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On the Effectiveness of Using Graphics Interrupt
as a Side Channel for User Behavior Snooping

Haoyu Ma, Jianwen Tian, Debin Gao, and Chunfu Jia

Abstract—Graphics Processing Units (GPUs) are now a key component of many devices and systems, including those in the cloud
and data centers, thus are also subject to side-channel attacks. Existing side-channel attacks on GPUs typically leak information from
graphics libraries like OpenGL and CUDA, which require creating contentions within the GPU resource space and are being mitigated
with software patches. This paper evaluates potential side channels exposed at a lower-level interface between GPUs and CPUs,
namely the graphics interrupts. These signals could indicate unique signatures of GPU workload, allowing a spy process to infer the
behavior of other processes. We demonstrate the practicality and generality of such side-channel exploitation with a variety of assumed
attack scenarios. Simulations on both Nvidia and Intel graphics adapters showed that our attack could achieve high accuracy, while
in-depth studies were also presented to explore the low-level rationale behind such effectiveness. On top of that, we further propose a
practical mitigation scheme which protects GPU workloads against the graphics-interrupt-based side-channel attack by piggybacking
mask payloads on them to generate interfering graphics interrupt “noises”. Experiments show that our mitigation technique effectively
prohibited spy processes from inferring user behaviors via analyzing runtime patterns of graphics interrupt with only trivial overhead.

Index Terms—Side-channel attacks, GPU, graphics interrupts, machine learning.
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1 INTRODUCTION

Graphics Processing Units (GPUs) have become increasingly
important components in computing devices. Not only
more and more applications now involve heavy graphics
and multi-media workload, but the development of general-
purpose computing has also highlighted the value of GPUs
in accelerating tasks related to security, computational fi-
nance, and bioinformatics [9]. Naturally, a price is always
exacted for what technological advance bestows, and the
development of GPU applications has nurtured a tighter
bond between these hardware components and vital system
security factors, such as user privacy. This makes GPUs now
a tempting target for attacks aiming at information leakage.

1.1 GPU-based side channels
Previous research had demonstrated several vulnerabilities
on GPU security [14], [16], [20], [21], [25], [34], mostly due
to defective memory management and privacy-leaking APIs
from GPU-related frameworks, e.g., not initializing newly
allocated blocks [14], [34] and vulnerabilities in the CUDA
driver [25]. Recently, Naghibijouybari et al. [21] also studied
the practicability of exploiting GPU resource tracking APIs.

These existing GPU side-channel attacks work according
to an intrusive model in which contentions are introduced
inside the GPU resource space. Figure 1 demonstrates this
attacking strategy with the payload being deployed in the
GPU memory. Although not having been explicitly admitted
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in existing work, such an intrusive strategy is not subtle
enough considering that a defense opponent could detect
such attacks by identifying the existence of co-residing at-
tack processes. In addition, attacks based on such a strategy
are not hard to defeat via software patching. For example,
most browsers have now reduced the timer resolution and
thus eliminated the timing signal used by the attacks. GPU
manufacturers have also noticed the potential vulnerability
caused by the resource tracking APIs and expressed plans
to fix the problem with updates to OpenGL and CUDA [22].
Last but not the least, given that memory contention is in
essence a security design negligence, mitigation at system
level had also been proposed to eliminate the aforemen-
tioned attacks with GPU memory sandboxing [23] and GPU
virtualization [31].

1.2 Our contribution

This paper considers the possibility of conducting side-
channel attacks on GPUs under a less demanding threat
model. We identify graphics interrupt statistics as the side-
channel source for such attacks, which is available to non-
privileged processes on Linux-based systems and typically
readable at /proc/interrupt. The key insight is that
footprints of the graphics stack exist not only within the
GPU resource space (exploited by existing work): a GPU
sends interrupt requests (IRQs) to the CPU to signal key
events like completion of a graphics command or reporting
a hardware error. When the GPU is handling different
workloads, relevant GPU IRQs would be captured by the
CPU in different temporal patterns. Therefore, it is possible
for a malicious process to exploit the runtime statistics of
graphics interrupts as signatures to infer exactly what is
being processed by the GPU. Such an attack, unlike those
studied in existing work, is fully passive in that it does not
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require co-residing a payload with the victim process inside
the GPU resource space to cause contentions of any kind.

To demonstrate that graphics interrupts are indeed ex-
ploitable, we have simulated several side-channel attacks
under various scenarios, including document (webpages
and PDF files) fingerprinting, application inferencing, dis-
tinguishing processes with seemingly identical displays,
and recognizing non-GUI applications, on two common
graphics adapters of Nvidia’s and Intel’s. Our attack process
periodically samples graphics interrupt counts and uses
the pattern of its increment as a time-series signature to
identify the target workload with the assistance of a trained
machine learning model. Evaluations showed that our at-
tacks demonstrated comparable effectiveness with the latest
GPU side-channel attacks based on memory APIs and per-
formance counters [21] in webpage fingerprinting, and an
accuracy as high as 99.8% in GUI-application fingerprinting.
As an interesting observation, we found our application
fingerprinting attack being capable of identifying different
types of graphics workload that presents the same visual
perception. Experiments on this aspect demonstrated high
accuracy in distinguishing different video players when
playing the same video or detecting differences in playing
the same video encoded with different codecs. Finally, we
also demonstrated that graphics interrupts are valid leak-
age vectors for inferring workload of GPU general-purpose
computing (GPGPU), such as the execution of cryptographic
and neural network algorithms.

Last but not the least, we further explore potential de-
fenses against the threat of graphics-interrupt-based GPU
side-channel attacks. Specifically, we propose a mitigation
scheme which, given a potential victim program, piggy-
backs a trivial but randomized graphics payload on it as a
“mask”. With the two components running simultaneously,
interrupt patterns observed by side-channel attackers are
blended with “noisy” interrupt counts caused by our mask
payload, creating concealment to the signature of actual
program behavior and therefore making the attacks diffi-
cult to succeed. Evaluations on a proof-of-concept imple-
mentation of our mitigation showed that using an 1-pixel
redrawing operation as the mask, our mitigation effectively
reduced the accuracy of graphics-interrupt-based webpage
fingerprinting to lower than 57% while inducing negligible
performance overhead.

In summary, the main contributions of this work include
the followings1.

• We demonstrate that it is possible to infer GPU
related operations using temporal pattern of graphics
interrupts, and argue that by exploiting such a lower-
level and native source of leakage, a side-channel
attack on GPU can be fully passive.

