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Abstract—App repackaging has been raising serious concerns about the health of the Android ecosystem, and repackage-proofing is
an important mitigation against threat of such attacks. However, existing app repackage-proofing schemes were only evaluated against
trivial adversaries simulated using analyzers for other purposes (e.g., disclosing privacy leakage vulnerabilities), hence were shown
“effective” mainly because their key programming features were not even supported by those toolkits. Furthermore, existing works have
also neglected dynamic adversaries capable of manipulating victim apps at runtime, making them vulnerable against such stronger
opponents. In this paper, we propose a novel repackage-proofing framework, which deploys distributed detection and response sites
into the subject app’s native partition to cross-verify all its code files. The detection sites transmit obtained integrity metrics to response
sites via secure communication channels built on the subject app’s own control flows using a specialized obfuscation technique based
on Collatz conjecture, turning the repackage-proofing process into complicated implicit flows that are intrinsically difficult to be resolved
due to the conjecture’s nonlinear dynamical behaviors. We evaluated our framework using sophisticated Android data-flow analyzers.
Results showed that our prototype effectively impeded analyses aiming to trace the information flows of its cross-verification.

Index Terms—App repackaging, repackage-proofing, code obfuscation, Collatz conjecture.
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1 INTRODUCTION

Mobile devices, especially smart phones, have become im-
portant players in ubiquitous computing, while Android is
currently considered to be the most popular operating sys-
tem for mobile devices [1], [2]. This unsurprisingly drew all
kinds of malicious activities against the platform, with app
repackaging being an important means. A typical purpose
of app repackaging is to re-publish a victim app either as a
new one or a mimic, which seems to be the authentic version
but in fact tampered in a way to fulfill certain collateral
malicious purposes, e.g., to deprive economic benefits via
compromised in-app purchases and/or advertisements, to
allow piggybacked malicious payload to be executed. To this
end, the adversary usually modifies internal logic of the vic-
tim app first, then packages the compromised instance with
a new signing key so that after it is published, unwitting
users might be lured into using it. Past studies showed that
5% to 13% of apps were plagiarisms in Android markets [3],
and among 1,260 malicious apps which were comprehen-
sively investigated, 86% were propagated via app repack-
aging [4]. More recent studies [5], [6] further showed that
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more and more sophisticated tricks from traditional desktop
malware samples have now emerged in app repackaging
cases, including adding hooks, hiding malicious payload
within resource files, mounting obfuscation, and VM-aware
mechanisms. App repackaging today has even started to
challenge machine-learning-based detection techniques [7].

One countermeasure against app repackaging inherits
the idea of software tamper-proofing, and aims to construct
Android apps with embedded capability of fighting off
integrity violations, which is widely known as repackage-
proofing [8]. To the best of our knowledge, five represen-
tative repackage-proofing schemes have been made public
as of 2020, namely Droidmarking [9], Stochastic Stealthy
Network (SSN) [8], [10], AppIS [11], BOMBDROID [12], [13],
as well as Self-Defending Code (SDC) [14]. Unfortunately,
these works either neglected certain intrinsic flaws which
make them vulnerable against targeted attacks, or relied on
programming tricks which appeared to be secure merely
because existing analysis tools never intended to support
those tricks. The theoretical security basis of these existing
schemes, however, is much weaker than claimed.

In this paper, we propose AppWarder, a novel and secure
Android repackage-proofing framework. Given a subject
app, the proposed framework enforces repackage-proofing
protection with a payload built in the form of distributed
code snippets consisting of

• a collection of detection sites built to obtain the the
subject app’s integrity status, and

• a separate collection of response sites built to verify
readings returned by the detection sites and react to
potential integrity violations.

These code snippets are deployed at various randomly
selected positions of the subject app’s native partition, and
they are designed to provide protection independently for
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additional resilience against removal attacks. The embedded
detection and response sites communicate according to com-
plex interdependencies, allowing AppWarder to work with
a delayed and probabilistic repackage responding strategy.
Instead of retrieving well-known integrity metrics from
an app’s static files, the detection sites of AppWarder are
designed to parse loaded code sections of the app and
verify their in-memory status, making AppWarder capable
of providing protection against dynamic adversaries. The
retrieved integrity metrics are passed to the response sites
through communication channels implemented on top of
an existing Collatz-conjecture-based control flow obfusca-
tion approach [15]. Collatz conjecture provides a unique
program structure that unfolds according to a unique orbit
when initiated with a distinct positive integer, whereas for all
other positive integers in general, it unfolds in a pseudo-random
manner. This unique orbit, when built into the communi-
cation channels of AppWarder, turns its parameter passing
processes (i.e., the propagation of obtained integrity metrics)
into complicated implicit flows, making them intrinsically
difficult to be analyzed via data-flow analysis. In this way,
AppWarder manages to integrate its payload into the subject
program’s own semantics (as part of the obfuscated control
transfers) so that attempting to compromise its protective
logic risks damaging the subject program as well.

