
IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 1

Active Warden Attack: On the (In)Effectiveness
of Android App Repackage-Proofing

Haoyu Ma, Shijia Li, Debin Gao, Daoyuan Wu, Qiaowen Jia, Chunfu Jia∗

Abstract—App repackaging has raised serious concerns to the Android ecosystem with the repackage-proofing technology attracting
attention in the Android research community. In this paper, we first show that existing repackage-proofing schemes rely on a flawed
security assumption, and then propose a new class of active warden attack that intercepts and falsifies the metrics used by
repackage-proofing for detecting the integrity violations during repackaging. We develop a proof-of-concept toolkit to demonstrate that
all the existing repackage-proofing schemes can be bypassed by our attack toolkit. On the positive side, our analysis further identifies a
new integrity metric in the Android ART runtime that can robustly and efficiently indicate bytecode tampering caused by either
repackaging or active warden attacks. By associating this new metric with two supplemental verification mechanisms, we construct a
multi-party verification framework that significantly raises the bar of repackage-proofing and identify conditions under which the
proposed framework could detect app repackaging without getting compromised by active warden attacks.

Index Terms—Android security, app repackage-proofing, active warden attack.

F

1 INTRODUCTION

Android has become the most popular operating system for
mobile devices [27]. Not surprisingly, the fact that Android
is favored all over the world also makes apps running on the
platform targets of malicious activities, among which app
repackaging is an important one. A typical app repackaging
adversary tampers with the internal logic of a victim app in
a way satisfying her malicious purposes, and then packages
the modified app and publishes it (as either a new app or
a mimic of the victim) such that unwitting users may be
lured into using it. Besides violating intellectual property
rights, app repackaging could also lead to a number of
collateral consequences, including depriving economic ben-
efits via compromised in-app purchases or advertisements
and allowing piggybacked malicious code to be executed.
An early study showed that 5% to 13% of apps were
plagiarisms in Android markets, and among 1,260 malicious
apps, 86% were propagated via app repackaging [12]. More
recent studies [1], [15] showed that more and more sophisti-
cated tricks from traditional desktop malware samples have
now emerged in app repackaging cases, including adding
hook code, hiding malicious payload within resource files,

• Haoyu Ma is with the School of Computing and Information Systems,
Singapore Management University, Singapore 188065, Singapore, and
also with the School of Cyber Engineering, Xidian University, Xi’an
710126, China. E-mail: hyma@xidian.edu.cn.

• Debin Gao is with the School of Computing and Information Systems,
Singapore Management University, Singapore 188065, Singapore. E-mail:
dbgao@smu.edu.sg.

• Shijia Li and Chunfu Jia are with the College of Cyber Science, and the
Tianjin Key Laboratory of Network and Data Security Technology, Nankai
University, Tianjin 300071, China. E-mail: sjli@mail.nankai.edu.cn,
cfjia@nankai.edu.cn.

• Daoyuan Wu is with the Department of Information Engineering,
Chinese University of Hong Kong, Hong Kong SAR, China. E-mail:
dywu@ie.cuhk.edu.hk.

• Qiaowen Jia is with the Institute of Software, Chinese Academy of
Sciences, Beijing 100190, China. E-mail: jiaqw@ios.ac.cn.

• (Corresponding author: Chunfu Jia.)

mounting obfuscation, and VM-aware mechanisms. App
repackaging today has also started to challenge machine-
learning-based detection techniques [7]. Meanwhile, con-
ventional countermeasure against the attack, namely off-
line repackage detection [5], [10], [33], [35], suffers from
shortcomings such as delayed detection, ineffectiveness
against obfuscation, and lack of capability in detecting
multi-generation repackaging [1], [14]. This suggests the
necessity of giving Android apps the ability of defending
themselves against the threat of repackaging.

Inheriting the idea of software tamper proofing, a
promising countermeasure against app repackaging is to
build Android apps with built-in capability of fighting off
integrity violations, called repackage proofing [16]. To the best
of our knowledge, existing repackage-proofing schemes (as
of early 2020) include Droidmarking [22], Stochastic Stealthy
Network (SSN) [16], AppIS [26], BOMBDROID [34], and
different variations of Self-Defending Code (SDC) [6], [28].
These schemes verify integrity metrics obtained through
well-defined Android APIs, including the public key used
for signing the protected app and digests/checksums that
can be read from or computed with certain key files. To
protect these verification routines, code protection tech-
niques, such as the self-decrypting code based on one-way
functions [23] and tamper-proofing mechanisms like the
guards network [4], were also adopted such that at least
part of their defensive capability would survive should the
attacker tries to compromise them by means of static and/or
dynamic program analysis. Table 1 presents a comparison
on the effectiveness of these repackage-proofing schemes
against various attacks.

Although not explicitly mentioned, existing repackage-
proofing solutions established their effectiveness upon an
assumption that interactions between protected apps and
the Android system can be trusted. However, some latest
developments occurred in the Android community had
raised practical challenges toward this assumption by tak-



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 2

TABLE 1: Comparing effectiveness of existing repackage-proofing schemes against different repackaging attack strategies.

Repackage-proofing scheme app repackaging
(vanilla)

app repackaging (assisted
by existing static analysis)

app repackaging (assisted by
existing dynamic analysis) Our attack

Droidmarking [22] effective effective partially disabled disabled
SSN [16] effective partially disabled disabled disabled

AppIS [26] effective partially disabled disabled disabled
BOMBDROID [34] effective effective partially disabled disabled

SDC [6], [28] effective effective partially disabled disabled

ing advantage of certain design features of Android. For
example, Android runtime works in the form of user-level
shared libraries, and interactions with the framework layer
utilize cached local proxies within each app’s own user
space. The recently emerging Android plugin technology [3],
[21], [29] has demonstrated a typical example of such chal-
lenges. Despite its original and benign motivations for hot
patching, reducing the released APK size, and etc., this
technology abuses the Android application framework to
intercept the communications between the “slaved” apps
and the system. In this paper, we systematically study the
impact of such API interception on the effectiveness of
app repackage-proofing. Unlike existing studies and industrial
reports on the security risks of Android plugin [17], [24], [36],
[37], our contribution is to highlight a long neglected attack
scenario where an Android app is maliciously modified to defeat
its built-in self-protecting mechanisms. More specifically, we
propose a new class of active warden attack that enables a
repackaged app to falsify known integrity metrics adopted
in the existing repackage-proofing schemes without root
privileges. Our experiments with attack demos suggest that
all existing repackage-proofing schemes are vulnerable to
this new attack.

On the defense side, our detailed understanding and
analysis of the active warden attack also enables us to
identify a new integrity metric in the Android ART runtime
which reflects an app’s bytecode integrity while being static
and consistent across app restarting, re-installation, and
system reboots. We identify the conditions under which the
proposed metric could detect app repackaging without get-
ting compromised by active warden attacks, and argue that
the proposed metric significantly raises the bar of repackage
proofing by making the proposed new attack detectable.
Furthermore, we introduce the native-level verification for
key API call routines to elevate our new metric into a multi-
party verification loop. The key idea is to utilize a carefully
selected composition of different integrity verification mech-
anisms to cover all app components as well as routines of
key API invocations, making it difficult for active warden
attacks to forge all metrics at the same time.

The rest of this paper is organized as follows. In Sec-
tion 2, we briefly introduce related work on app repackage
proofing and the active warden attack. Following that, in
Section 3, we present the general idea of our attack strat-
egy against repackage-proofing, and then present proof-of-
concept demos of this attack against all existing repackage-
proofing schemes. Next, in Section 4, we propose our multi-
party verification framework, and evaluate its effectiveness
with experiments and analyses. Finally, we discuss some
implications on our new verification framework in Section 5,
and conclude the paper in Section 6.