• We conduct a systematic study on the practicality
and generality of the interrupt-based GPU side-
channel attacks, showing that in various attack sce-
narios (not just the typical webpage fingerprinting)
this attack could be equally effective as the previ-
ously proposed ones based on memory contentions.

1. This paper is an extended version of an earlier conference pa-
per [17].

• After digging into details of interrupt patterns of
various types of GPU-related program operations,
we find that the proposed attack in fact captures
more information than the displayed visual effects,
making it capable of identifying an even wider range
of GPU workloads, e.g., the computing of crypto-
graphic algorithms or deep learning models.

• We propose a defense scheme against the proposed
attacks, which uses trivial graphics operations to
introduce randomized interrupt requests into the
overall interrupt statistics and therefore confuses the
attacks. We have implemented a proof-of-concept
demonstration of the proposed defense, and evalu-
ated its effectiveness and cost.

1.3 Paper organization
The rest of this paper is organized as follow. In Section 2.1
we briefly introduce the role of graphics interrupts in CPU-
GPU communication, and illustrate the intuition on why
such a character makes graphics interrupts a possible side-
channel leakage vector. Next, in Sections 2.2, 2.3, 2.4, 2.5,
and 2.6 we introduce the various attacking scenarios based
on graphics interrupts, demonstrate the effectiveness of
these attacks, and present detailed analyses on the rationale
behind the results. Following that, in Section 3 we present
our mitigation scheme of the proposed attacks, with a proof-
of-concept implementation as well as a brief evaluation.
Then in Section 4, we discuss the accuracy-efficiency trade-
off involved in graphics-interrupt-based GPU side-channel
attacks, as well as the capability of attackers with root
privilege. Previous researches related to this paper are given
in Section 5. And finally, we conclude the paper in Section 6.

2 USER BEHAVIOR SNOOPING USING GRAPHICS-
INTERRUPT-BASED GPU SIDE CHANNEL

2.1 Overview
2.1.1 Graphics interrupts
Communication between CPUs and GPUs is critical to a
computer’s graphics pipeline; see Figure 1. Important com-
ponents of such communication include DMA requests and
acknowledgment to enable buffer sharing, the command
FIFO between CPUs and GPUs, as well as interrupts from
the GPU to CPU when certain events need to be processed
immediately (IRQs as shown in Figure 1). These IRQs are
reflections of the corresponding graphics workload being
processed.

Table 1 lists all IRQs defined in a popular open-source
graphics driver on Linux, namely the drm/i915 Intel GFX
Driver. Each of these interrupt types is either about a
specific GPU engine, including the RCS (rendering), BCS
(blitter copy), VCS (video en/decoding), and VECS (video
enhancement) engine, or about basic events (such as vertical
blanking). For example, displaying a PNG picture only
involves rendering static frames which will be done by the
RCS engine, while playing an MKV video may require the
VCS engine to perform decoding throughout the process.
This suggests that graphics interrupts are good reflections
of contents being displayed. By the same token, the user in-
terface of an application needs to be rendered and refreshed,
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Fig. 1: Conventional GPU-related attacks and our attack strategy.

which could also be reflected on the corresponding graphics
interrupts.

2.1.2 Threat model and our idea

Different from existing side-channel attacks on GPUs [14],
[21], [25], [34], our proposal considers a lower-level interface
which works completely in a passive manner by captur-
ing only statistical interrupt information provided by the
OS kernel. Specifically, our threat model assumes a (non-
privileged) spy process which periodically reads the aggre-
gated graphics interrupt counts reported by the operating
system, and uses a sliding window to extract subsequences
of the collected time series of interrupt statistics. We then
use a trained machine learning model to determine the task
being processed by the GPU. As illustrated in Figure 1,
our proposal differs from existing attacks which intrusively
cause contentions in the GPU resource space (as highlighted
by ¬ in the figure). Instead, our attack does not access any
GPU resource at all, but only reads interrupt statistics from
outside of the GPU (as highlighted by ). Although such
a spy process could potentially exploit other system side
channels (e.g., CPU cache and network traffics) to launch
data-driven leakage attacks, our investigation here focuses
on the leakage of GPU-related information, which is more
informative in inferring GUI of the application and might
not be acquirable via data-driven leakage attacks.

2.1.3 Challenges and experiments

Although modern operating systems like Linux report
graphics interrupt statistics to any non-privileged user pro-
cess via the proc filesystem (procfs), the specific types of
graphics interrupts (e.g., those reported in Table 1) are ag-
gregated into a single count. It is therefore not clear whether
such coarse-grained reporting is sufficient for revealing user
privacy. In this paper, we evaluate the extent to which
such aggregated graphics interrupt information masks or
reveals workload on the GPU, and the extent to which such
masking/revealing of workload leaks private information
of victim processes.

We experimented with the graphics interrupts on two
different microarchitectures, namely an Nvidia GeForce
GTX 760M (with Nvidia driver version 340.107) and an Intel
HD Graphics 520 GT2 (with drm/i915 driver integrated in
Linux kernel 5.4.2). The Nvidia unit is chosen due to its
popularity and potential use in general-purpose computing.

The Intel unit is chosen because it is controlled by an
open-source driver integrated in the Linux kernel, which
allows us to observe the low-level details of the collected
graphics interrupt patterns to make our experimental results
explainable. The experiments were conducted on an Ubuntu
18.04 LTS machine with an Intel i7-4700MQ Processor and
8GB RAM, where interrupt statistics are obtained by reading
/proc/interrupt. Note that in case of Windows, infor-
mation of IRQs is managed by the interrupt descriptor table
(IDT). Although there had not been software (via legitimate
APIs or hacking techniques) reported specifically designed
for extracting interrupt statistics on Windows, documenta-
tions suggest that it can be done in a similar way in which
system call information is extracted with a kernel driver
overwriting the system service descriptor table (SSDT) [10],
[15].

2.2 Attack Scenario I: Document Fingerprinting
Our first attack implements document fingerprinting in
which the victim is an application process with (part of)
a document being graphically displayed, and the goal of
the attack is to identify which document is being opened.
We first consider webpage fingerprinting as it has been the
target of many existing attack strategies (see Section 2.1).
We then move on to the scenario of identifying (script-free)
PDF documents to gain deeper insights, considering that
most real-world webpages are script-heavy.

