multiple rules. Thus, when rules are matched
and triggered, the rule-matching module (de-
tailed in Section 5.3) generates a corresponding
alarm.

E1
e1,e2,e4,e8

matches for rn

matches for r2

matches for r1

E2

En

Y

e3,e9

... ...

e5,e7

...

eventList

eventList

eventList

eventList

Event

flow

file
E

Separate by eventFlowType
Y

Y

Y

N

N

N

Figure 3: Event flow matching procedures

When matched, the assertion consists of two
parts: the conditions (referred to them as
LHS, left-hand side) and conclusions (referred
to them as RHS, right-hand side). The match-
ing algorithm 3 for detection is as follows:

Table 3: Event flow matching algorithm
Input: event flow file, Rules
Output: Threat Event Set E
1 scan the event flow file and separate all event flows

into different sets by eventF lowType
2 calculate the total number n of all the event flow sets
3 i = 1
4 for ∀rule ∈ Rules, do
5 for subrule in a rule, do
6 for eventList in an event flow set, do
7 for ∀e ∈ eventList, do
8 ∀attribute in e, if LHS (attribute) == RHS

then add e into threat event set Ei

9 i = i+ 1
10 if i > n, then E = E1 ∩ E2 ∩ ... ∩ Ei, break;

11

5 Implementation

Based on the above design, we implemented a
prototype system on Xen. And we used a open
source cloud platform - OpenStack - to man-
age virtual machines. The prototype consists
of five attachable modules: the event logging
module, the host information gathering mod-
ule, the file cleansing module, the event merg-
ing module, and the rule-matching module to
the covert channel. The logging and monitor-
ing module exists in the VMM level while the
others exist in the user space of Dom0.

We made these modules into the plug-ins,
and they are deployed on our customized Open-
Stack. Through this way we can effectively
reduce the software execution time. Deploy-
ment and management also becomes easier,
and users can use different drivers based on
their own needs, or disable specific features by
shutting down certain plug-ins.

This also gives cloud developers a way to ex-
tend the system, by means of the plug-in im-
plementation hook. Developers can define the
system extension point in advance, and new
backend logic. And the use of this mechanism
to expand the system is completely indirect,
so we do not need to modify the source code
of original system. Moreover, plug-ins can be
developed and published separately from the
cloud system. Here are some key modules.

5.1 Event logging module

The implementation of the monitoring and
logging module is based on both the para-
virtualization and the HVM infrastructure of
Xen (in Figure 4). By default, guest VM in
commodity clouds is always equipped with PV
driver no matter whether it is a HVM. So we
do not distinguish the ways how a VM imple-
ment its event logging module. This module
is used to record the deterministic and nonde-
terministic events in the systems. Precisely, it

is responsible for parsing all the commands of
guest-VMs which perform the operations such
as initialization, startup, and halt. And it is
also responsible for recording the key value of
the performance counter and gathering the tar-
get interrupt events.

The event logging module creates a virtual
device. As a character device in Linux, it owns
universal system call interfaces such as read,
write, IOCTL, etc. This device is actually an
agent used to transmit data and commands
between user space and the Xen hypervisor,
which means all kinds of data will be cached
in it. In addition, the device is in charge of
registering virtual interrupts callback function
and binding the relevant interfaces to read the
DomU’s information in Xenstore. (The infor-
mation includes the event channel ID and the
reference of the shared ring.)

This module also exports standardized Xen
Hypercall interfaces to user space. The dae-
mon of the interfaces accepts the virtual inter-
rupt transferred from the log processing unit
and calls the callback functions to read the log
data from the virtual device mentioned above.
The daemon will use multithreading in imple-
mentation to process the users’ commands and
read the log in parallel.