2 BACKGROUND

2.1 Repackage Proofing

Repackage proofing can be seen as a special application
of software tamper proofing specifically on Android apps.
So far, all existing repackage-proofing schemes verify the
integrity of a protected app by injecting additional verifica-
tion code into the app that performs integrity checks using
Android APIs or key files of the app:

• SSN [16] and BOMBDROID [34] measure an app’s
integrity by checking public key inside its certificate
via Certificate.getPublicKey, while the certificate
is retrieved via PackageManager.getPackageInfo.

• Droidmarking [22] instead sends out pre-stored certifi-
cate information to an external verifier (via an intent)
using startService such that the latter could check
whether the certificate it receives is authenticated.

• BOMBDROID further checks the code digests, which
are read from MANIFEST.MF.

• BOMBDROID, AppIS [26], and SDC [6] also verify the
checksums of code snippets, which require reading the
app’s compiled code files.

Some most recent works, namely BOMBDROID, SDC
and another variation [28], adopts self-decrypting code [23]
and decrypts its defense code snippets using checksums
of the protected app’s code. SDC has two schemes, one
of which constructs a customized Dalvik Virtual Machine
(DVM) to support extra Dalvik instructions for the SDC
decryption, while the other constructs “Twin SDC” to per-
form encryption (and thereafter decryption) recursively. To
identify crashes caused by incorrect decryption, both SDC
schemes rely on an external auditor app to check times-
tamps and decrypted code outputs from the SDC snippets.

Some other designs, such as those in AppIS, leverage
another conventional tamper-proofing framework known as
the guards network [4]. This is to build an interdependent
network consisting of multiple integrity detection and ab-
normal response components (called the guards), making
each individual guard potentially protected by some other
guards. To defeat such a guards network, attacks against it
need to disable all the guards together, which is difficult
due to the complexity of interdependencies built into the
network.

2.2 Active Warden Attack

Active Warden Attack (henceforth AWA for short) is better
known as an attack model against steganography [2]. The
concept was first described in the “Prisoners’ Problem”:
Alice and Bob are in jail and wish to hatch an escape
plan. Communications between them can only go through
the warden, Willie. If Willie discovers any suspicious in-
formation, the escape plan fails and Alice and Bob will be



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 3

thrown into solitary confinement [25]. Hence, Alice and Bob
must hide their ciphertext within some innocuous-looking
covertext. On the other hand, Willie has two strategies
against the potential conspiracy: transmitting while mon-
itoring the communication until abnormalities are detected
(but nothing more), or acting proactively to remove possible
covert messages while preserving their explicit meanings.
In the second scenario, Willie is referred to as an active war-
den. Essentially, AWA is a special man-in-the-middle attack,
and was included into the threat model against software
watermarking and fingerprinting [8] where the warden is a
program designed to fool the recognizer of such techniques.

3 AWARE: ACTIVE WARDEN ATTACK AGAINST
REPACKAGE-PROOFING

As mentioned in Section 1, the existing repackage-proofing
schemes were established on an implicit assumption: all the
inter-component communications injected to provide the defense,
e.g., API calls and intent-based IPCs, are assumed to be trusted.
However, we found this assumption to be faulty in real-
world practices due to the existence of various program
hooking techniques targeting both Android and Linux (on
which Android is built). We will demonstrate that build-
ing on such a flawed assumption puts existing repackage-
proofing schemes under the threat from AWA, which ends
up undermining their effectiveness significantly.

We hereby refer to the AWAs that are launched specifi-
cally for compromising repackage-proofing schemes as the
AWARE (Active Warden Attacks against REpackage proof-
ing). Note that although the underlying principles utilized
by AWARE are not necessarily new in the sense that they
have been applied in other application scenarios (e.g., hot
patching), we are the first to utilize them for a new attack of
defeating app repackage proofing and to propose the engi-
neering details realizing such an attack against all existing
repackage-proofing schemes.

3.1 Overview and Threat Model

Repackage proofing retrieves and verifies certain integrity
metric(s) of Android apps at runtime. Existing schemes
implemented their metric acquisition routines via two ap-
proaches: the API-based and the file-based integrity check-
ing (recall Section 2.1). Such routines, together with self-
decrypting code to obfuscate the defensive payload, formed
the root of trust for these schemes. Therefore, we show
the effectiveness of AWARE by explaining in detail how
the attack compromises both types of integrity checking
and tampers with program semantics protected by self-
decrypting code — should these key mechanisms be de-
feated, the existing repackage-proofing schemes would fail
due to the lost of trustworthy sources of integrity.

Figure 1 illustrates the basic idea of AWARE. Given
a victim app under the protection of existing repackage-
proofing schemes, the proposed attack injects an executable
payload, i.e., the warden module, into the app’s code sec-
tions. This warden is designed to take over the victim app’s
key interactions with Android system (or with an external
verifier app), feed bogus readings to integrity checks of the
embedded repackage-proofing scheme which rely on the

original code of the victim app

warden of AWARE

repackaged app

Android application framework

Linux standard libraries

: requesting an integrity metric

: intercepted interactions with external
: returning a bogus integrty metric

Fig. 1: The basic idea of AWARE.

compromised interactions, while preserving the semantics
and correctness of the victim app. Of course, as an enhanced
repackaging attack strategy, AWARE will also re-sign the
victim app using the attacker’s public key such that the
repackaged instance could pass Android’s signature veri-
fication during installation. We emphasize that AWARE is,
by all means, still an application-level attack, i.e., it works
entirely within the victim app’s sandbox and memory space
to forge communications with the Android runtime. It is not
capable of tampering with the latter directly, and it also does
not need to enslave the victim app as a plugin of another
master app to work properly.

Our attack works within the same threat model adopted
by the existing repackage-proofing schemes. We assume that

• both framework layer and Linux kernel/standard li-
braries of the Android system are unmodified; and

• neither the victim app nor the AWARE payload require
root privilege or any specific permissions.

In addition, we assume that AWARE is allowed to perform
offline/online analyses and to modify the victim app’s code
and data. That said, such analyses and modifications are not
assumed to be powerful enough to bypass program protec-
tion techniques such as code patching and obfuscation.

3.2 Deceiving API-Based Integrity Checking
Integrity verification mechanism. Most of the existing
repackage-proofing schemes perform integrity checks using
Android APIs [16], [22], [34]. Built on top of Linux, an im-
portant feature of Android is that many key components of
its application framework (e.g., ActivityManagerService
or AMS, and PackageManagerService or PMS) run as user-
level modules. When the app calls an API of such a system
component, the Binder object of that component needs to
be acquired and converted into an interface such that the
target API can be properly referenced. For performance
consideration, Android avoids frequent Binder acquisition
by caching a local proxy within the app’s user space for
each framework layer component to be used directly as its
interface.

Attack strategy of AWARE. The aforementioned local
proxies are maintained in the form of global variables
that can be easily modified by any component within the
same address space. An app could therefore overwrite these
proxies to redirect them to customized hooks (as illus-
trated in Figure 2), causing all IPCs between its own user
space and the application framework be intercepted and



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 4

Host app

Binder
local proxy

AWARE warden
(customized binder hook)

Internal Component

External
App

Android application framework

: in-app control/information flow : cross-component communication

Fig. 2: AWARE’s mechanism of compromising interactions
with the Android application framework.

manipulated. Note that this hooking technique has already
been leveraged in the implementation of Android plugin
toolkits (e.g., [3], [21] and [29]) to create phony system
service interface exposed to slaved apps — which exist in
the form of components of the plugin framework, similar
to the relationship between a repackage-proofing scheme
and an app being protected. Therefore, AWARE adopts this
application framework hooking to deploy its warden for
counterfeiting repackage-proofing metrics that rely on the
related APIs, including

• the public key certificate, adopted in both SSN [16] and
BOMBDROID [34]; and

• the metric-carrying intents sent out to third-party veri-
fiers as utilized in Droidmarking [22].