2.2.1 Webpage Fingerprinting
Experimental design We make a comparative study with
one of the latest attacks using GPU side channels [21]. To
this end, we tested our attack on the same Alexa top 200
websites [1] with the Chrome browser and used the same
basic machine learning models as in Naghibijouybari et al.
for our classification, namely Gaussian Naive Bayes (NB), K-
Nearest Neighbor with 3 neighbors (KNN-3), and Random
Forest with 100 estimators (RF). We additionally included a
state-of-the-art deep learning model on time series classifica-
tion, the Residual Neural Network (ResNet) [8], [30]. This is
because a previous research on time series classification [4]
suggested that deep learning methods typically outperform
conventional statistics-based models because they do not
require pre-processing the input data to extract feature
vectors. Our ResNet model used the same hyperparameters
as in the original proposal [30] with 3 residual blocks each
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TABLE 1: Interrupt Request Definitions in drm/i915 Driver.

Name of IRQ Description

GEN8_DE_MISC_IRQ
Miscellaneous interrupt raised by graphics system
events (GSE) and panel self refresh events (PSR).

GEN8_DE_PORT_IRQ
The display engine port interrupt, related to AUX DDI
A done event and hotplug events.

GEN8_PIPE_VBLANK Related to vertical blanking events.
GEN8_PIPE_CDCLK_CRC_DONE This displays core clock (CDCLK).

GEN8_PIPE_FIFO_UNDERRUN
Related to GPU’s command FIFO when running into a
buffer underrun.

GEN8_DE_PCH_IRQ
The south display engine interrupt, also deals with
hotplug interruption and ambus events.

GEN8_GT_RCS_IRQ
Interrupt of the RCS engine which performs computing
and rendering.

GEN8_GT_BCS_IRQ Interrupt of the Blitter COPY engine.

GEN8_GT_VCS0_IRQ
Interrupt of the VCS engine used in processing videos
where it performs encoding and decoding.

GEN8_GT_VCS1_IRQ Same as the previous one.
GEN8_GT_VECS_IRQ Interrupt of the video enhancement engine.
GEN8_GT_PM_IRQ Related to power management events.

GEN8_GT_GUC_IRQ
Related to microprocess interruptions of the graphics
microcontroller (GuC).

built by stacking 3 convolutional blocks consisting of a
convolutional layer followed by a batch normalization layer
and a ReLU activation layer. The number of filters in the
residual blocks were, respectively, set to 64, 128, and 128,
with the convolution operation fulfilled by three 1-D filters
of sizes 9, 5, and 3 without striding.

We automatically loaded each webpage 100 times with a
script, and logged the timestamp of each event. Upon each
webpage loading, we picked up 100 continuous samples of
(aggregated) graphics interrupt counts collected by our spy
process to form a time series corresponding to the event,
with the value of each sample indicating the increment of
graphics interrupts since the previous sampling. We used a
sampling interval of 50ms for negligible performance over-
head. Note that in such a side-channel attack, data sampling
of the spy process and the targeted sensitive events are
supposed to be asynchronous for mimicking a practical
attacking scenario. Therefore, we started establishing a time
series using the last interrupt count collected before the
timestamp of its corresponding webpage loading event as
its first sample. Finally, we used 10 folder cross validation
to measure the accuracy of the corresponding machine
learning models.

Result and analysis As shown in Table 2, conventional
machine learning models could no longer provide effective
classification on side-channel leakage of graphics interrupts.
Out of the three such learning methods tested, only random
forest could maintain a precision of around 85% and 79%, re-
spectively, on the Intel and Nvidia GPU. However, the state-
of-the-art deep learning model on time series classification,
namely ResNet, demonstrated much better accuracy on the
Nvidia GPU (88.2% F-measure) and even better on the Intel
GPU (92.0% F-measure). Although our results are not as
good as those reported by Naghibijouybari et al. [21] when
using the same conventional machine learning classifiers,
we remind readers that our results are achieved without
injecting GPU payload or causing contention in the GPU
resource space, unlike those in Naghibijouybari et al. [21].
Such results suggest that graphics interrupts provide a valid
privacy leakage vector to support side-channel attacks in the
scenario of website fingerprinting, with an unprivileged spy

process reading only aggregated graphics interrupts from
/proc/interrupt.

To better understand the results, we dive into the low-
level details of the interrupt handling process by hooking
the IRQ handlers of the drm/i915 driver to gain more
detailed logs on the graphics interrupts captured, which
enable us to investigate the interrupt counts for each IRQ
listed in Table 1. Note that an unprivileged attacker (main
threat model used in our paper) could not obtain such infor-
mation. We do this solely for the purpose of better under-
standing our attacking capability behind the scene. Figure 2
demonstrates such detailed interrupt patterns on opening
four webpages (homepages of Google, Facebook, Amazon,
and Tencent) using three browsers (Chrome, Falkon, and
Firefox). Our analysis reveals two interesting observa-
tions.

First, Google’s homepage has the simplest layout and
correspondingly, the GEN8_GT_RCS_IRQ interrupt boost
(indicating events signaled by the rendering engine) of its
loading was the shortest among the four webpages (for
around 1.2s, while those for Amazon and Facebook were
respectively around 2.0s and 3.7s). In addition, all the tested
webpages are static except that of Tencent which contains
animation effects. As a result, we can see that the RCS
interrupt pattern of Tencent’s corresponds to continuous
refreshing of the webpage, unlike what happened to the
other tested webpages. These confirm our intuition (see Sec-
tion 2.1) that graphics interrupts reflect layouts and objects
of the display.

Second, we found that on opening the same webpage,
different browsers result in distinct graphics interrupt pat-
terns (see Figure 2.d, 2.e and 2.f). This suggests that the
detailed implementation of GPU acceleration in different
browser engines also has a significant impact on our side-
channel attacks. Each browser has a unique strategy with
regard to the type and amount of data to be submitted to the
GPU for processing, which will translate to different number
of GEN8_GT_RCS_IRQ interrupts per sampling. We believe
this is why browsing with Firefox causes significantly
smaller amount of rendering-related interrupts compared
with Falkon and Chrome. This also suggests that graphics
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TABLE 2: Performance of webpage fingerprinting: average and standard deviation.