If the VM is just a HVM without a PV
driver, to perform event acquisition we must
intercept a variety of events during the VM
Exit/VM Entry interval. Those events includ-
ing hypercalls, I/O requests, external inter-
rupts and various exceptions all can be cap-
tured from the current Virtual Machine Con-
trol Structure (VMCS). More specifically, Xen
provides the trapping and emulating functions
to interfere VM’s behaviors by set the specific
bitmap of VMCS. Therefore, we leverages and
modifies those functions to achieve our goal.
For instance, to intercept a hypercall, we just
overloads the dedicated function which is used
for Xen handling the DomU’s VMCALL in-
struction.

12

It is necessary to specify how to intercept
a guest-VM’s exceptions. When the guest-OS
executes the INT command it must access the
IDT table. In this paper, the method we used
to intercept exceptions is by setting the limit
value of the IDT. When the processor executes
the INT command, the limit value of the IDT
will be checked first, to see whether the vector
is read by the processor. If it is exceeded, the
#GP exception is generated. Consequently we
only need to set a relatively smaller limit value,
to force the guest-OS to cause a #GP abnormal
VM Exit for follow-up analysis.

Performance Counter Hardware Layer

Xen VMM

Dom0

Kernel Space

Dom0

User Space

Log recording

Interception

sub-module

Log buffer

Backend Driver

Frontend

Driver

Log Cache

Event channel

IOCTL

interface

User instruction

receiver thread

Main Thread

WRITE interface

Event channel

(virtual interrupt)

The core of

processing unit

Virtual Device

Log file

VMCALL/VMFUNC

Instruction for HVM

Figure 4: The structure of event logging mod-
ule

5.2 Host information gathering
module

All operations in information gathering module
are based on cloud platforms, rather than on
guest-VM. That makes the scheme more global
and more transparent, and suitable for the ap-
plication environment.

The information gathering module collects
data based on VMI mechanism with some APIs
such as libVMI [40] and LibVirt [41]. For ex-
ample, we used XenAccess to learn from some

information about the hardware environment,
and we captured all guest-VMs’ process lists by
using libVMI. By using those VM Introspec-
tion tools, we can access the internal data of
guest-VMs without their knowledge of VMM’s
interference.

The collected data will be unified in designed
XML format. Meanwhile, by using crawler
script, host information gathering module ob-
tains the log files and the security configuration
files from the dedicated node in cloud platforms
(such as OpenStack controller node, VMWare’s
vCenter and IBM pSeries’ HMC).

The information (the metadata attribute
of the event) to be gathered consists of
two parts: firstly, changes in guest-VM’s
log system and configurations, such as the
modification to the firewall rules, the addi-
tion/deletion/modification of the user’s priv-
ilege, and whether the service is opening or
close. Secondly, the changes in hardware envi-
ronment, such as the CPU load of the platform,
the average access time to cache and memory,
and the intervention to the skb-related process
(in network devices).

5.3 Rule-matching module

The main goal of rule-matching module is to
process the attributes and to match the event
flow with the predefined rules.

The initial rules are made according to the
specific features of the covert channel, and
new rules can be established by administrators,
users, expert systems, or knowledge reposito-
ries. With the warning feedback mechanism,
the rule-matching module can modify the rules
and add the improved rules to the rule base.

The policy-script Engine is the core of the
rule-matching module, and the Engine’s core is
the policy-script Interpreter and the attribute-
specific Analyzers. The policy-script Inter-
preter is used to parse the regular expressions
in the rules; the attribute-specific Analyzers

13

invoked by the attribute-specific handler will
match the formative events with the rule se-
quences in the rule base, and decide what to
do next after comparison. Once the engine
alerts, it will export the corresponding under-
lying covert channel information as a warning
and suggest the users to repair it. By the way,
we introduced two automatic sub-detection en-
gine (detailed in Section 6), among which, one
can detect the covert channels based on CPU,
Cache, or Memory bus, while another can de-
tect the covert channels based on shared mem-
ory.

6 Evaluation

We performed the evaluation in the following
ways: verifying the correctness and effective-
ness of our method, and measuring the perfor-
mance penalty of our implementation.