3.3 Deceiving File-Based Integrity Checking

Integrity verification mechanism. File-based integrity check
is another approach adopted in existing repackage-proofing
schemes [6], [26], [34]. Specifically, the protected app re-
trieves certain files of itself and then verifies the file in-
tegrity to infer its overall integrity status. As discussed in
Section 2.1, BOMBDROID verifies code digests of the app
(MANIFEST.MF) and checksums of code snippets (ahead-of-
time compiled Java methods) in addition to the app’s public
key. Similarly, AppIS [26] and SDC [6] adopt code checksum
verification for their integrity checks.

Attack strategy of AWARE. The “Achilles heel” of file-
based integrity verification is Android’s installation path
generation mechanism. Android 8.0 and subsequent ver-
sions enforce a security policy to format such paths accord-
ing to /data/app/〈packagename〉-〈SecRan〉==/, in which
SecRan is a random suffix. As the result, these directories
can no longer be assumed without looking up the app’s
ApplicationInfo.sourceDir field at runtime, which again
must be retrieved via PMS APIs. Therefore, by manipu-
lating PMS and all available file opening methods (e.g.,
Java classes File/FileInputStream, and C/C++ functions
fopen/open), AWARE could deploy a path wrapper to inter-
cept all requests of the victim app on acquiring its instal-
lation path or opening any files under that directory (see
Figure 3). Specifically,

• upon capturing a path acquisition request, the path
wrapper generates a fake SecRan and returns a bogus
APK path with the random suffix being replaced by the
forgery;

• upon capturing a file opening request, the path wrapper
first checks whether the target file path contains its

AWARE wardenFile-based
verification

System components

acquire
APK path

obtain
verification
target files

perform
verification

path wrapper

path wrapper

PMS

file
operation
interface

request request

real APK pathfake APK path

open file with
fake APK path open falsified file

falsified filefalsified file

Fig. 3: Our mechanism of intercepting and manipulating
file-based app integrity verifications.

bogus APK path, and if so, opens and returns the falsi-
fied file corresponding to the actual target (prepared in
advance).

Note that the bogus APK paths are indistinguishable from
repackage-proofing schemes because they are of the same
format as real APK paths, while the only information source,
i.e., PMS, is in control of the AWARE warden.

In most cases, AWARE’s falsified files are merely the
original version of those to be checked. An exception is
when counterfeiting integrity verification which read ahead-
of-time compiled code of Java methods as the metric. Exist-
ing work did not specify how exactly such code reading is
implemented, but to the best of our knowledge, two possible
ways could be used to accomplish such code acquisition.
The first approach is to obtain the app’s base.odex file1,
which is also placed under the app’s installation path (hence
this case is not exceptional). The second approach, on the
other hand, is to retrieve the linear address of base.odex by
accessing the app’s memory maps (provided in the system
virtual file /proc/self/maps), and then reading the content
of the memory sections allocated to the file. To deceive this
approach, a fake memory map alone is not enough. AWARE
needs to

1) load the victim app’s original code files (including
base.odex and other private libraries) into its address
space as heap objects; and then

2) return a forged /proc/self/maps (formatted in the
same way as an authentic memory map) via the hooked
file opening functions, in which addresses related to the
app’s real code files are replaced by those pointing to
the aforementioned heap objects.

To make sure that the fake memory map does not appear
abnormal due to suspicious offsets among sections, AWARE
may also need to reload some of the system libraries as
heap objects and use addresses of these objects instead of
the actual files in the fake memory map.

It’s worth mentioning that since AWARE’s file falsifying
works by taking over the Android file system interface
exposed to the repackaged app, any in-app integrity verifica-
tion strategies that rely on integrity of the file system would
also get defeated because an in-app file system checking
routine only sees what the AWARE’s warden shows (es-
pecially when it comes to information requested from the
Android framework). To given an example, an app could

1. Note that a third-party Android app indeed possesses the privilege
to access its own base.odex and base.vdex files.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 5

decrypt SDC

decrypt SDC

call mprotect

call mprotect

· · ·

· · ·

worker SDC

helper

SDC

mprotect

warden
dispatch

rewrite
worker SDC

Fig. 4: AWARE’s mechanism of compromising twin SDC.

try to detect AWARE by searching for potential bogus files
the attack may deploy via directory inspection; however,
once the app is taken over by AWARE, the attacker’s war-
den intercepts information regarding the app’s directory
structure and crop it according to the attacker’s interest,
thus hiding the existence of bogus files from the app’s
inspection. On the other hand, any out-of-app or third-party
directory inspection (e.g., that performed by a systems app)
would not be deceived by AWARE. We note that such out-
of-app inspection is outside the scope of this paper, and
the flexibility AWARE has in disguising any necessary fake
files as resource or temporary files would likely hinder such
detection ineffective.

3.4 Compromising Self-Defending Code

Self-defending mechanism. Different from strategies dis-
cussed in Section 3.2 and 3.3, SDC [6] employs self-
defending code with two schemes using a customized An-
droid DVM and a twin SDC structure to prevent its payload
from being compromised by potential adversaries (see Sec-
tion 2.1) — we focus on twin SDC given that DVM is already
obsolete. This design keeps the repackage-proofing logic,
i.e., the worker SDCs, under the protection of encryption
and obfuscation provided by the helper SDCs, making it
difficult to reveal or remove them during a repackage attack.

Attack strategy of AWARE. To attack the twin SDC
structure, AWARE exploits the fact that in order to modify a
user space code segment at runtime, SDC needs to switch its
memory pages to writable using mprotect and recover after
the modification. Therefore, AWARE hooks the invocation
procedure of mprotect and intercepts the second call to
this function made by the helper SDC (see Figure 4). This
second call to mprotect is a milestone indicating that an
SDC snippet has been decrypted but is not yet executed. The
AWARE warden could then rewrite the decrypted code at
this particular moment for inserting any malicious activity.
As for falsifying integrity measurements used as the key for
decrypting the SDCs, AWARE resorts to the same means
presented in Section 3.2 and 3.3.

There are also more practical goals that can be achieved
in the SDC tampering. For example, the warden could
erase the logging behavior in the decrypted code such that
even if an SDC segment causes a crash, the external SDC
auditor would still be unable to detect the anomaly. Such
SDC tampering could even evade the cross checking among
different SDC snippets: the AWARE warden could store an
SDC snippet before compromising it, and having the snippet
recovered by the injected payload (after the fact of malicious
tasks) to clean up the “crime scene”. Other SDC snippets

cannot detect this due to TOCTTOU (time of check to time
of use).

3.5 Proof-of-Concept Demonstrations
To the best of our knowledge, there is no working prototype
released by any of the previously proposed repackage-
proofing schemes [6], [16], [22], [26], [34]. Commercial apps
also rarely announce whether they have adopted protec-
tive techniques to defend against app repackaging or what
techniques they have adopted. In this section, we resort to
proof-of-concept demos to show the capability of AWARE
in undermining key mechanisms of repackage proofing
claimed in Section 3.2, 3.3 and 3.4.

We have constructed a proof-of-concept AWARE toolkit2

that injects a booter function of the AWARE warden class
into the victim app’s main activity to ensure that it gets
executed before any repackage-proofing component takes
control. This can be achieved by inserting the booter into
the app’s onCreate or attachBaseContext (if it is overrid-
den by the main activity) method. At runtime, the booter
initializes the warden class and invokes other methods of
it to hook the Android application framework as well as
other selected Java and native APIs, and thereby deploys the
interception and manipulation of key repackage-proofing
mechanisms.

We used Frozen Bubble, a FOSS (Free and Open Source
Software) app which can be found in both the F-Droid cat-
alogue3 and Google Play, as our subject app. We embedded
into the subject app

• an API-based integrity check which obtains the app’s
certificate via PackageManager.getPackageInfo, with
the API called via reflection (as in SSN),

• a file-based integrity check involving the standard rou-
tine of fetching the app’s base APK file (as in BOMB-
DROID),

• a twin SDC component built to protect a printf call
which outputs “Hello World!”.