To assemble a complete solution, AppWarder adopts dif-
ferent repackage responding strategies to form a stochastic
verification mechanism which works either locally or in
cooperation with a remote server. Specifically, our remote
repackage responding strategy turns the response behavior
into a proprietary protocol of which the consequence is
controlled by a remote entity, making it easier to disguise
such consequences into irrelevant errors.

We have evaluated the effectiveness of AppWarder on
both aspects of defending against runtime deceiving attacks
launched by dynamic adversaries and against off-line at-
tacks based on sophisticated software analysis. Put in short:

• with a comparative analysis on the source of integrity
metrics adopted by AppWarder and existing competi-
tors, we showed that our method could resist most
types of runtime deceiving attacks to which other
existing method are vulnerable; and

• further simulations showed that data flow analysis
using a state-of-the-art static analysis framework for
Android, namely Argus-SAF1, was also thwarted by
AppWarder, whereas the generic design adopted by
SSN was shown to be in fact traceable once Argus-
SAF was extended with a customization to support
tainting a specific resource of Android.

In addition, by studying low-level details of Argus-SAF in
processing apps protected with AppWarder, we confirmed
that complexity of the control and information flows of
such protected apps had been significantly increased by our
communication channel design.

The rest of this paper is organized as follow. In Section 2,
we briefly introduce related works on app repackaging de-
tection and repackage-proofing, as well as the threat model
and assumptions considered in this work. Following that, in

1. https://github.com/arguslab/Argus-SAF.

Section 3, we present the detailed design of AppWarder. In
Section 4, we explain the implementation of our repackage-
proofing framework. Section 5 presents our evaluation on its
effectiveness. We further discuss some implications on this
new repackage-proofing framework in Section 6, including
its compatibility with new security mechanisms to be added
in future Android distributions. Finally, we conclude the
paper in Section 7.

2 BACKGROUND

2.1 Repackage Proofing

In essence, repackage proofing is software tamper proofing
that targets Android apps specifically. As such, the task of a
repackage-proofing scheme includes detecting and respond-
ing to integrity violations occurred to both the subject app
and the payload of itself. To this end, it is necessary for
a repackage-proofing scheme to protect its payload from
being resolved by the potential adversaries via program
analyses.

Early Android apps were written in Java only. Conse-
quently, many of the existing repackage-proofing schemes,
including those mentioned in Section 1, protect their pay-
load using two obfuscation approaches:

• transforming key API calls of the repackage-proofing
payload into recorded reflections, with class and
method names of their callees ciphered before invo-
cations; and

• encoding large sections of the repackage-proofing
payload using self-decrypting code based on one-
way functions [16].

Both of the above approaches exploit features which An-
droid inherited from Java, and the idea is to turn key
elements required for resolving semantics of the repackage-
proofing payload into secrets to be released on-the-fly such
that the adversaries cannot rely on static analysis to reveal
and compromise the protected payload.

Meanwhile, another repackage-proofing design pro-
posed in the past, namely SSN [8], adopted a “delayed
responding” strategy by turning its payload into distributed
components so that the integrity measuring and verifying
operations are carried out separately, hence increasing the
complexity of dependencies between the two operations.
Furthermore, SSN transmits data among its distributed
components via “stealth communication channels” to pro-
hibit attempts of tracing, which are implemented by exploit-
ing the R class feature of Android2.

Unfortunately, the aforementioned defensive strategies
had underestimated the strength of app repackaging ad-
versaries. To begin with, note that during a repackaging
attack, the adversary is assumed to have full access and
control over all resources contained in the subject app’s
APK. As a result, it’s possible for the adversary to ma-
nipulate the subject app’s code sections (bytecode or na-
tive) in the off-line phase to hijack any API calls that
are considered suspicious. Existing studies have already

2. The R class is a dynamically generated class that reflects the
various values defined in an app’s resource files. See https://developer.
android.com/reference/android/R for its definition.
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pointed out that both the encoded reflection and the self-
decrypting code can be defeated by a dynamic adversary
who rewrites the related key instructions (e.g., invocations
to java.lang.reflect.Method.invoke and mprotect) to
redirect control to a customized handler, where the true
destination of reflection calls can be revealed and the dy-
namically decrypted code sections can be compromised
right before execution [17], [18].