F-Measure Precision Recall

Graphics Interrupt
(on Intel)

NB 46.3% (7.51) 48.7% (10.6) 49.7% (8.26)
KNN-3 32.4% (6.12) 36.5% (8.72) 34.1% (5.12)

RF 83.1% (7.02) 85.5% (5.78) 83.9% (5.47)
ResNet 92.0% (1.35) 93.4% (1.27) 92.2% (1.31)

Graphics Interrupt
(on Nvidia)

NB 46.7% (1.76) 49.0% (2.96) 50.1% (2.02)
KNN-3 29.3% (1.12) 31.9% (1.26) 30.5% (1.41)

RF 76.5% (0.56) 79.3% (0.65) 77.2% (0.66)
ResNet 88.2% (0.51) 89.9% (0.31) 88.3% (0.44)

Naghibijouybari et
al. [21] (on Nvidia)

NB 83.1% (13.5) 86.7% (20.0) 81.4% (13.5)
KNN-3 84.6% (14.6) 85.7% (15.7) 84.6% (14.6)

RF 89.9% (11.1) 90.4% (11.4) 90.0% (12.5)
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Fig. 2: Interrupt patterns (Intel) of different webpages (and the corresponding browser). Missing lines correspond to zero
readings of IRQ types.

interrupts could not only be used to fingerprint data (e.g.,
webpages) processed, but also to fingerprint applications;
see Section 2.3.

We also note that modern web browsers utilize the
GPU to accelerate their rendering processes. Many web-
pages now contain optimized frontend/backend code to
take advantage of it [19]. As a result, different webpages
can adopt different acceleration techniques including server-
and client-side rendering, rehydration, and prerendering,
which lead to differences in their resulting graphics inter-
rupt patterns. To confirm this intuition, we used an open-
source prerendering tool, pre-render2 to convert a simple
Vue webpage into its pre-rendered variant3, and recorded
the corresponding graphics interrupts when the two pages
were loaded and displayed in Chrome. Figure 3 showed
noticeable differences between the interrupt patterns on the
two instances.

2. https://github.com/kriasoft/pre-render.
3. The tested webpage can be accessed via

http://pay.his.cat/app.html (original version) and
http://pay.his.cat/index.html (prerendered version).

2.2.2 PDF document fingerprinting

Although our experiments with the Alexa top 200 websites
show good results in general webpage fingerprinting, we do
not have control on the exact layout of the webpages and
therefore could not tell precisely what kind of documents
are easier or harder to fingerprint. In addition, webpages are
usually script-heavy, making their resulting GPU interrupts
arguably code dependent (due to the scripts embedded)
rather than purely data driven. Therefore, here we design
a more controlled set of experiments on PDF document
fingerprinting, in which we intentionally select some similar
and distinct script-free PDF documents to experiment with.
Given that the previous experiment has already demon-
strated the superior capability of deep learning over conven-
tional machine learning methods in webpage fingerprinting,
in this experiment, we choose to use ResNet only as the
classifier.

Experimental design We selected 20 PDF documents
consisting of 4 categories of research papers (RP), magazines
(Mag), newspapers (News), and fiction books (Book); see
the Appendix A for snapshots of these 20 documents. Each
category contains documents with distinct characteristics.
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(b) Prerendered version

Fig. 3: Interrupt patterns (Intel) of two versions of a same
Vue webpage, with and without pre-rendering.

For example, all research papers are from the same security
conference published in the same year under the same
layout and typesetting requirements, and are seemingly
more difficult to be differentiated. Documents from different
categories are easier to be told apart, e.g., all magazines
have significantly more photos. Each of these documents
was opened with evince to display its first page as well
as a preview of other pages. Our spy process collected ag-
gregated graphics interrupt counts during these processes,
and performed classification to infer which document was
opened. Note that in this experiment, we first launched
evince (with nothing to be opened), and then waited for
10 seconds before starting collecting data to prevent the
interrupt pattern of application starting from kicking in and
interfering with the results.

Result Figure 4 shows the heatmaps for classification
results on the two GPUs tested. Again, we find the accuracy
of our attack on the Intel GPU (86.0%) to be higher than
that on the Nvidia’s (58.97%). Specifically, our attack on the
Intel GPU is effective for in-group and cross-group finger-
printing for magazines, newspapers, and books. However,
low accuracy is observed in classifying research papers,
which is mainly due to the misclassification within the
same category. Intuitively, this is because that our selected
research papers from the same conference proceeding are all
of the similar layout (formatted using the same template).
It’s worth mentioning that when reducing the granularity
of classification from individual file level to the category
level, the accuracy of our attacks increases to 96.8% and
73.2%, respectively, on the Intel and the Nvidia GPUs. This
suggests that graphics interrupts could at least be exploited
to reveal the flavor of documents being displayed.

TABLE 3: Subjects for our application fingerprinting attack.

Application Category Application Category
Inkscape graphics

editor

libreoffice text editor
GIMP Notepadqq
Krita ClamTk antivirus
atril doc viewer Deluge download

Thunderbird e-mail Audacity

multimediaGeary Clementine
Pidgin social Kdenlive
Corebird VLC
Neofetch system

management
Firefox web

browserSynaptic Brave

TABLE 4: Results of application fingerprinting, average and
standard deviation.

F-Measure Precision Recall

Intel

NB 98.7% (0.26) 98.8% (0.19) 98.7% (0.26)
KNN-3 91.4% (3.53) 91.9% (2.99) 91.5% (3.51)

RF 99.6% (0.07) 99.7% (0.06) 99.7% (0.07)
ResNet 99.5% (1.09) 99.5% (0.91) 99.6% (1.11)

Nvidia

NB 97.9% (3.09) 98.2% (1.91) 97.9% (3.31)
KNN-3 95.4% (3.62) 95.6% (2.89) 95.5% (3.51)

RF 99.3% (1.58) 99.4% (1.17) 99.3% (1.71)
ResNet 99.8% (0.08) 99.8% (0.07) 99.8% (0.08)

2.3 Attack Scenario II: GUI Application Fingerprinting

Our second attack attempts to fingerprint GUI applications
with the same spy process monitoring graphics interrupts.
Application fingerprinting has implications not only on
revealing end user activities (e.g., which application is
launched), but also on picking the best machine learning
model for document fingerprinting. This is especially im-
portant because as shown in Section 2.2.1, different browsers
cause different interrupt patterns even for displaying the
same webpage. As such, with an effective application fin-
gerprinting, it could be possible for an adversary to first
identify the specific browser being used and then pick
the suitable machine learning model to achieve optimized
accuracy in subsequent webpage fingerprinting attacks.

Experimental design We downloaded 20 popular ap-
plications on Ubuntu as test subjects (see Table 3 for the
list of selected applications), and launched each of them
100 times with our scripts. Note that to demonstrate the
connection between this attack and webpage fingerprinting,
we included two web browsers, Firefox and Brave, into the
test set. Since the goal of this attack is to infer the application
launched, we did not further use them to process any input.
Again, each time a subject application is launched, 100
samples (with sampling interval at 50ms) of interrupt count
were collected to form the corresponding time series.