The modified subject app was then repackaged with
changes to its UI (as shown in Figure 5) with an AWARE
warden embedded to compromise the aforementioned in-
tegrity checks and SDC component.

On compromising the API-based integrity checking, Fig-
ure 6.a shows the attack payload of our warden embedded
in the repackaged Frozen Bubble instance. Upon hook-
ing PMS, our warden intercepts its invocation handler and
checks whether the app is calling getPackageInfo and
obtaining its certificate (at line 29). It then replaces the cer-
tificate section in the PackageInfo object with a bogus one
(line 30 to 32). To better demonstrate the underlying details
of the attack, we also added a stack dumping command in
our warden, so that it outputs stack trace of the app upon
being executed. Figure 6.b shows a comparison between the
real and the bogus certificate, in which ./CERT-HOOK.RSA
is our forgery carrying a false public key prefixed with a
series of “0xdeadbeef”s. We found that when executing the
repackaged Frozen Bubble with our warden switched off,
the subject app logged the correct public key starting with

2. The source code of our proof-of-concept AWARE toolkit can be
found at https://github.com/jnsiw/AWARE.

3. https://f-droid.org/en/.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 6

(a) original instance (b) repackaged instance

Fig. 5: Instances of Frozen Bubble before/after the trivial
repackaging introduced for demonstrations.

0xa7191429, and no stack trace was shown (see Figure 6.c).
When the app was run with the warden turned on, on the
other hand, we can see from Figure 6.d that the invocation
of PackageManager.getPackageInfo was redirected to the
PmsHookBinderInvocationHandler of our attack payload
(see the underlined record in the stack trace). Consequently,
the subject app outputs the bogus certificate and false public
key as highlighted at the bottom of Figure 6.d.

For the file-based integrity checking, the attack payload
of our warden was slightly different from Figure 6.a, in
that it intercepted PackageManager.getApplicationInfo
such that the sourceDir field in the returned object could
be overwritten4. As shown in Figure 7.a, the authentic
path of the repackaged Frozen Bubble contained a system-
generated suffix “−66njDkL5tM04wna9fsuWzg==” (see the
logs tagged with “PackageCodePathWrapper”, which were
recorded by our warden). Nevertheless, after returning from
our warden to the subject app’s own code, this installation
path had been given a fake suffix “−hook−success”, as
in the logs recorded by the subject app itself (those tagged
with “Detection”). This demonstrated that AWARE could
indeed manipulate the file instance returned.

Finally, Figure 7.b demonstrates the simulation result of
tampering the twin SDC instance using AWARE. Without
loss of generality, we switched the permission of code
pages containing the worker SDC snippet of the twin SDC
structure to RWXP at the time of decrypting. Accordingly,
with mprotect hooked, our warden monitored and inter-
cepted all requests of switching code pages from RWXP to
R-XP (as shown in the second line of the upper half of
Figure 7.b), which allowed it to correctly determine the
memory range of worker SDC (1 memory page starting from
0x7fbeb22c6000). Following that, our warden immediately
overwrote the parameter of the protected printf call, mak-
ing the tampered worker SDC print “Hacked!” instead of
the expected text.

Although AWARE rely on a number of carefully de-
signed control flow interception strategies, implementing

4. To avoid redundancy, here we skip the injected code but simply
show the attack output. The same goes to the next demonstration on
attacking SDC.

the attack is actually easy at engineering level thanks to the
numerous open-source hooking and virtualization frame-
works for Android [24], [36]. These existing toolkits could
be applied on both the Java and native partition of an app,
making it possible for an adversary to develop an AWARE
payload as simple extensions of them. For example, our
AWARE demo itself is partially based on such a virtual-
ization framework, namely whale5.

4 POTENTIAL MITIGATION

In this section we further discuss the possibility of mitigat-
ing the AWARE attack at the application layer. Our intention
here is to investigate practical defense that are potentially
deployable in the current Android ecosystem, and will leave
OS-level and hardware-assisted solutions as future work.

4.1 Security Goal and Assumptions

Note that even with the AWARE attack taken into account,
the purpose of the adversary is still about launching an
enhanced repackaging attack, which is carried out before
a victim app is installed. Accordingly, the intention of
an application-level mitigation of the AWARE attack is to
make a subject app capable of verifying its own integrity
at runtime (at which point the off-line modification to the
app has completed), and detects violations caused by either
embedding the AWARE payload or other modifications for
the purposes of repackaging attack.

We assume that the adversary could gain access to the
APK of the subject app, but not its source code. In other
words, the adversary can work with encoded files (e.g.,
DEX files and .so libraries) within the APK, while the
building process of the APK before repackaging, as well as
the runtime environment in which the repackaged app runs,
is out of his/her reach. More powerful adversaries capable
of tampering with the target Android internal are out of our
scope. In addition, we assume that the adversary wants to
at least preserve the essential functionalities of the subject
app, given that his main purpose is repackaging.

Finally, we emphasize that this paper never intends to
bring a complete app repackage-proofing scheme. This is
because a typical repackage-proofing design consists of two
portions:

• components for acquiring and verifying certain in-
tegrity metrics of the subject app, as well as

• routines and mechanisms that protects the integrity of
those metric acquisition and verification components.

And, the AWARE attack works by compromising the trustworthy
of the first portion of repackage-proofing defenses, but not the
integrity of any of its program semantics. As such, the goal
of a mitigation of this attack should be more about forcing
the adversaries to fight against the (remaining effective)
second portion of existing repackage-proofing defenses. To
this end, we put our focus mainly on looking for new
metric acquisition approaches reliable against the AWARE
attack, rather than proposing new tricks for safeguarding
the repackage-proofing code. We acknowledge the limita-
tion of an application-level solution without the help of any

5. https://github.com/asLody/whale.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 7

(a) The attack payload

(b) Public key section of the bogus/real certificates

(c) A normal public key acquisition

(d) AWARE intercepted and counterfeited public key acquisition

Fig. 6: A demonstration of our AWARE demo evading integrity checks based on public key acquisition.

(a) falsifying an app’s installation path

(b) tampering with twin SDC

Fig. 7: AWARE compromising file-based integrity checking
and twin SDC.

trusted components from the OS or hardware. The security
goal of our defense is to raise the bar of repackage proofing
hopefully to the extent that conducting such attacks be-
comes no easier than re-implementing the app, rather than
(unrealistically) making the attack impossible.

4.2 Multi-Party Verification Framework against AWARE

We first summarize the reasons why existing repackage-
proofing schemes fail in stopping AWARE as follows:

• Insecure mechanisms — specifically, self-decrypting
code is not secure when the key system functions
involved (in particular, mprotect) cannot be trusted.

• Flawed integrity metrics — while they were adopted
due to their uniqueness and coverage (e.g., public key is
app-specific), their corresponding retrieval mechanisms
are not trustworthy with AWARE in the game.

Intuitively, a more effective defense against AWARE thus
needs a new (set of) metric(s) for Android apps which
is not only sensitive to integrity violations caused by the
embedding of AWARE payload, but also capable of resist-
ing various app behavior manipulations. To this end, we
propose a verification framework across an app’s bytecode
and native partitions, with multiple verification mechanisms
that have each other covered within the ring of protection.

4.2.1 ART-based bytecode integrity metric
Recall that the AWARE attack requires deploying a booter
at the victim app’s code entry (see Section 3.5), indicating
inevitable modification of the victim app’s bytecode compo-
nent(s), i.e., method(s) written in Java/Kotlin. Therefore, a
valid metric against AWARE should indicate the integrity
status of an app’s bytecode with good sensitivity, while
being

• app-specific (unique to each app); and
• static (remaining unchanged during normal dynamic

execution and across app restarting, app reinstalling,
and system rebooting).