6.1 Testbed

Our testbed includes a Sugon TC4600 rack-
mounted server with ten blades which each has
two 2.50 GHz Intel Xeon E5-2670 V2 CPU
and16*8 GB of RAM.

We established OpenStack as the open
source cloud computing test platform on our
testbed, and deployed Xen, VMWare and
Hyper-V on each compute nodes. We started
up three virtual machines on each physical host
and their OS are Windows XP, Ubuntu 12.04
LTS, and MintOS 13.

6.2 Correctness and effectiveness
verification

6.2.1 Sample covert channel exploita-
tions and experiment result

We implemented three practical and malicious
channel exploitations as samples to examine
our framework.

A. Traditional cache-based covert channels
hidden in hyper-threading systems can perform
well, and have a high bandwidth. However, in
a virtual environment, their transmission rate
is far less than before. That is the consequence
of the time uncertainty caused by virtual ad-
dress translation. Therefore, if you want to
transfer information, you have to use a special
access violation method. Wu [33] found an ap-
proach to bring about a kind of special memory
bus deadlocks, which will lead to a global ac-
cess conflict. Memory access latency appears,
which can be used to construct covert channels.
Likewise, we designed a special atomic opera-
tion to make a covert channel, too. When the
malicious process accesses two unaligned cache
lines, the atomic operation on cache lines can
only be ensured by the lock of memory bus,
but not the lock of cache. In this case, all
the virtual machines on the physical platform
cannot access memory, and then malicious Re-
ceiver knows that the Sender is passing on a
message.

B. Page copy is one of shared memory mech-
anisms in Xen. Sensitive information can be
hidden in the parameter of the page copy com-
mands [35]. It is achieved by assigning the
structure hvm_grant_table_op_t to the Hy-
percall hvm_grant_table_op. The structure
contains required parameters for the page copy
function. The grant reference or pseudo physi-
cal addresses are designated by the system, and
cannot be tampered by users. However, the
two operands, offset and the data length, are
specified by the user. In that way, attackers can
hide the sensitive information into these two
parameter fields in covert communication while
the page copy is legitimate through public
channel. Like this, malicious virtual machines
could leak sensitive information furtively. For
example, when malicious sender VM notifies
the receiver VM that the offset address of sub-
pages in entire page is 0x0111, the receiver can
get a binary bit string “000100010001”.

14

C. In virtualization environment, physical
CPU cores are assigned to each user’s processes
by vCPU scheduling. However, it is easy to be
exploited by attackers in covert communication
[4]. The scheduler in physical machine usually
adopts the ‘credit’ algorithm to assign the value
‘weight’ and the value ‘cap’ (the upper limit of
vCPU’s available time) to each vCPU in accor-
dance with their security levels. But when two
vCPUs have the same weight and cap value,
it is possible to build a covert channel. For
example, due to the scheduler algorithm, both
the sender and the receiver’s tasks will be di-
vided into several time periods. Each domain
performs the task with no coherence. When
one domain is executing its tasks, the physical
CPU is assigned to the vCPU which belongs to
the domain. Meanwhile, other domains are at
rest. So in other words, when the sender do-
main yields the CPU at the time of rest, the
receiver domain is notified. This is the way to
use CPU load to form a message. The specific
exploitation procedures are as follows. Firstly,
the sender executes some loop script, and in-
serting some intervals every once in a while;
Then the receiver confirms that the increase in
the CPU load which is derived from the sender.
After the receiver confirms the CPU load in-
crease, it can transfer the bit to some spyware
outside the cloud and sleep for a short while.

6.2.2 Example sub-detection engines

For identifying some generic covert channels
in cloud environment, we realized three typi-
cal sub-detection engines on the basis of the
framework proposed.

Sub-detection Engine 1: Detecting timing
channels based on cache or memory bus con-
tention.