Result Our attack on application fingerprinting demon-
strated very high accuracy with all tested machine learning
models on both Nvidia and Intel GPUs — more than 99%
for random forest and ResNet; see Table 4. This suggests that
graphics interrupts could effectively leak information about
the running desktop applications, indicating good general-
ity of our application fingerprinting attack. We believe that
this is due to the higher degree of flexibility in the design
of GUI of desktop applications, compared to the design of
webpages which is governed by the html protocol.
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Fig. 4: Fingerprinting PDF files (research papers (RP), newspapers (News), magazines (Mag), and fiction books (Book).

2.4 Attack Scenario III: Beyond Visual Perception

In our attack scenarios I and II, document and application
fingerprinting are both targeting objects that present unique
visual perception to human users. The idea is that each
unique GUI or view of the documents correspond to unique
workload on the GPU, resulting in classifiable patterns of
graphics interrupts. In this section, we investigate a more
challenging problem in using aggregated graphics inter-
rupts to differentiate objects with the same visual percep-
tion, i.e., can we differentiate something even a human being
cannot differentiate with visual inspection? Such capability
has a strong implication on the research of human factors in
security, e.g., in assisting human to detect phishing websites,
to detect re-packaged applications, and in digital forensics.

Experimental design As a first step in evaluating such
a capability, we take video playback as an example. Specifi-
cally, we consider the following two experimental settings:

• Same video clip encoded with the same codec played
back with different video players, in which we
played back a video clip in FLV format using four
different video players (VLC, SMPlayer, TOTEM, and
MPV);

• Same video clip encoded with different codec and
played back with the same video player, in which
we encoded a video using four codec (H264, MPEG4,
WMV2, and XIVD) and had them played back using
the VLC player.

Time series of graphics interrupt counts in this experi-
ment were collected from the 2nd to the 6th seconds into
the subject video4 to avoid potential noise from setting up
GUI of the video players. We repeated the experiment 100
times and performed a 10-fold validation over the collected
data as usual.

4. The video used can be found at https://shorturl.at/zCQTX

TABLE 5: Distinguishing video playback events: average
and standard deviation.

F-Measure Precision Recall

Diff players Intel 100% (0) 100% (0) 100% (0)
Nvidia 100% (0) 100% (0) 100% (0)

Diff codecs Intel 70.2% (37.0) 76.0% (46.8) 72.0% (31.0)
Nvidia 86.3% (24.4) 90.0% (19.4) 87.0% (21.0)

Result and analysis Table 5 shows the performance of
our attack in the two settings listed above. We find that in
the scenario of distinguishing different video players, our
attack works perfectly without a single misclassification.
While in the scenario of distinguishing different codec, the
attack on the Nvidia GPU outperforms that on the Intel
(86.3% vs. 70.2%). Note that the classification here has
only four potential classes due to the specific application
scenario (i.e., we do not have 200 different video players
or 200 different codecs to play with), and therefore the
interpretation of results need to be adjusted accordingly. We
remind readers that this is a much more difficult task than
document or application fingerprinting, though, due to the
lack of differences in the graphics display.

To further understand the low-level details behind such
results, we again leveraged the hooked drm/i915 driver to
demonstrate the IRQ-specific patterns of the tested events
(as was done in Section 2.2). Figure 5 demonstrates such
detailed patterns for six tested events (three for each set-
ting). We can see that all demonstrated interrupt patterns
show typical features of stream displaying, making different
patterns appear to be similar to a certain extent. We believe
that this is the main contribution to the relatively low
accuracy of our attack on the Intel GPU. On top of this,
there are still two interesting observations worth noting.

First, we find that different video player engines use
different rendering techniques. Figure 5.a, 5.b, and 5.c show
that when playing the same FLV video, VLC, SMPlayer, and
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(b) H264/TOTEM
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(c) H264/VLC
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(d) XVID/VLC
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(e) MPEG4/VLC
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Fig. 5: Interrupt patterns (Intel) of playing the same video using different video players and codec. Missing lines correspond
to zero readings of the IRQ types.

TOTEM used different GPU engines. Specifically, SMPlayer
relied purely on the basic RCS engine, while both VLC
and TOTEM used the VCS engine (VCS engine is for video
encoding and decoding). This means that SMPlayer re-
sorted to a pure software solution while VLC and TOTEM
utilized hardware acceleration. Furthermore, we observed
that TOTEM additionally leveraged the BCS engine, i.e., the
blitter engine, to accelerate 2D rendering. We believe that
such differences on the implementation details are the main
factors that make the tested video players distinguishable
from one another.

Secondly, the same video player also behaves differently
when decoding videos of different codec. In the case of VLC
playing the H264 videos, patterns of GEN8_GT_VCS1_IRQ
interrupts can be observed, indicating that hardware accel-
erated decoding were leveraged. However, when playing
the XVID, MPEG4, and WMV videos, VLC only involved
the RCS engine with pure software-level decoding. To
demonstrate how such implementation details affect the
effectiveness of our attack, we present the heatmap for
classification results of distinguishing the aforementioned
4 types of codec on the Intel GPU in Figure 6. We can see
that our attack never misclassified any event of playing back
the H264 video — unlike the playback of other clips where
a certain level of ambiguity existed.

2.5 Attack Scenario IV: Inferring Non-Graphical GPGPU
Workload

In the last attack scenario, we move from eavesdropping
visible events to fingerprinting program activities where
GUI displaying is not involved. In this attack, the victim
process is assumed to be executing some general-purpose
computing workload on the GPU, while a spy process tries
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Fig. 6: Classifying (using ResNet) video playback of differ-
ent codec using the same video player.

to identify the algorithmic type of that workload. General-
purpose computing workloads on GPU may include sensi-
tive executions such as cryptographic and machine learning
algorithms. Therefore, though the attack considered here
may not be fine-grained enough to directly reveal critical
sensitive data such as the secret key for en/decryption,
being able to identify the nature of GPGPU workload is
still significant in that it could provide key information to
subsequent attacks that cause more severe privacy leakage.

Experimental design For the test subjects of this attack
scenario, we selected the CUDA-implementation of 3 well-
known algorithms, namely AES5, SHA-2566, and the Py-

5. https://github.com/allenlee820202/Parallel-AES-Algorithm-
using-CUDA.