With these in mind, we look into the Android ART runtime
and particularly, a key data structure it maintains called



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 8

TABLE 2: Selected fields of ArtMethod and their consistency status in various scenarios.

Name of the field Consistency under normal scenarios Consistency under attacks
App reinstall App restart System reboot Repackaging AWARE

declaring class × × × × ©
access flag © © © © ×
dex code item offset © © © × ×
dex method index © © © × ©
method index © © © © ©
entry point from quick compiled code © © × × ×

ArtMethod which stores key metadata that helps resolving
entry of Java/Kotlin methods inside an app’s base.odex (or
base.vdex for Android 8 and above). These structures are
created and maintained dynamically by the runtime, and
tampering with them could easily crash the corresponding
app. We tested six fields shared by all different versions of
ArtMethod to see how they respond in various scenarios.
Results are presented in Table 2, where “×” means that
value of the corresponding field may change under specific
circumstances and “©” indicates otherwise.

We found that 4 fields in ArtMethod are static in normal
executions, in which only the dex code item offset field
responds to bytecode tampering (i.e., consistent under nor-
mal scenarios while changed once being attacked). After a
further investigation of the Android source code, we found
that the value of this field is originated from the code off
field within the encoded method structure of direct or vir-
tual methods. According to its definition, code off either
gives the offset of the corresponding method’s bytecode
item within DEX file, or 0 if the method is abstract or native6.
Being a densely encoded format, the relative offset of one
section or item within a DEX file can be easily affected by
modifications (e.g., as a result of the AWARE attack) chang-
ing the size of other sections/items. On the other hand,
the positioning of code items inside DEX files is not sen-
sitive to any implementation details of the Android system.
With these, we identify and use dex code item offset of
selected (multiple) Java/Kotlin (but not abstract) methods
of the protected app as a metric to detect tampering of
bytecode caused by AWARE (or any other code manipu-
lation). We discuss the reliability of this integrity metric in
Section 4.3.

4.2.2 Acquisition of the new metric

Obtaining ArtMethod is common in Android apps with
native code embedded via NDK (Native Development Kit),
because when invoking a Java/Kotlin method from a native
function, the callee’s ArtMethod is required as a parameter
so that JNI can locate its entry. Specifically, when carrying
out such an invocation, the caller (i.e., the native function)
first invokes JNI method FindClass or GetObjectClass
to obtain the class of the callee, then uses GetMethodID
or GetStaticMethodID (also provided by JNI) to get its
ArtMethod structure. Therefore, our integrity metric can be
fetched at least in two ways:

• Obtaining ArtMethod during actual method invoca-
tions from the app’s native partition; or

• Introducing new payload to obtain ArtMethod of some
selected Java/Kotlin method of the app.

6. See https://source.android.com/devices/tech/dalvik/dex-format
for the definition of code off.

The first acquisition approach is tightly bound to the pro-
tected app’s own semantics, making it more difficult to be
removed or compromised despite its limitation on the aspect
of time-of-check. The second approach provides flexibility,
but the ArtMethod acquisition operations might be suspi-
cious for the lack of dependency (e.g., no subsequent invo-
cations). As a compensation, bogus invocations guarded by
opaque predicates can be inserted into the protected app
to create disguising dependencies for the newly introduced
ArtMethod acquisitions. For the implementation of such
opaque structures, we refer interested readers to existing
works [31], [32] since it is not a contribution of this paper.

4.2.3 Multi-party verification
An ArtMethod field alone is not enough to fight against
AWARE. First, it is possible for the AWARE warden to tam-
per with PLT/GOT stubs inside the victim app’s private li-
braries to intercept JNI invocations for obtaining ArtMethod
and invoking Java/Kotlin methods (where ArtMethod is
used as an input), so that

• in the procedure of obtaining ArtMethod, a fake value
is assigned to the dex code item offset field in the
returned structure to deceive repackage proofing;

• during method calling in which the fake ArtMethod is
involved, the warden recovers the authentic structure
before continuing the invocation.

Second, dex code item offset cannot be used to detect
integrity violations of repackaging attacks that only tamper
with the subject app’s native code, because code off of
native methods are set to 0.

To address the above issues, our solution is to include
the new metric into a multi-party verification framework
in which two additional integrity verification mechanisms
are introduced to form a ring of protection against AWARE.
The first supplemental verification targets the app’s JNI
invocation routines by checking the integrity of the corre-
sponding PLT/GOT stubs. In Android apps, calling a native
method from another native one also leaves a return address
pointing to the caller method. Using this return address as
an anchor point, location of the to-be-checked PLT/GOT
stubs can be assumed by fixed offsets. Our JNI verification
payload thus leverages the return address left by the caller
of its residing method to inspect the presumed location of
certain PLT/GOT stubs within the executable file where it is
deployed. Since the PLT stubs are code pieces that look up
the addresses in the GOT section, our verification inspects
their concrete texts to determine whether any of them had
been compromised by techniques like inline hooking. On
the other hand, the GOT stubs are actual offsets for the ex-
ternal symbols as filled in by the linker at load time, making
their values unknown at the off-line phase. Therefore, to
verify the GOT stub of a JNI method, our verification is
designed to inspect the distance between the GOT offset



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 9

Bytecode partition Native code partition

The Protected App public key

public key
verification

ART-based metric
verification

JNI verification

Fig. 8: Our multi-party verification framework using ART-
based integrity metric and PLT/GOT verification.

of the subject JNI method and those of other selected JNI
methods. In this way, should the subject GOT stub be
compromised, the inspected distances would demonstrate
anomalies because the rogue GOT offset no longer points to
an entry inside libart.so. By injecting JNI verification into
the protected app’s native code, our verification framework
could then include the acquisition procedure of ArtMethod
into its coverage, hence establishing the credibility of our
new integrity metric.

Note that neither dex code item offset nor the JNI
verification mechanism could check the overall integrity of
the app’s native code. This brings out the second supple-
mental integrity checking of our verification framework,
which inspects the app’s public key from its Java/Kotlin
methods (same as some existing schemes [16], [22]). This
conventional metric is picked because, as illustrated in
Figure 8, by indicating whether the protected app has been
(unauthorizedly) re-signed, the public key metric implies
its integrity as a whole (including that of its native code).
Meanwhile, with the JNI verification mechanism endorsing
its credibility, our dex code item offset metric can be
deemed as a measure for the integrity of the protected app’s
bytecode partition in general. This allows our verification
framework to trust the authenticity of the retrieved public
key, given that attacks such as AWARE (with the purpose
of manipulating this signature) will result in bytecode tam-
pering involving multiple methods of the app, and hence
would be detected. Intuitively, the three verification mecha-
nisms of our framework leaves no unchecked “loose ends”
behind.

4.3 Security Effectiveness

In this section, we evaluate the effectiveness of leveraging
dex code item offset as an integrity metric of Android
apps, and give an empirical discussion on its resilience
against targeted attacks.

4.3.1 Against attacks using toolkits in the wild

First, we consider the AWARE attack which resolves DEX
files of a victim APK into Smali code with Apktool7, injects
the warden at the Smali level while carrying out other code
tampering, then rebuilds the package using the building tool
chain provided by Apktool. As discussed in Section 3, this is
effective against conventional repackage-proofing schemes.

To test the effectiveness of the dex code item offset
metric under such typical AWARE and app repackaging

7. https://github.com/iBotPeaches/Apktool

attacks, we use Instagram as an example (given its popular-
ity) and examined the code off of Java methods in its DEX
files (which, as explained in Section 4.2, will be assigned to
the dex code item offset field of the ArtMethod struc-
tures of these methods on the end-user devices) before and
after repackaging. Two different samples were produced
in this test. The first sample was the product of a trivial
repackaging, i.e., no changes were made except signing
the package with a new certificate. The second sample
was embedded with the AWARE warden deployed by our
attack prototype. Table 3 gives the code off of five meth-
ods selected from the app, showing that both the trivial
repackaging and the insertion of AWARE warden resulted
in the change of code off for all the selected methods. We
obtained similar results on both emulators and real Android
devices.