The previously proposed design of stealth communica-
tion channels [8], [10] is also weak mainly due to the lack
of solid security basis. In fact, this design was only tested
against laboratory toolkits originally built for the purpose
of detecting information leakages, in which tracing the R
class is not supported merely because it was considered
unnecessary for the targeted application scenario. For a
determined adversary who is willing to pay effort to extend
a data-flow analysis toolkit [19]–[22] to cover features like
the R class, the protection added by existing communication
channels can be trivially broken. We demonstrate this in our
evaluation given in Section 5.

In summary, existing Android app repackage-proofing
schemes are either weak on their security basis or are
constructed on top of flawed protection mechanisms. In
this paper, we propose AppWarder which leverages a well-
accepted theoretical limitation of data-flow analysis. Unlike
the existing schemes, the integrity measuring mechanism
of the proposed framework also takes the resilience against
dynamic adversaries into consideration.

2.2 Control Flow Obfuscation using Collatz Conjecture
Collatz conjecture, or the 3x+1 problem, is an unsolved con-
jecture of great importance in mathematics3. The problem
involves computing the so-called Collatz function, a mapping
θ :N∗→N∗ where for any n ∈ N∗,

θ(n) =

{
n/2 (if n ≡ 0 mod 2),
3n+ 1 (if n ≡ 1 mod 2).

(1)

Let θ0(n) = n, and let

θk(n) = θ ◦ · · · ◦ θ(n)︸ ︷︷ ︸
k times

= θ(θk−1(n)), (2)

the conjecture asserts that there always exists a δn ∈ N∗,
such that θδn(n) = 1. Meanwhile, the procedure of com-
puting θδn(n) leaves behind a particular number sequence
Λ(n) = {n, θ(n), θ2(n), · · · , 1}, which is called the Hailstone
sequence of n. The assertion of Collatz conjecture also implies
that, given n1, n2 ∈ N∗, Λ(n1) = Λ(n2) holds only if
n1 =n2, i.e., the number of distinct Hailstone sequences is as
many as that of members in N∗. This characteristics makes
Collatz conjecture “a deterministic process that simulates
‘random’ behavior” [23] — while the Hailstone sequence of
each particular number in N∗ is both determined and unique,
behavior of the conjecture is in general hard to predict. Moreover,
the implementation of the conjecture involves an unrolling
loop controlled by a symbolic value, making it intrinsically
difficult to resolve using state-of-the-art program analysis
tools based on symbolic execution.

3. As a well-known mathematical problem, a detailed introduction
of this conjecture can be found at https://en.wikipedia.org/wiki/
Collatz conjecture

This characteristics has already been exploited as the
basis of control flow obfuscation [15]. Specifically, given a to-
be-protected conditional branch, this obfuscator surrounds
it with a Collatz conjecture loop while introducing the nat-
ural number (again, let it be denoted by n) being computed
by the conjecture into the conditional logic of the branch,
such that the modified logic is functionally unchanged only
if n=1. As a result, at runtime, the obfuscated branch would
always work correctly because Collatz conjecture asserts
that n will eventually become 1; to static program analysis
tools, on the other hand, n can only be considered as a sym-
bolic value, thus the Collatz conjecture loop surrounding
the protected branch could effectively prohibit the program
analysis via path explosion [24].

In this paper, we employ the same characteristics of
Collatz conjecture with n being (dependent on) a new
and reliable integrity metric, and build implicit information
flows from it to form an ideal security fundamental of
the secure communication mechanism in AppWarder. We
further introduce our detailed design (which is built on top
of the aforementioned obfuscation) in Section 3.4.

2.3 Threat Model and Assumptions
As mentioned above, existing repackage-proofing schemes
are ineffective mainly because these designs underestimated
the capability of their opponents. Therefore, contrary to the
previous works, the threat model considered in this paper
takes both the static and dynamic adversaries into account.
Be more specific, both types of adversaries are assumed to
have full control to the subject app’s APK, namely

• they are assumed to be able to analyze the APK off-
line with any possible means; and

• they could rewrite code and/or other resource files
contained in the APK during the process of repack-
aging.