6. https://github.com/Horkyze/CudaSHA256.
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Fig. 7: Graphics interrupt patterns (Nvidia) caused by different GPU general-purpose computing payloads.

Torch7 implementation of ALEXNET [13]. We applied the
cryptographic algorithms on a randomly generated binary
stream of 1.5MB on each run. As for the neural network
algorithm, we performed network training on the MNIST
training set8 and let the process run for 1 minute on each
run. Graphics interrupt counts were collected as in previous
experiments, and we added the time series corresponding
to these algorithms into the dataset of webpage and GUI
application fingerprinting (see Section 2.2 and 2.3) for re-
training the ResNet models. The reason of this experimen-
tal choice is that a spy process that is only capable of
performing classification among a finite group of general-
purpose computing algorithms has limited capability, since
the dominating activities on an end-user device would most
likely belong to attack scenarios given in one of the pre-
vious sections. Therefore, we believe that general-purpose
computing identification is more meaningful if it can be
integrated into the previous spy processes.

Result Surprisingly, we find that the retrained ResNet
models could successfully identify each of the three general-
purpose computing algorithms with 100% accuracy. Mean-
while the F-measure of the retrained models in identifying
other GUI applications and webpages are 99.7% and 88.5%,
respectively (which is consistent with results in the previous
experiments).

As shown in Figure 7, each of the selected algorithms
caused a unique pattern (which we find to be highly consis-
tent across multiple executions of the same algorithm), and
such patterns are also very different from those of graphical
payloads such as webpages or application UIs. Unfortu-
nately, because the Intel drm/i915 driver does not support
general-purpose computing, we can only observe the aggre-
gated interrupt patterns on the Nvidia GPU without further
details. That said, this result still suggests that graphics
interrupts could be a highly effective leakage source for
inferring non-graphical (and executable) workload in GPUs.

2.6 Putting All Attacking Scenarios Together
With different results observed in the various attack scenar-
ios, a question is thus raised: are these observations leading
to a potentially consistent explanation? After analyzing un-
derlying details of the graphical and non-graphical events
being fingerprinted and inferred in all our simulations, we

7. https://pytorch.org/.
8. http://yann.lecun.com/exdb/mnist/

believe a strong correlation exists between the accuracy of our
attacks and the programmatic differences behind the targeted
events. More specifically, aggregated graphics interrupts are
capable of capturing both the data plane and control plane
of computer displays, where data plane refers to the graphi-
cal representation of the display (static objects in documents,
videos, and application GUI) and control plane refers to
program semantics responsible for the dynamic generation
of the display (scripts within webpages, codec used in
videos, executable code that generates application GUI, and
general purpose GPU workload). Therefore, accuracy of our
attacks is in fact influenced respectively by the presence of
data and control planes.

With this high-level understanding, we go into our spe-
cific scenarios again to recognize their respective data-plane
and control-plane involvement.

• In fingerprinting webpages, GUI applications, and
non-Graphical GPGPU Workloads, the graphics in-
terrupt patterns of the subject events are heavily
affected by their corresponding execution routines
(control plane).

• In recognizing video players and their codecs, there
might be comparatively more control-plane involve-
ment when identifying the different video players.
We note that codecs also contribute to control-plane
executions, although we argue that their determining
effects on graphics-based interrupts are probably not
as strong as the software implementation of different
video players.

• Finally, the influence of programmatic activities in
fingerprinting PDF documents is negligible due to
our use of script-free PDF documents.

We now put together the average detection accuracy
of all attacking scenarios and see if we could provide a
potential explanation; see Figure 8. The results show that
fingerprinting different video players is much easier than
differentiating various codec used. Likewise, recognizing
which PDF document is being opened results in much lower
accuracy than telling apart different webpages.

This potentially suggests that graphics interrupts reveal
more control-plane-related signatures of the targeted events
than data-plane-related ones. This property could also make
this side channel a useful tool in certain defensive scenarios
of software/web security. To give an intuitive example,
graphics interrupts might enable malicious webpage de-
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Fig. 8: An (illustrative) summary on the accuracy of our
attacks against different types of subject events.

tection systems to overcome evasive techniques aiming to
prohibit code analysis (e.g., obfuscation), since the side
channel profiles a webpage’s runtime behaviors. In our
future work, we plan to carry out an in-depth study on
using graphics-interrupt-based GPU side channel to support
malicious webpage detection and other defensive security
techniques.

Note that a systematic comparison among all the dif-
ferent attacking scenarios is unlikely to be fruitful consid-
ering other contributing factors, e.g., the number of possi-
ble classes in the classification experiments. Therefore, our
analysis above is restricted to comparing the fingerprinting
of PDF documents and webpages, or comparing identifying
video player or codec used.

3 DEFENDING AGAINST GRAPHICS-INTERRUPT-
BASED GPU SIDE CHANNEL: A MITIGATION

3.1 A Motivating Observation
As mentioned in Section 2.1.2, the graphics interrupt statis-
tics retrieved in our attacks are aggregated measurements.
As such, attacks based on such information could be in-
terfered by other events which trigger screen refreshing or
redrawing. A typical example of such noise sources is the
movement of the mouse cursor, in which areas at the past
and present locations of the cursor must be redrawn.

We first performed a preliminary evaluation on the ro-
bustness of our webpage fingerprinting attacks by collecting
a group of new interrupt time series from the Nvidia GPU,
in which the experiments involved manually moving the
mouse cursor during the process of webpage loading, or
having a movie being played throughout the experiment.
The test was conducted on the top 50 websites (given
by Alexa) and repeated 100 times for each webpage. Two
classification strategies were tested:

• Separate model: We train two ResNet models for
the “noisy” and “clean” (free of noise) data, respec-
tively. The application of such a strategy is under
the assumption that the existence of noise (mouse
movement or movie playing) could be effectively
detected by the attacker (e.g., by observing mouse
movement interrupts or by monitoring other side
channels like CPU utilization); and

• Mixed model: We train only one model with both
noisy and clean data mixed. Such classification will

be useful when the existence of noise cannot be
effectively detected.

We found that when classifying noisy data samples,
the F-measure of both tested strategies decreased to only
slightly over 54% for mouse movements as the noise and
around 68% with video playing as the noise. Meanwhile, the
F-measure of classifying clean data using the Mixed model
is 3% less than that with Separate models. Figure 9 shows
the interrupt patterns of loading Google’s homepage and
launching Libreoffice with and without mouse move-
ments, demonstrating how the additional and continuous
occurring interrupts caused by redrawing of the cursor had
changed the patterns of the corresponding events.