Note that tampering with methods that are not selected
to be monitored using dex code item offset could po-
tentially still get detected due to change of offsets induced
on methods being protected. That said, we encourage pro-
tection of all important methods (those of essential function-
ality) with our new metric to gain the best security property.

4.3.2 Against attacks using advanced toolkits
By further looking into the building process of DEX files,
we found that the difference between building tool chains
in Apktool and Gradle is a major factor which contributes
to the varying method offsets. Specifically, Apktool uses
dexlib2 to build the DEX files which does not organize
the data section’s items (including code, strings, types, etc.)
according to the sequence defined by the Android official
documentation. This means that another test is needed to
understand whether the dex code item offset metric is
still effective against advanced attacks where the adversary
utilizes the official tool chain to build the repackaged DEX
files.

We did not find any publicly available repackage tools
with the desired building system. Therefore in this test,
we simulated a series of app repackaging attacks on
Frozen Bubble, the same subject as used in Section 3.5,
and again compared the code off values of selected meth-
ods. Specifically, we directly manipulated the Java source
of the app before building its DEX files using Gradle,
which we believe is the closest possible mimic to a real
app repackaging attack that leverages the official building
tool chain. In addition, to better understand the effective-
ness of the dex code item offset metric, we conducted
the simulated app repackaging transformations in three
different settings: a trivial repackaging without any code
modification, a trivial repackaging with the size of a specific
method (releaseBubbles in the FrozenGame class) being
increased by four bytes, and finally, a non-trivial repackag-
ing supported by AWARE.

Table 4 shows the result of our simulation. We can see
that when using the official building tool chain, a trivial
repackaging which did not tamper with any code would
no longer change the offset of the victim app’s methods.
However, such repackaging is incapable of defeating any
other repackage-proofing metric, e.g., the app’s public key.
On the other hand, we found that a small increase in the
size of one of the app’s methods had shifted the position of



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 10

TABLE 3: code off of selected methods in Instagram before and after app repackaging (carried out using Apktool).

Method
Value of code off

Original Trivial repackaging AWARE
com.instagram.app.InstagramAppShell−>onCreate() 0x35d4f4 0x90b4ec 0x90c0f0

com.instagram.mainactivity.MainActivity−>onCreate(Landroid/os/Bundle; p0) 0x3b8edc 0x94335c 0x943f60
com.instagram.model.mediasize.TypedUrlImpl−>getHeight() 0x518fa0 0x948c00 0x949804

com.instagram.adshistory.fragment.RecentAdActivityFragment−>isOrganicEligible() 0x6f8814 0x908f4c 0x909b50
com.instagram.reels.fragment.ReelDashboardFragment−>onActivityResult() 0x753a9c 0x96212c 0x962d30

TABLE 4: code off of selected methods in Frozen Bubble before and after simulated “app repackaging” (carried out
using the standard Gradle tool chain).

Method
Value of code off

Original Repackaging
(trivial)

Repackaging
(incremental) AWARE

com.efortin.frozenbubble.AccelerometerManager−>isListening() 0x29b3c 0x29b3c 0x29b3c 0x29d10
com.efortin.frozenbubble.NetworkManager−>cleanUp() 0x2a730 0x2a730 0x2a730 0x2a904

org.jfedor.frozenbubble.FrozenGame−>releaseBubbles() 0x37dd8 0x37dd8 0x37dd8 0x37fac
org.jfedor.frozenbubble.PenguinSprite−>getTypeId() 0x41008 0x41008 0x4100c 0x4281c

org.jfedor.frozenbubble.Sprite−>saveState() 0x41fcc 0x41fcc 0x41fd0 0x437e0

all methods below it accordingly; see method getTypeId
in class PenguinSprite and method saveState in class
Sprite in Table 4. Finally, in the case of AWARE, offsets
of all selected methods were affected because the attack
payload introduced new metadata which increased the size
of various sections of the resulting DEX file, including (but
not limited to):

• A new class def item in the class defs section;
• New method id items in the method ids section;
• Name of the new class and its methods as additional

entries in the string ids section.
In DEX files, all sections mentioned above are placed in
front of the data section. Therefore, due to the dense
encoding of the DEX format, position of the entire data
section (including the code items inside it) will be shifted
accordingly. These observations lead to an argument that
even if the adversary switches to the official building sys-
tem, dex code item offset is still effective in detecting
meaningful app-repackaging and AWARE attacks.

4.3.3 Against targeted attacks
Last but not least, we consider the attack scenario where
the adversary is committed to deceive our new integrity
metric. Specifically, we want to discuss the possibility of
modifying the subject app’s DEX file in a delicate way, such
that the AWARE payload can be embedded while none of
the app’s existing methods is shifted to a new offset. A
potential example is the “callee-side rewriting” strategy [30]
in which the adversary directly adds the AWARE payload
into target DEX files of the victim app as an additional code
snippet appended at the end of the code section, hoping
that this could avoid altering the offset of any of the existing
methods. This means that the adversary has to rewrite the
DEX file at binary level rather than modifying the Smali
code to avoid uncontrollable factors introduced by the DEX
building process.

Due to the strict validation rules enforced on the format,
there are limitations on how an additional code snippet
can be inserted into a DEX file. Specifically, each method
in a DEX file must be a continuous code section, and code
within a method is not allowed to simply jump out of its
boundaries to a rogue code section. Containing such invalid
control flows will result in a DEX file being unable to pass

Android’s verification due to section overlap or non-zero
padding8. Under this condition, even at binary level, the
available options for the adversary to inject the AWARE
payload into a DEX file are to either embed it as new
classes/methods, or merge it into some existing methods
within the file. On top of that, in order to deceive our
new integrity metric, the payload injection must further
preserve the original layout of the target DEX file, leading
to a number of additional requirements.

• In case of embedding the payload as new classes/meth-
ods, and assuming that the adversary has already
placed the new methods at the end of code section to
avoid tampering offsets of other methods, he still needs
to ensure that the DEX file’s header (which includes
the lists of classes/methods/prototypes contained in
the file) remains of the same size as the original one.

• In case of merging the payload within existing methods,
the adversary must ensure that the size of the subject
methods do not change after the re-construction.

• Finally, in case of merging the payload into multiple ex-
isting methods, the adversary must choose the subject
methods carefully such that invocations among them
would not be considered as illegal.

Although fulfilling the above requirements when directly
manipulating a DEX file is not impossible, we argue that
our new metric, when used in conjunction with our two
supplementary measures in a multi-party verification man-
ner, significantly raises the bar of repackaging attacks, po-
tentially to the extent that such attacking effort exceeds that
needed for a re-implementation of the subject app.

4.3.4 Limitations of Our New Integrity Metric
As admitted in Section 4, dex code item offset metric
can only be leveraged by Android apps with native code.
This design choice limits the completeness of our scheme,
although going native is the trend of Android apps and we
could expect more and more apps embracing NDK in the
near future [13].

8. Readers could find Android’s latest DEX verification se-
mantics at https://android.googlesource.com/platform/art/+/refs/
heads/master/libdexfile/dex/dex file verifier.cc, where padding and
overlap between items in a DEX file is checked by DexFileVerifier ::
CheckIntraSection().