The difference between a static and a dynamic adversary
is that code rewriting done by a dynamic adversary involves
injecting payload to further manipulate the subject app’s behavior
on-the-fly. Specifically, the injected payload could analyze
and/or modify the app’s code/data at runtime, with the
timing of such tampering controlled by the dynamic adver-
sary.

On the other hand, compared to the assumed adver-
saries, the capability of AppWarder is limited within the
reasonable margin of normal third-party apps. That is,

• the proposed framework cannot rely on any feature
that requires root privilege; and

• it should not leverage any hidden APIs since they
could be deprecated without notice.

Taking the rapid evolving pace of the platform into consid-
eration, we believe that supporting the old Dalvik virtual
machine that had deprecated since Android 5.0 is no longer
worth the effort. As an evidence, according to the statistics
provided by Android Studio4, as of July 2020, the distribu-
tion of DVM based Android systems (i.e., Android 4.4 and

4. Readers could refer to Google’s official explanation on
“Distribution dashboard” at https://developer.android.com/about/
dashboards.
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Fig. 1: Overview of the proposed verification framework of
AppWarder.

lower) is only 6.6%. Therefore, AppWarder is designed to tar-
get only the currently in-use Android runtime environment,
namely the ART runtime.

3 METHOD

In this section, we begin with an overview on the architec-
ture of AppWarder, and then further explain in detail the
design of key components of AppWarder.

3.1 Overview

Figure 1 illustrates the architecture of AppWarder. Similar
to AppIS and SSN, the payload of AppWarder consists of a
large amount of distributed detection and response sites to
establish a cross-verification network. The difference is that
components of AppWarder are deployed only in the subject
app’s native partition. Note that our framework is not
the first to utilize native level repackage-proofing payload.
However, unlike existing schemes [11], [18] in which the
motivation of this design choice is mainly to increase the
difficulty of program analysis, AppWarder focuses more on
reaping another benefit of native code — the availability
of pointers. Being capable of manipulating pointers allows
AppWarder to check the in-memory status of code files
belonging to the subject app, making it capable of detecting
potential runtime code tampering conducted by dynamic
adversaries.

More specifically, AppWarder deploys a payload of dis-
tributed detection and response sites, in which

• a detection site obtains the subject app’s (partial) in-
tegrity status; and

• a response site verifies readings returned by a subset
of the detection sites and reacts to potential integrity
violations.

To achieve good resilience, AppWarder utilizes different
detection sites to measure different code files of the subject
app while having each code file of the app cross-checked
by multiple detection sites distributed over the app’s differ-
ent execution paths. Meanwhile, each individual response
site of AppWarder verifies the integrity metrics retrieved
from multiple detection sites. These together create complex
interdependencies between components of our framework
which operate in a probabilistic manner. To further obscure
the behavior of AppWarder, the response sites are set to
operate according to one of two strategies, which, upon
detecting a potential anomaly, either stops the app directly

with a local crash or cooperates with a remote entity to
deny service or initiate code repairing. Details on the code
file measuring approach of our detection sites are further
explained in Section 3.2, while the local and remote response
strategies of our framework are presented in Section 3.3.

Most importantly, AppWarder’s detection sites communi-
cate the integrity metrics with its response sites via a group
of conditional control transfers selected from the subject app
and transformed them using specialized Collatz-conjecture-
based obfuscation [15]. Such obfuscated control structures
integrate AppWarder’s semantics with that of the subject
app as implicit flows that make AppWarder’s data flow
difficult to be traced, providing a security basis that is tech-
nically strong against both types of assumed adversaries.
We explain details of this communication channel design in
Section 3.4.

3.2 Repackage Detection
Intuitively, a repackage-proofing defense needs all code par-
titions of the subject app to undergo its integrity verification.
As stated in Section 3.1, AppWarder deploys native level
payload so that code of the subject app can be verified after
being mapped into its address space.

Earlier Android apps consist mainly of components writ-
ten in Java or Kotlin (a general-purpose programming
language announced by Google). With the emerging of
Android NDK, however, more and more apps today also
contain native components written in C/C++. When released
in the form of APK,

• the Java/Kotlin components of an app are typically
compiled into Dalvik bytecode and encoded in one
or more DEX files;

• the C/C++ components, on the other hand, are com-
piled into private native libraries.