Covert channel exploitations based on cache
or memory bus usually go with abnormal mem-
ory access events. Firstly, the cache load will
be much higher than normal value when such

covert channels are active. At the same time,
we can easily get abnormal memory access
events from the logging and monitoring mod-
ule, even some cloud platforms (such as vCen-
ter) have already provided a blocking param-
eter that counts the memory bus contentions
and systematic blocking times. So it can be
identified as a potential threat when these spe-
cial memory access operations are more than
the threshold value during a certain time.

Example rule: alert MemoryCC allEventN-
ode (memoryBlockNumber > threshold) AND
alert CacheCC allEventNode (CachePayload-
Expectation � noiseThreshold)

Sub-detection Engine 2: Detecting storage
channels based on sharing memory.

Covert channels based on sharing memory
often transmit data by modifying parameters
of the authorized operations. We can find po-
tential covert channels by surveying operations
of authorized access and page copy. Observ-
ing whether the request memory sharing oper-
ations happened too frequently, extracting off-
set and data length, and comparing the shar-
ing pages with invoking command could check
if there is a storage channel exploitation. Be-
cause the length of the sub-page must be less
than or equal to the difference between length
of the page and initial address of the sub-page,
thus the length of the variable as grant op-
eration parameter is not able to be too long.
Therefore, the quantum of covert data is ex-
tremely tiny in a one-time transfer, and that is
why the request operation is frequent. So we
can define a rule as follows.

Example rule: alert inter-VMCC from VMid
to VMid (gnttabOP.lenth > pagesize) AND
alert MemoryCC allEventNode (times of share-
MemoryRequest > threshold value)

Sub-detection Engine 3: Detecting timing
channels based on vCPU scheduling and CPU
loads.

Covert channel based on CPU loads must be
built on the same CPU core. The sender and

15

Table 4: Usefulness of specific attributes in detecting covert channels

Detecting
Attributes Cache hit Memory access CPU load Shared memory Req Params of gnttab

Covert channel A X X
Covert channel B X X X
Covert channel C X

Table 5: Overall detection results
TP TN FP FN

1 587 30 0 13
2 590 29 1 10
3 590 29 1 10
4 592 30 0 8
5 597 28 2 3

Average 590.2 29 1 9.8
Rate 0.9837 0.9667 0.0333 0.0163

the receiver transmit bit flow by executing pro-
gram loop repeatedly and measuring the exe-
cution running time. When stealing the infor-
mation, the attacker has no need to consider
the high CPU occupation ratio. But from the
perspective of an external observer, when exe-
cuting program loops, the sender also occupies
almost full load of one CPU core. Therefore,
we can establish our detection based on moni-
toring CPU loads.

We can set a threshold, for example, 75%.
When the oc-cupation rate is more than the
threshold value, we can record it as ‘1’. On
the other hand, if the rate is less than 75%, we
record it as ‘0’. From this, we can get a series
of numbers by monitoring CPU utilization con-
tinuously. If there is a regular change of this
string and at the same time we actually do not
run any program, then we can decide that our
virtual machine suffered an attack. Finally, we
can locate the relevant processes and ring the
alarm promptly.

Example rule: alert inter-VMCC from
VMid to VMid (vCPU-id.AffinityCPU =
vCPUid.AffinityCPU AND Operation = alter-
nate) AND alert CPUCC allEventNode (cpu-
Load > threshold)

6.2.3 Test result and analysis

We designed various rules for sub-detection en-
gines, and set the time window (TW) as 10s.
Malicious sender’s program was deployed on
MintOS while sub-detection engines are de-
ployed on Ubuntu with Xen hypervisor. To
help lower error rates, we encode each signal of
covert data as opposed to the entire bit string.
This localizes the effect of bit errors (i.e. chan-
nel noise causing an erroneous change in signal
assertion). To observe the effect and the use-
fulness of specific attributes such as memory
access interval and CPU affinity, we run multi-
ple tests for a long time, as shown in Table 4.
After rectifying the threshold value appropri-
ately, alarms and alarm logs of covert channel
A and B were successfully attained.