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 11

Moreover, recall that the threat model of the AWARE
attack assumed unmodified Android system; see Section 3.1.
However, as we have mentioned, an important feature of
Android exploited by AWARE is that many of its system
modules exist in the form of user-level shared libraries that
can be modified inside any user apps. This also includes
libart.so which contains key JNI methods required by the
dex code item offset metric; see Section 4.2.3. There-
fore, if we assume a stronger threat model in which the ad-
versary is allowed to tamper with the behavior of Android
system libraries, he could then attempt to intercept JNI
invocations related to ArtMethod by hooking the related JNI
methods from the platform side (i.e., within libart.so), or
compromising the JNIEnv structures which are maintained
in the .data.rel.ro section of libart.so. These approaches
go beyond the scope of PLT/GOT checking as part of our
verification framework. A possible countermeasure could
be to further enhance our protection on the integrity of JNI
invocations, for example, by extending the PLT verification
routine to trace address lookup process down to the location
of JNI methods/JNIEnv structures within the system library
and verifying their checksum directly. However, we see such
attacks which tamper with system components more of a
system security issue rather than an application one. Our
opinion is that Android should further enhance its mandatory
access control policy and stop third-party apps from modifying
system libraries (even in their own address space).

The existing access control policy of Android appears
to mainly focus on the enforcement of app sandboxing.
For instance, it adopts SELinux to prevent an app from
modifying things that may compromise the behavior of
other processes, and it blocks certain procfs files that may
leak the execution status of other apps. Modifying system
components to affect the execution of the current app itself,
on the other hand, was not constrained because such be-
havior was not considered a violation of app sandboxing.
However, as shown by existing studies on the risk of app
virtualization [17], [24], [36], [37] and now by our AWARE
attack, the highly modularized structure in fact allows part
of an Android app to attack other components of its own
and cause significant consequences. In other words, enforc-
ing per-process sandboxing alone is no longer enough, and
we suggest that Android could take the integrity of its user-
level system components more seriously.

4.4 Performance Overhead
We made an empirical comparison between the overhead of
retrieving the conventional integrity metrics and that of re-
trieving the dex code item offset metric we proposed.
Four different integrity metric acquisition components were
implemented to respectively obtain the app’s public key via
API and reflection, to read the digests within MANIFEST.MF,
and to access the value of dex code item offset . Table 5
shows the comparison of average performance over 50 runs
and code bloat for running all the test components on a
Google Pixel 3 XL. The result suggests that the tested com-
ponent for retrieving our new metric causes significantly
lower overhead in both time and memory space. It is worth
noting that the purpose of this comparison is merely to
show that applying our integrity metric does not intro-
duce any additional performance bottleneck. Compared to

TABLE 5: An empirical comparison on the performance of
obtaining integrity metrics in repackage-proofing.

Integrity metric Average
overhead Code bloat

public key (direct API call) 0.8946 ms 178 bytes
public key (using reflection) 1.7042 ms 542 bytes

digests in MANIFEST.MF 6.1545 ms 136 bytes
dex code item offset 0.0048 ms 120 bytes

checking bytecode integrity by computing checksums of
.DEX files or AOT compiled code segments of the app (like
in AppIS and SDC), dex code item offset is a better
option with regard to performance impact, because reading
the entire sections in the linear address space is ineffi-
cient due to the demand paging mechanism, while obtaining
dex code item offset raises no such concern.

5 DISCUSSION

5.1 AWARE v.s. Off-line Repackage Detection
Recall that to launch an AWARE attack, it is necessary to
insert a booter into bytecode of the victim app so that the
deployed warden could intercept key defensive app behav-
iors. This raises a question: does such payload correspond
to new signatures for off-line repackage detection?

Note that booter of the warden class of AWARE can be
implemented as trivial as a simple invocation, as long as it
can directly control the warden’s main body. This therefore
allows the use of obfuscation techniques to conceal the
AWARE warden class, making it hard to be distinguished
via static analysis. In addition, being originating from sim-
ilar techniques, behavior of the AWARE warden class is
close to that of an app virtualization framework. As shown
in recent studies [24], [36], app virtualization frameworks
have attracted millions of users and downloads, and cases
of benign apps adopting app virtualization for software
engineering and/or security reasons are not uncommon. For
example, our tests showed that an e-commerce app Lazada
with more than 100 million downloads has mounted with a
virtualization framework called Atlas9. We therefore argue
that it could be difficult to resort to either static or dynamic
behavioral signatures to identify the AWARE attack.

5.2 Repackage-Proofing or Obfuscation?
Considering the limitations of our verification framework
against an AWARE adversary with the stronger threat as-
sumptions stated in the last subsection, we admit that it is
difficult to deploy an effective repackage-proofing defense
when components of Android system themselves could not
be trusted. Under the status quo, applying code obfuscation
techniques [9], [11], [20], [38] to protect the apps against
unauthorized program analyses could still be a valuable
application-level countermeasure against app repackaging
(given that program analysis is a necessary phase before
carrying out such attacks). However, code obfuscation must
consider adversaries dedicated on a particular target (be-
sides large-scale automated program analysis), which could
make it less effective when being applied on Dalvik byte-
code originated from strongly-typed Java sources (which

9. https://github.com/alibaba/atlas.



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 12

has been pointed out in [11]). Furthermore, code obfuscation
alone only helps increase the difficulty of program analysis.

5.3 Repackage-Proofing vs. Remote Code Attestation
Some may wonder that to cope with the threat of AWARE
(and app repackaging in general), could the so-called remote
attestation technology be “another way out” and provide
effective defense [18], [19]? We stress that fundamentally,
remote attestation is of a different scenario (trusted com-
puting) compared to repackage-proofing, in that its func-
tionality relies heavily on hardware and/or system-level
supports. Note that compared to previous app repackaging
techniques, AWARE is more difficult to defend against at
application-level because it exploits the fact that the Android
architecture is designed to be semi-implanted into each
app’s sandbox, making it possible for third-party code to
“play god” (i.e. gain at least some part of the system’s
capability without having the corresponding privileges).
Defending such attacks from OS-level, on the other hand,
is considered out of our scope (although such a strategy
might indeed serve as a different security mechanism in
preventing the threats focused on in this work). That said,
indeed we cannot assert that there are absolutely no other
application-level defense approaches which could also miti-
gate the threat of AWARE. We leave this as an open problem
to be explored in the future.

6 CONCLUSION

In this paper, we systematically studied existing repackage-
proofing schemes, and proposed an active warden attack
(named AWARE) that is able to bypass integrity checks of all
previous schemes. We also showed the effectiveness of this
new attack with proof-of-concept demos. To the best of our
knowledge, we are the first to identify the threat of AWARE
to repackage proofing. On top of these, we proposed a new
integrity metric and its associated multi-party verification
framework. Specifically, we introduced a new ART-based
bytecode integrity metric, which, under the support of sup-
plemental verifications on certain JNI invocation routines,
is able to effectively indicate code tampering on an app’s
Java/Kotlin methods caused by both app repackaging and
the AWARE attack. Our analyses and evaluations suggested
that this new integrity metric can be an effective mitigation
against AWARE, and the multi-party verification framework
with its participation is resilient to a number of targeted
attack strategies. Our empirical study also suggested that
the overhead of retrieving such a metric is acceptable.

ACKNOWLEDGEMENT

We greatly appreciate the anonymous reviewers and the as-
sociate editor for providing valuable feedbacks that helped
improving this paper. This work is supported by the Na-
tional Key R&D Program of China(2018YFA0704703), the
National Natural Science Foundation of China(61972215,
61972073), the Natural Science Foundation of Tianjin
(20JCZDJC00640), and the Singapore National Research
Foundation under the National Satellite of Excellence in Mo-
bile Systems Security and Cloud Security (NRF2018NCR-
NSOE004-0001).

REFERENCES

[1] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon, “Androzoo:
Collecting millions of Android apps for the research community,”
in The 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories, 2016, pp. 468–471.

[2] R. J. Anderson and F. A. Petitcolas, “On the limits of steganogra-
phy,” IEEE Journal on selected areas in communications, vol. 16, no. 4,
pp. 474–481, 1998.

[3] asLody, “VirtualApp,” https://github.com/asLody/VirtualApp,
2018.

[4] H. Chang and M. J. Atallah, “Protecting software code by guards,”
in ACM Workshop on Digital Rights Management, 2001, pp. 160–175.