When an app is started in the ART runtime, both its DEX files
and private libraries are mapped into its memory space. Be-
fore Android 8.0, ART compiles the app’s DEX files at install
time and merges the resulting native instruction stream to-
gether with the DEX files into an OAT file (Optimized Ahead
of Time) named base.odex, which is mapped into memory
upon app starting. Starting from Android 8.0, however, ART
stopped merging the DEX files into base.odex, and instead
introduced a new VDEX format (Verified Dalvik EXecutable)
specifically for the purpose of verifying and merging DEX
files. As a result, an additional base.vdex file is generated
at install time and is mapped alongside base.odex on app
starting. Furthermore, although ART claims ahead-of-time
compiling as one of its key features, our real-device tests
showed that bytecode inside the DEX files is not guaranteed
to be fully compiled at install time. Based on these obser-
vations, and in order to ensure the capability of properly
inferring the subject app’s integrity at all times, the detec-
tion sites of AppWarder are designed to measure the app’s
bytecode from its base.odex or base.vdex file (depending
on the version of Android system), as well as the native code
located in its private libraries; see Figure 1.

3.2.1 Integrity of DEX files
Recall that regardless the specific versions of the ART run-
time, all DEX files of an app are merged into one particular
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file when being mapped into the address space. Specifi-
cally, before Android 8.0, DEX files are integrated into the
app’s OAT file named base.odex and located in a read-only
.oatdata segment together with the OAT header. For higher
versions of Android, DEX files are, instead, encoded into the
app’s VDEX file named base.vdex, which consists of only a
single read-only section. A DEX file by definition carries a
checksum within its header, which also exists after its inte-
gration into the OAT/VDEX file. The ART runtime does not
allow incorrect DEX checksums, and will assert that on-the-
fly with a strict file legitimacy verification process. As such,
AppWarder directly checks the embedded DEX checksums
from the subject app’s OAT/VDEX file to infer the integrity
of its DEX files. This requires our detection sites to perform
on-the-fly special-purpose parsing on the OAT/VDEX files.

To give an illustrative example, assume that the goal is
to measure the first DEX file of an app, which is embedded
as a data section in its base.odex file built by an Android 7.0
platform. According to the format definition of OAT, a group
of OatDexFile structures are maintained right after the OAT
header and a key value store section. Each OatDexFile
structure corresponds to one of the app’s DEX files, with its
offset within the OAT file specified by a dex file offset
field. Let d1 and d2, respectively, denote the offset of the
demanded OatDexFile structure within the base.odex and
that of the dex file offset field to the beginning of this
OatDexFile, and further let d3 be the offset of the targeted
DEX file’s checksum field to the beginning of its header, then
the process of indexing from the beginning of base.odex to
this DEX checksum is as demonstrated in Figure 2. Here, if
we assume that the beginning of base.odex is indexed by
a pointer p, then the checksum of the target DEX file can be
found at the address ∗(∗p+(d1+d2))+d3, where “∗” indicates
pointer dereferencing. Note that offsets {d1, d2, d3} can be
calculated off-line and will remain unchanged across app
re-installation because

• for a fixed APK, the ART runtime always merges its
DEX files according to a fixed sequence; and

• once the Android version is known, the adopted
OAT/VDEX format can be safely assumed.

Therefore, AppWarder’s detection sites only need to obtain
p at runtime in order to correctly perform the demanded
parsing. As shown above, the functionality of the parser
here consists of no more than a few pointer operations, mak-
ing it ultra-light-weight and thus easy to hide or obfuscate.
Last but not the least, the process of checksum retrieving
for Android 8.0 and above is very much the same as in
the aforementioned example, except that the detection sites
need to parse the subject app’s base.vdex file instead.

According to project LIEF5, format of the DEX header
and the OatDexFile structure has never been changed since
Android 6.0. Although the format of OAT header had been
modified once, the change occurred in Android 8.1 where
OAT no longer contains DEX files and is therefore not the
target of our detection sites anymore. For the format of VDEX
files, on the other hand, our study on recent versions of
Android source code found one major modification on its

5. This is an open-source project which supports parsing, modifying,
and abstracting executable formats of Android; https://github.com/
lief-project/LIEF.
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nth DexFile
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p

d1

d2
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Fig. 2: General idea of retrieving a DEX file’s checksum by
parsing base.odex at runtime.

general layout, which took place in Android 9.0. As such,
using checksum of DEX files for repackage detection shows
little risk on the compatibility aspect. To correctly determine
which file should be parsed to retrieve DEX checksums as
well as the exact layout of the targeted file, AppWarder
simply needs to test the existence of base.vdex and check
the version of its header if it exists.