Table 5 shows that in the five groups of ex-
periments, 630 samples (600 normal commu-
nication samples, 30 covert channel samples)
were repeated 5 times. The average detection
error number is 9.8, average missing number is
1.0. It is obvious that the false positive rate is
less than five percent, and false negative rate is
extremely trivial, almost less than two percent.
In other words, our detection scheme can find
almost all the behaviors of suspicious covert
channels. Hence we mainly focus on the false
alarm rate.

Figure 5 and Figure 6 show the false pos-
itive rate of the detection for covert chan-
nel exploitations A and B after each sub-rule
is added into the sub-engines. The above-
mentioned VM event log maintains much useful
data about the hardware status, such as CPU
load, cache hit/missing rate, and memory ac-

16

Table 6: Comparison of different detection schemes

Methods
Channel types CPU load-based Cache based Shared memory-based Others

Active traffic analysis [19] X
C2Detection [21] X

Detection with TDR [23] X X
BusMornitor [42] X
Our framework X X X X

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Experiment Times

F
al

se
 P

o
si

ti
v

e
R

at
e

Gnttab_OP + share memory request

Gnttab_OP

share memory request

Figure 5: False positive rate of sub-detection
engine 1

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

Experiment Times

F
a
ls

e
 P

o
si

ti
v

e
 R

a
te

Memory block number + Expectation + Entropy

Memory block number

Expectation

Entropy

Figure 6: False positive rate of sub-detection
engine 2

cess frequency. That is because all the actions
in the upper layer can be mapped to the un-
derlying hardware event. In addition, we can
get all shared memory request and Parameters
of all hypercalls from logs of Xenstore and logs
obtained by LibVirt API.

Every time an attribute is mixed in, the false
positive rate will decrease significantly. Thus,
as long as setting appropriate rules, the more

detailed rules are, the better the result is. Fur-
thermore, it indicates that our scheme is effec-
tive by inducing event association analysis to
detect the attacker’s behavior.

The experiments also show that the biggest
advantage of this scheme compared to other
single detection schemes is that we can detect
more types of covert channels. The following
Table 6 compares the channel types covered by
this scheme and others in cloud or virtualiza-
tion environments.

6.3 Performance analysis

In order to see the performance overhead of
the prototype system designed in this paper,
we measured the system resource consumption
of the XSRM algorithm and the detection mod-
ules.

6.3.1 Performance on our improved
event association algorithm based
on XSRM

It is obvious that XSRM’s sizes are various in
different time windows. Figure 7 and Figure 8
show the performance (execution-time of event
analysis for XSRMs) of different algorithms at
different minimum support (smin). Our algo-
rithm is significantly better than the classical
Apriori algorithm, and the processing speed of
ours is nearly twice faster than the Eclat algo-
rithm.

When m, the amount of rows in XSRM, ap-
proaches 105 order of magnitude, the space oc-
cupied by the shared resource matrix will reach

17

Figure 7: Execution time of three algorithms
for XSRMs generated in 5s

Figure 8: Execution time of three algorithms
for XSRMs generated in 15s

nearly MB level. Current memory conditions
may not meet the need. So this algorithm
does not apply to the data set of very large
mining projects. Nevertheless, when the data
set is not cumbersome (less that MB magni-
tude), it is very worthwhile to exchange the
large amount of time for relatively cheap com-
puting resources.

6.3.2 Performance of the prototype

In order to test the performance of our scheme,
we run the two sub-detection engines respec-
tively. Because the sub-engine 3 itself relies on
CPU scheduling and CPU utilization to per-
form the inspection, so we have no need to test
its performance about CPU. More importantly,

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

Time (s)

C
P

U
 O

cc
u

p
an

cy
 R

at
io

Baseline

Engine for cache-based timing CC

Engine for share memory-based storage CC

Both Engines

Figure 9: Sub-engines’ overheads

CPU usage is not accurate enough when a CPU
load-based covert channel is running. Figure 9
indicates the Xen dom0’s CPU load in different
situations. Every average is for ten runs.