[5] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on Android mar-
kets,” in The 36th International Conference on Software Engineering,
2014, pp. 175–186.

[6] K. Chen, Y. Zhang, and P. Liu, “Leveraging information asymme-
try to transform Android apps into self-defending code against
repackaging attacks,” IEEE Transactions on Mobile Computing,
vol. 17, no. 8, pp. 1879–1893, 2018.

[7] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang,
and K. Ren, “Android HIV: A study of repackaging malware
for evading machine-learning detection,” IEEE Transactions on
Information Forensics and Security, 2019.

[8] C. S. Collberg, C. Thomborson, and G. M. Townsend, “Dynamic
graph-based software fingerprinting,” ACM Transactions on Pro-
gramming Languages and Systems, vol. 29, no. 6, p. 35, 2007.

[9] S. Dong, M. Li, W. Diao, X. Liu, J. Liu, Z. Li, F. Xu, K. Chen,
X. Wang, and K. Zhang, “Understanding Android obfuscation
techniques: A large-scale investigation in the wild,” in The 14th
International Conference on Security and Privacy in Communication
Systems, 2018, pp. 172–192.

[10] L. Glanz, S. Amann, M. Eichberg, M. Reif, B. Hermann, J. Lerch,
and M. Mezini, “Codematch: obfuscation won’t conceal your
repackaged app,” in The 11th Joint Meeting on Foundations of
Software Engineering, 2017, pp. 638–648.

[11] Z. He, G. Ye, L. Yuan, Z. Tang, X. Wang, J. Ren, W. Wang, J. Yang,
D. Fang, and Z. Wang, “Exploiting binary-level code virtualization
to protect Android applications against app repackaging,” IEEE
Access, 2019.

[12] X. Jiang and Y. Zhou, “Dissecting Android malware: Characteri-
zation and evolution,” in The 2012 IEEE symposium on security and
privacy, 2012, pp. 95–109.

[13] Z. Kan, H. Wang, L. Wu, Y. Guo, and G. Xu, “Deobfuscating
Android native binary code,” in Proceedings of the 41st International
Conference on Software Engineering: Companion Proceedings, 2019, pp.
322–323.

[14] L. Li, T. F. Bissyandé, A. Bartel, J. Klein, and Y. L. Traon, “The
multi-generation repackaging hypothesis,” in The 39th Interna-
tional Conference on Software Engineering Companion, 2017, pp. 344–
346.

[15] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cav-
allaro, “Understanding Android app piggybacking: A systematic
study of malicious code grafting,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 6, pp. 1269–1284, 2017.

[16] L. Luo, Y. Fu, D. Wu, S. Zhu, and P. Liu, “Repackage-proofing An-
droid apps,” in The 46th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, 2016, pp. 550–561.

[17] T. Luo, C. Zheng, Z. Xu, and X. Ouyang, “Anti-plugin: Don’t let
your app play as an Android plugin,” in The Blackhat Asia, 2017.

[18] M. Nauman, S. Khan, X. Zhang, and J.-P. Seifert, “Beyond kernel-
level integrity measurement: enabling remote attestation for the
Android platform,” in International Conference on Trust and Trust-
worthy Computing, 2010, pp. 1–15.

[19] I. D. O. Nunes, K. Eldefrawy, N. Rattanavipanon, M. Steiner, and
G. Tsudik, “{VRASED}: A verified hardware/software co-design
for remote attestation,” in 28th {USENIX} Security Symposium
({USENIX} Security 19), 2019, pp. 1429–1446.

[20] M. Protsenko, S. Kreuter, and T. Müller, “Dynamic self-protection
and tamperproofing for Android apps using native code,” in The
10th International Conference on Availability, Reliability and Security,
2015, pp. 129–138.

[21] Qihoo 360, “RePlugin,” https://github.com/Qihoo360/RePlugin,
2018.

[22] C. Ren, K. Chen, and P. Liu, “Droidmarking: resilient software
watermarking for impeding Android application repackaging,” in



IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING 13

The 29th ACM/IEEE international conference on Automated software
engineering, 2014, pp. 635–646.

[23] M. I. Sharif, A. Lanzi, J. T. Giffin, and W. Lee, “Impeding malware
analysis using conditional code obfuscation.” in The 16th Annual
Network & Distributed System Security Symposium, 2008.

[24] L. Shi, J. Fu, Z. Guo, and J. Ming, ““Jekyll and Hyde” is risky:
Shared-everything threat mitigation in dual-instance apps,” in The
17th Annual International Conference on Mobile Systems, Applications,
and Services, 2019, pp. 222–235.

[25] G. J. Simmons, “The prisoners’ problem and the subliminal chan-
nel,” in Advances in Cryptology, CRYPTO’83, 1984, pp. 51–67.

[26] L. Song, Z. Tang, Z. Li, X. Gong, X. Chen, D. Fang, and Z. Wang,
“AppIS: protect Android apps against runtime repackaging at-
tacks,” in The IEEE 23rd International Conference on Parallel and
Distributed Systems, 2017, pp. 25–32.

[27] Statista, “Number of iOS and Google Play mobile app down-
loads worldwide from 3rd quarter 2016 to 4th quarter 2018 (in
billions),” https://www.statista.com/statistics/695094/quarterly-
number-of-mobile-app-downloads-store/, 2019.

[28] S. Tanner, I. Vogels, and R. Wattenhofer, “Protecting android apps
from repackaging using native code,” in International Symposium
on Foundations and Practice of Security, 2019, pp. 189–204.

[29] wequick, “Small,” https://github.com/wequick/Small, 2018.
[30] M. Wißfeld, “ArtHook: Callee-side method hook injection on the

new Android runtime art,” Ph.D. dissertation, Saarland Univer-
sity, 2015.

[31] D. Xu, J. Ming, and D. Wu, “Generalized dynamic opaque pred-
icates: A new control flow obfuscation method,” in The 19th
International Conference on Information Security, 2016, pp. 323–342.

[32] H. Xu, Y. Zhou, Y. Kang, F. Tu, and M. Lyu, “Manufacturing
resilient bi-opaque predicates against symbolic execution,” in The
48th Annual IEEE/IFIP International Conference on Dependable Sys-
tems and Networks, 2018, pp. 666–677.

[33] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu,
“Appspear: Bytecode decrypting and dex reassembling for packed
Android malware,” in The International Workshop on Recent Ad-
vances in Intrusion Detection, 2015, pp. 359–381.

[34] Q. Zeng, L. Luo, Z. Qian, X. Du, and Z. Li, “Resilient decentralized
Android application repackaging detection using logic bombs,” in
The 2018 International Symposium on Code Generation and Optimiza-
tion, 2018, pp. 50–61.

[35] F. Zhang, H. Huang, S. Zhu, D. Wu, and P. Liu, “ViewDroid:
Towards obfuscation-resilient mobile application repackaging de-
tection,” in The 2014 ACM conference on Security and privacy in
wireless & mobile networks, 2014, pp. 25–36.

[36] L. Zhang, Z. Yang, Y. He, M. Li, S. Yang, M. Yang, Y. Zhang, and
Z. Qian, “App in the Middle: Demystify application virtualization
in Android and its security threats,” Proceedings of the ACM on
Measurement and Analysis of Computing Systems, vol. 3, no. 1, p. 17,
2019.

[37] C. Zheng, T. Luo, Z. Xu, W. Hu, and X. Ouyang, “Android plugin
becomes a catastrophe to Android ecosystem,” in The 1st Workshop
on Radical and Experiential Security, 2018, pp. 61–64.

[38] W. Zhou, Z. Wang, Y. Zhou, and X. Jiang, “DIVILAR: Diver-
sifying intermediate language for anti-repackaging on Android
platform,” in The 4th ACM conference on Data and application security
and privacy, 2014, pp. 199–210.