3.2 Idea and Implementation

Motivated by the observation above, we propose a mitiga-
tion scheme to fight against privacy leakage via graphics-
interrupt-based GPU side channel. Our main idea can
be seen in Figure 10. Given an application carrying our
mitigation module, whenever a privacy-related graphic-
s/GPGPU event (henceforth we call this the protected event)
is to be launched, our module actively generates an ultra-
lightweight but highly randomized GPU payload, called
the mask payload, and attaches it to the protected event.
The mask payload is designed to cause only a negligible
visual effect or no visual effect at all so that it has no
substantial impact on the user experience of the protected
event. Meanwhile, when under the observation of a spy
process exploiting the graphics-interrupt side channel, the
dynamic pattern of the protected event will be blended with
that of the mask payload, hopefully to the extent that it is
no longer identifiable.

Implementing such a mitigation module is not hard:

• For web browsers, the mitigation module can be built
as a browser addon that actively embeds dynamic
elements (in the form of small JavaScript pieces)
into webpages upon opening them. This, rather than
changing the side-channel signature of the applica-
tion, masks that of the webpages displayed, instead.

• For GUI applications, the mitigation module can
be built as a binary re-writing toolkit which, given
a subject application, creates a series of dynamic
displayable elements and embeds at least one of
them into each of the application’s GUI windows.
When the rewritten application window is displayed,
the embedded displayable elements cause GPU to
launch extra IRQs and thus alter the application’s
overall graphics interrupt signature.

We have implemented a proof-of-concept demonstra-
tion of the browser-based side-channel mitigation module,
which is built as a small Chrome addon9. When the Chrome
browser opens a webpage, our addon embeds a piece of
JavaScript payload into the HTML body to create a dynamic
element which involves GPU operations, and runs this extra
element together with the webpage. Currently, our Chrome
browser addon is designed to create a single repeatedly

9. Our Chrome addon for the demonstration of GPU side-channel
mitigation can be found at https://github.com/IanWE/PixelDefense
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(d) Libreoffice (with mouse movement)

Fig. 9: Graphics interrupt patterns (Nvidia) with and without mouse movement noise.
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Fig. 10: General idea of our mitigation scheme.

redrawn pixel as its dynamic element (using no more than
5 lines of JavaScript code), which is deployed at the edge of
the webpage opened such that the redrawing of this pixel
can be kept active in all viewing modes of the webpage
(e.g., windowed and full-screen). Given that the purpose is
to mask the graphics interrupt signature of webpages, we
avoid changing the color of the pixel in order to minimize
the interference to the original visual effect of webpages.
The embedded JavaScript operates iteratively according to
a just-in-time configured refreshing rate, which is chosen
uniformly random within the range of 1 to 100 ms.

Another potential option of implementing the dynamic
elements is to use GPGPU workloads. However, our prelim-
inary tests showed that using GPGPU workloads may not
be an effective mitigation scheme because doing so caused
a relatively heavy CPU occupation. The reason of this is
that unlike the usual GPGPU cases which tend to batch
processing large amount of computing in parallel, our miti-
gation module requires frequently sending small workloads

into the GPU memory space and arranging operations on
them, which then results in a large volume of CPU-GPU
communications.

3.3 Evaluation

We conducted another round of webpage fingerprinting
attack to demonstrate the effectiveness of our mitigation
scheme on graphics-interrupt-based GPU side channel. We
selected this specific attack scenario because manipulating
webpages at a large scale can be done efficiently without
causing any correctness issues. We believe that this setup
does not undermine the generality of our experimental
result or conclusion.

Experimental design The experiment with our Chrome
addon is carried out on the same device as in all attack
simulations demonstrated in this paper. Similar to what
we did in Section 2.2.1, we tested our GPU side channel
attack on the Alexa top 200 websites using ResNet as the
attack-side classifier, given that this model resulted in the
best performance in all tested machine learning models in
the original attack simulation. Note that as a software-level
defense scheme, we must consider a threat model where
an adversary can obtain our side-channel mitigation toolkit
and train her attacking deep-learning models with training
samples embedded with our mask payload, hoping to gain
as much adaptability against our mitigation as possible.
Therefore, this time we configure each test webpage to
be automatically loaded 200 times with our Chrome ad-
don running at the background and embedding the pixel
redrawing payload into them, creating “noisy” data only.
Furthermore, to obtain better understanding of the effective-
ness of our mitigation, we again tested both classification
strategies mentioned in Section 3.1 — the Separate model
and Mixed model strategies. For both strategies, we used
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data collected in the simulation of webpage fingerprinting
attack (Section 2.2.1) as the “clean” portion of training data
set, while the “noisy” portion consisted exclusively of data
collected with our Chrome addon running. Like in all other
experiments, we used 10-fold cross validation to measure
the accuracy of the resulting models, except this time all test
samples used in the validation were selected from the newly
collected “noisy” data given that this would be the case in
actual attacks intervened by our mitigation. Finally, we also
measure the performance overhead caused by our Chrome
addon in terms of CPU/power usage increment as well as
extra GPU memory consumption.

Result As shown in Table 6, we found that with pixel
redrawing events as the mask payload, our mitigation effec-
tively reduces the effectiveness of graphics-interrupt-based
webpage fingerprinting attacks. Specifically,

• the “clean” model trained for the Separate model
strategy was completely put out of action, with its
accuracy dropped to 1.63±0.12%;

• the “noisy” model of the Separate model strategy was
also significantly compromised, which only achieved
an accuracy of 43.3±6.53%;

• although the performance of the Mixed model strategy
ended up slightly better, it still only achieved an
accuracy of 56.69±4.73%.

Meanwhile, the performance overhead indexes showed
that when working with the pixel redrawing payload, our
Chrome addon induced only an additional CPU usage of
2.1% and an extra power consumption of 5W, while no
observable GPU memory cost was produced. These together
suggest that with proper randomization process, introduc-
ing intended GPU workloads to disguise user-privacy-
related events could indeed be a viable strategy against the
GPU side-channel attacks studied in this paper.