7 Conclusion

Our work focuses on eliminating the potential
threat of covert channel in cloud environment
(virtual environment), and takes the differences
between virtualization infrastructure and tra-
ditional computing environment fully into con-
sideration. The method traverses and searches
possible covert channels by combining shared
resources matrix method with event associa-
tion analysis.

We put forward a comprehensive and effec-
tive covert channel detection method in cloud
computing environment. It is novel because
our method can identify covert channel ex-
ploitations by recognizing their behaviors. In
addition, previous studies mostly aimed at
unique channel. In contrast, our framework
can do well in detecting most covert channels
in cloud from the perspective of resources shar-
ing.

An algorithm based on shared resources ma-
trix method and event association analysis is
proposed to uncover the covert channel by sniff-
ing attackers’ intents. Because covert chan-
nels are always well-constructed, utilizing this

18

method into detection can fits the practical sit-
uation better. Moreover, we proved that the
more we introduce appropriate attributes, the
better our method can do.

At the same time, our work is a first step
towards using event association analysis to de-
tect covert channel in cloud computing envi-
ronment. We improved the original shared re-
sources matrix algorithm, and used XSRM for
preprocessing the event logs and security con-
figuration files. It can reduce the loads of con-
structing a huge shared resources matrix. Dif-
ferentiating the target device on which events
happened and providing important event in-
formation for analysis are also able to prevent
administrators from being overwhelmed by a
great mass of false alarms.

Traditional covert channel detection schemes
always rely on human intervention. In order
to avoid the tedious manual analysis and the
state space explosion, information flow analysis
method is not used in the proposed automatic
framework. The programs can run on a cloud
platform in real time with few overheads, and
can assess the state of cloud environment trans-
parently. In addition, our solution is deployed
on the cloud platform as plug-ins, which makes
the cloud more scalable and easier to manage.

Acknowledgement

This work was partially supported by the
National High-tech R&D Program of China
(“863” Program) (Grant No. 2015AA016004),
the National Natural Science Foundation of
China (Grant No. U1536204, 61373169,
61303213), the Priority Academic Program De-
velopment of Jiangsu Higher Education Insti-
tutions (PAPD) and Jiangsu Collaborative In-
novation Center on Atmospheric Environment
and Equipment Technology (CICAEET).

References
[1] Zissis D, Lekkas D. Addressing cloud comput-

ing security issues. Future Generation com-
puter systems 2012; 28(3):583–592.

[2] Jin H, Xiang G, Zou D, Wu S, Zhao F, Li M,
Zheng W. A vmm-based intrusion prevention
system in cloud computing environment. The
Journal of Supercomputing 2013; 66(3):1133–
1151.

[3] Bellovin SM. Virtual machines, virtual secu-
rity? Communications of the ACM 2006;
49(10):104.

[4] Okamura K, Oyama Y. Load-based covert
channels between xen virtual machines. Pro-
ceedings of the 2010 ACM Symposium on Ap-
plied Computing, ACM, 2010; 173–180.

[5] Salaün M. Practical overview of a xen covert
channel. Journal in computer virology 2010;
6(4):317–328.

[6] Ristenpart T, Tromer E, Shacham H, Savage
S. Hey, you, get off of my cloud: exploring
information leakage in third-party compute
clouds. Proceedings of the 16th ACM confer-
ence on Computer and communications secu-
rity, ACM, 2009; 199–212.

[7] Zhang Y, Juels A, Reiter MK, Ristenpart T.
Cross-vm side channels and their use to ex-
tract private keys. Proceedings of the 2012
ACM conference on Computer and communi-
cations security, ACM, 2012; 305–316.

[8] Zhang Y, Juels A, Oprea A, Reiter MK. Home-
alone: Co-residency detection in the cloud
via side-channel analysis. security and Privacy
(SP), 2011 IEEE Symposium on, IEEE, 2011;
313–328.

[9] Kim T, Peinado M, Mainar-Ruiz G. Stealth-
mem: system-level protection against cache-
based side channel attacks in the cloud. Pre-
sented as part of the 21st USENIX Security
Symposium (USENIX Security 12), 2012; 189–
204.