One additional observation we found particularly in-
teresting is that, comparing the performances of the two
strategies we have tested, it was actually shown that mixing
“clean” and “noisy” data up could be a better training
configuration for GPU side-channel attackers (when test
samples are noisy) than using either type of data exclusively
(although the resulting “improvement” is still not enough
to make successful attacks). We are not able to reveal the
exact reason behind this given that behavior of deep neural
networks during training and classification is notoriously
hard to explain. Our insight into this observation is that due
to the generalization capability of neural networks, being
able to learn both clear and consistent signature from the
“clean” data as well as compromised patterns from the
“noisy” data had made the resulting model more robust
against the interference of our mitigation. That said, we
also believe that the above observation actually further
confirms the effectiveness of our mitigation scheme, because
it suggests that it could be very hard for a GPU side-channel
attacker to gain more advantage by adopting alternative
strategies or extra tricks than moving to train a Mixed model.
To give an example, an attacker may try to further add a
clean/noisy feature to samples (which we did not do in
our experiment) used in the training of a Mixed model with
the suspicion that doing so could improve the resulting
model. However, having such a binary feature would most
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Fig. 11: Webpage and application fingerprinting with
shorter interrupt time series.

likely end up emphasizing the correlation between samples
within the “clean” and “noisy” groups, thus creating the
same effect as using the Separate model strategy and leading
to worse accuracy as the result.

4 DISCUSSION

4.1 Tradeoff between Accuracy and Timeliness of The
Graphics-Interrupt-Based Side Channel
When considering an attack scenario with on-the-fly mon-
itoring of GPU usage, classifications are expected to be
made in real time. As discussed in Section 2.1, our spy
process uses a sliding window to feed its machine learning
model subsequences of the interrupt time series. Intuitively,
a larger sliding window (corresponding to longer inputs to
our deep learning model and better accuracy) will result in
longer latencies, given that classification only happens after
the subsequences are collected. Therefore, in this subsection,
we investigate the impact of reducing the length of such
subsequences on the effectiveness of our attack.

We varied the length of subsequences with 10 differ-
ent settings to train new machine learning models and
observed the accuracy of them. Note that the sampling
rate remains at 50ms to minimize workload of our spy
process. As presented in Figure 11, the shortest interrupt
time series length for reaching 99% accuracy in application
fingerprinting was 50 samples, while that for reaching 80%
accuracy in webpage fingerprinting was 60 (or 80 if we
wish to reach 85% accuracy). This difference implies that
launching applications splashes differently from the very
beginning while loading webpages takes a slightly longer
period. It also suggests that using time series of 60 to 80
samples, which translates to 3 to 4 seconds, would be good
hyperparameter configurations to optimize the accuracy
and timeliness tradeoff.

4.2 Side-Channel Effectiveness under Root Privilege
Recall in Section 2.1 that an unprivileged user process could
only observe the aggregated reading of the different types of
graphics interrupts. Should an adversary somehow manage
to gain root privilege, his spy process would be able to
analyze more detailed vectors of GPU interrupt statistics
by hooking the system’s kernel driver. This therefore raises
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TABLE 6: Performance of webpage fingerprinting with our mitigation demo activated: average and standard deviation.

F-Measure Precision Recall
without mitigation 88.2% (0.51) 89.9% (0.31) 88.3% (0.44)

Separate model “clean” model 1.63% (0.12) 1.63% (0.08) 1.64% (0.08)
“noisy” model 43.3% (6.53) 43.3% (6.54) 43.2% (5.92)

Mixed model 56.69% (4.73) 56.68% (4.33) 56.69% (4.55)

a question: what advantage could root privilege bring to
our attack? We admit here that an attack with root privilege
could do more than monitoring interrupts, but still believe
that it is an interesting question to assess the potential addi-
tional accuracy that could be gained. To understand this, we
dissected the Intel interrupt data for webpage fingerprinting
(see Section 2.2) into multi-dimensional time series consist-
ing of separate readings of the specific interrupt types to
see if the ResNet model trained with such vectors performs
better. Compared to the result in Table 2, we found that
F-measure of the new model only improved for about 1%
on average. This suggests that when using a state-of-the-
art deep learning model, the additional advantage from
obtaining root privilege in our attack is negligible.

5 RELATED WORK

5.1 Webpage fingerprinting

Early approaches for webpage fingerprinting include mea-
suring web access time to exploit browser caching [5],
measuring memory footprints [11], and analyzing network
traffic [7], [24]. The relationship between webpage loading
and graphics displaying was also proposed for webpage
fingerprinting. For example, previous researches had pro-
posed using display-related features of browsers to con-
struct cross-origin timing attacks [12], [29]. Kotcher et al. [12]
found that after applying CSS filters to a framed document,
its rendering time becomes dependent on its content.

5.2 Interrupts

Interrupts have been exploited in privacy leakage scenar-
ios. Diao et al. [3] reported using interrupts to infer un-
lock patterns on Android devices. Tang et al. [27] further
suggested that patterns of interrupt increment could be
exploited to identify hardware related sensitive behaviors
of Android apps. Another study demonstrated inferenc-
ing of instruction-granular execution states from hardware-
enforced enclaves by measuring the latency of carefully
timed interrupts [28]. There were also researches suggesting
that attackers could establish covert channels based on the
CPU time used for handling interrupts [6], [18]. In this
paper, we focus specifically on using statistics of graphics
interrupts as a side channel to infer GPU related activities,
and study the potential risk of privacy leakage that can be
caused by such an attack.

5.3 Proc filesystem

The proc filesystem on Linux-based systems is another
leakage vector that was used by side-channel attacks for
inferring application UI status [2], keystrokes [32], TCP
sequence numbers [26], and user identities [33].

6 CONCLUSION

This paper systematically studied the possibility of utiliz-
ing graphics interrupts as a leakage vector to drive GPU
side-channel attacks. We introduced a series of possible
attack scenarios in which graphics interrupt patterns were
leveraged to respectively profile webpage opening, GUI
application starting, and GUI tasks with the same graph-
ics perception. On top of that, we further studied other
potential attacks where graphics interrupts are exploited to
infer program-independent non-executable GPU workloads
as well as behaviors of GPGPU tasks that result in no visual
presentation. Being a passive attack strategy, our attacks
demonstrated high accuracy in the tested attack scenar-
ios, suggesting that graphics interrupts could indeed leak
sensitive information related to user activities. Finally, we
proposed a practical mitigation scheme, which piggybacks
GPU workloads with mask payloads that generates inter-
fering graphics interrupt signals, such that signature of the
original GPU workload can no longer be correctly observed
and identified via the graphics-interrupt-based side channel.
Using the scenario of webpage fingerprinting, we have
demonstrated that the proposed mitigation strategy could
effectively reduce accuracy of graphics-interrupt-based side-
channel from 88.2% to 56.7%, while the additional perfor-
mance overhead is negligible.
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