[10] Varadarajan V, Ristenpart T, Swift M.
Scheduler-based defenses against cross-vm
side-channels. 23rd USENIX Security Sympo-
sium (USENIX Security 14), 2014; 687–702.

19

[11] Moon SJ, Sekar V, Reiter MK. Nomad:
Mitigating arbitrary cloud side channels via
provider-assisted migration. Proceedings of the
22nd ACM SIGSAC Conference on Computer
and Communications Security, ACM, 2015;
1595–1606.

[12] Lampson BW. A note on the confinement
problem. Communications of the ACM 1973;
16(10):613–615.

[13] Lipner SB. A comment on the confinement
problem. ACM SIGOPS Operating Systems
Review, vol. 9, ACM, 1975; 192–196.

[14] Volpano D, Irvine C, Smith G. A sound type
system for secure flow analysis. Journal of
computer security 1996; 4(2-3):167–187.

[15] Haigh JT, Kemmerer RA, McHugh J, Young
WD. An experience using two covert channel
analysis techniques on a real system design.
Software Engineering, IEEE Transactions on
1987; (2):157–168.

[16] Kemmerer RA. Shared resource matrix
methodology: An approach to identifying
storage and timing channels. ACM Transac-
tions on Computer Systems (TOCS) 1983;
1(3):256–277.

[17] Tsai CR, Gligor VD, Chandersekaran CS. On
the identification of covert storage channels in
secure systems. Software Engineering, IEEE
Transactions on 1990; 16(6):569–580.

[18] Qing S, Shen C. Design of secure operating
systems with high security levels. Science in
China Series F: Information Sciences 2007;
50(3):399–418.

[19] Bates A, Mood B, Pletcher J, Pruse H, Valafar
M, Butler K. Detecting co-residency with ac-
tive traffic analysis techniques. Proceedings of
the 2012 ACM Workshop on Cloud computing
security workshop, ACM, 2012; 1–12.

[20] Varadarajan V, Zhang Y, Ristenpart T, Swift
M. A placement vulnerability study in multi-
tenant public clouds. 24th USENIX Security
Symposium (USENIX Security 15), 2015; 913–
928.

[21] Wu J, Ding L, Wu Y, Min-Allah N, Khan SU,
Wang Y. C2detector: a covert channel detec-
tion framework in cloud computing. Security
and Communication Networks 2014; 7(3):544–
557.

[22] Dunlap GW, King ST, Cinar S, Basrai MA,
Chen PM. Revirt: Enabling intrusion anal-
ysis through virtual-machine logging and re-
play. ACM SIGOPS Operating Systems Re-
view 2002; 36(SI):211–224.

[23] Chen A, Moore WB, Xiao H, Haeberlen A,
Phan LTX, Sherr M, Zhou W. Detecting
covert timing channels with time-deterministic
replay. 11th USENIX Symposium on Oper-
ating Systems Design and Implementation
(OSDI 14), 2014; 541–554.

[24] Aviram A, Hu S, Ford B, Gummadi R. Deter-
minating timing channels in compute clouds.
Proceedings of the 2010 ACM workshop on
Cloud computing security workshop, ACM,
2010; 103–108.

[25] Wray JC. An analysis of covert timing chan-
nels. Journal of Computer Security 1992; 1(3-
4):219–232.

[26] Li P, Gao D, Reiter MK. Stopwatch: a cloud
architecture for timing channel mitigation.
ACM Transactions on Information and Sys-
tem Security (TISSEC) 2014; 17(2):8.

[27] Askarov A, Zhang D, Myers AC. Predictive
black-box mitigation of timing channels. Pro-
ceedings of the 17th ACM conference on Com-
puter and communications security, ACM,
2010; 297–307.

[28] Zhang D, Askarov A, Myers AC. Predictive
mitigation of timing channels in interactive
systems. Proceedings of the 18th ACM confer-
ence on Computer and communications secu-
rity, ACM, 2011; 563–574.

[29] Lina W, Han-jun G, Wei L, Yang P. Detecting
and managing hidden process via hypervisor.
Journal of Computer Research and Develop-
ment 2011; 48(8):1534–1541.

[30] Tan Y, Nguyen H, Shen Z, Gu X, Venkatra-
mani C, Rajan D. Prepare: Predictive per-
formance anomaly prevention for virtualized

20

cloud systems. Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Con-
ference on, IEEE, 2012; 285–294.

[31] Zhai J, Liu G, Dai Y. Detection of tcp covert
channel based on markov model. Telecommu-
nication Systems 2013; 54(3):333–343.

[32] Kadloor S, Kiyavash N, Venkitasubramaniam
P. Mitigating timing based information leak-
age in shared schedulers. INFOCOM, 2012
Proceedings IEEE, IEEE, 2012; 1044–1052.

[33] Wu Z, Xu Z, Wang H. Whispers in the hyper-
space: high-bandwidth and reliable covert
channel attacks inside the cloud. IEEE/ACM
Transactions on Networking (TON) 2015;
23(2):603–614.

[34] Wu J, Ding L, Wang Y, Han W. Identifica-
tion and evaluation of sharing memory covert
timing channel in xen virtual machines. Cloud
Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, IEEE, 2011; 283–291.

[35] Gao H, Wang L, LiuW, Peng Y, Zhang H. Pre-
venting secret data leakage from foreign map-
pings in virtual machines. Security and Pri-
vacy in Communication Networks. Springer,
2011; 436–445.

[36] Hovhannisyan H, Lu K, Yang R, Qi W, Wang
J, Wen M. A novel deduplication-based covert
channel in cloud storage service. 2015 IEEE
Global Communications Conference (GLOBE-
COM), IEEE, 2015; 1–6.

[37] Garfinkel T, Rosenblum M, et al.. A virtual
machine introspection based architecture for
intrusion detection. NDSS, vol. 3, 2003; 191–
206.

[38] Liang J, Zhao X, Li D, Cao F, Dang C. Deter-
mining the number of clusters using informa-
tion entropy for mixed data. Pattern Recogni-
tion 2012; 45(6):2251–2265.

[39] Lee W, Stolfo SJ, et al.. Data mining ap-
proaches for intrusion detection. Usenix secu-
rity, 1998.

[40] libVMI API. http://libvmi.com/api.

[41] libvirt virtualization API. http://libvirt.
org/html/libvirt-libvirt-event.html.

[42] Saltaformaggio B, Xu D, Zhang X. Busmoni-
tor: A hypervisor-based solution for memory
bus covert channels. Proceedings of EuroSec
2013; doi:10.1.1.299.2497.

21

http://libvmi.com/api
http://libvirt.org/html/libvirt-libvirt-event.html
http://libvirt.org/html/libvirt-libvirt-event.html

	1 Introduction
	2 Related work
	3 Covert channels in cloud
	3.1 Clocks and events
	3.2 Events and covert channels
	3.3 The perspective of observers
	3.4 Threat assumption in cloud

	4 A novel covert channel detection method in cloud computing environment
	4.1 Framework overview
	4.2 Information gathering
	4.2.1 Event recording

	4.3 Extended Shared Resources Matrix
	4.4 Matching with association
	4.4.1 Event merging based on association analysis
	4.4.2 Rule construction
	4.4.3 Event flow matching

	5 Implementation
	5.1 Event logging module
	5.2 Host information gathering module
	5.3 Rule-matching module

	6 Evaluation
	6.1 Testbed
	6.2 Correctness and effectiveness verification
	6.2.1 Sample covert channel exploitations and experiment result
	6.2.2 Example sub-detection engines
	6.2.3 Test result and analysis

	6.3 Performance analysis
	6.3.1 Performance on our improved event association algorithm based on XSRM
	6.3.2 Performance of the prototype

	7 Conclusion