The acquisition of OAT/VDEX file pointer (i.e., the pointer
p in the above example) inevitably relies on accessing the
subject app’s memory map at runtime, which is also car-
ried out with diversified implementations. Besides directly
reading /proc/self/maps, a virtual file of Android’s proc
filesystem (procfs) which records memory mapping of the
subject app’s process, another option adopted by AppWarder
is to execute Linux command pipelines to write selected
lines of this virtual file into a temporary file, and then obtain
the OAT/VDEX file pointer from the latter. The involved
command lines can be stored in the form of ciphers and
be revealed only before they are sent to the system shell,
which also increases the difficulty of resolving semantics of
the related code components.

3.2.2 Integrity of private libraries
As discussed in Section 3.1, in order to establish a complete
cross-verification network AppWarder also needs to check
the integrity of the subject app’s native partition in addition
to its DEX files. Also recall that to retrieve the subject app’s
DEX file checksums, AppWarder needs to correctly obtain its
OAT/VDEX file pointer, and therefore cannot avoid using the
file system APIs (e.g., fopen()) and/or shell command exe-
cution APIs (e.g., system(), popen(), and execve()). Taking
dynamic adversaries into account, these APIs could be un-
reliable because their call conventions might be intercepted
at native level. For example, the adversary could redirect
all invocations of fopen() to his hooked functions such that
when AppWarder later acquires the app’s memory map to
locate the OAT/VDEX file (without loss of generality, assume
this is done by reading the virtual file /proc/self/maps
using fopen()), the adversary can hijack the acquisition
process and feed our framework with false information. To
perform such hooking, a dynamic adversary typically needs
to tamper with PLT (Procedure Linkage Table) stubs owned by
the subject app’s private libraries, which are address look
up stubs that handle control transfers towards imported
functions in relocatable native executables. As such, in order
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TABLE 1: Register holding the callee’s entry address in the
JNI dlsym lookup stub for different ISAs.

ISA Designated register
ARM64 x16/w16
ARM r12

Mips/Mips64 t9
x86/x86 64 eax/rax

to effectively protect a private native library of the subject
app, AppWarder has to measure the integrity of both

• its code section, for detecting potential logic tamper-
ing caused by app repackaging; and

• its PLT section, for defending against API hijacking
that might be launched by dynamic adversaries.

And given that AppWarder cannot simply trust the subject
app’s memory mapping before asserting the integrity of the
aforementioned key system APIs, it needs another way to
locate the library files at runtime.

As in other Linux-based operating systems, Android
maps the executable, read-only, and writable segments of
a .so library maps according to a fixed sequence, making
offsets between two specific instructions inside the library
a fixed value. Based on this observation, AppWarder intro-
duces an obfuscated addressing method to effectively index
key sections of the subject app’s private libraries for their
integrity measuring. Specifically, we looked into the JNI
call convention of Android and found a particularly useful
feature for fulfilling this purpose: when invoking a native
method from a Java method using JNI, the JNI call convention
leaves behind a code pointer referring to the callee’s entry point
after the invocation. That is, for all supported Instruction Set
Architectures (ISAs), the procedure of a JNI call ends with a
dlsym lookup stub which loads the callee’s entry point into a
particular register to be used later by a subsequent tail call.
This means: at runtime, a JNI native function can easily obtain
the function pointer of itself. Table 1 lists the registers used
in different ISAs involved in this convention, all of which
are general-purpose registers that would not raise suspicion
if they are used in a general data processing instruction
(such as mov). Exploiting this mechanism, AppWarder de-
ploys those detection sites assigned to measure a particular
private library of the subject app into JNI functions inside
that library, and makes sure that these detection sites can
access the register listed in Table 1 before the function
pointer left in it is overwritten. With this function pointer
as a pivot addresses, the deployed detection sites could then
index any positions within executable/read-only segments
of the subject library using offsets determined off-line6.

One advantage of building AppWarder’s native-level in-
tegrity measure on top of such an addressing method is
that it automatically introduces pointer aliasing that helps
impeding efforts of analyzing our protections, because de-
tection sites using different pivot addresses would naturally
refer to the same position of a library with different offsets.
In addition, AppWarder sees code and PLT sections to be
checked as binary strings, and divides them arbitrarily into
collections of overlapping substrings via an off-line analysis.
This allows our framework to infer the integrity of those

6. This is viable since a similar idea had been exploited by an existing
work to launch code reuse attacks [25]

sections by verifying the integrity of divided substrings
instead, as long as each of the divided substrings is covered
by at least one detection site. Finally, although the naive
implementation of pivot address acquisition requires only a
simple inline assembly instruction, to conceal the purpose of
involving the particular register used in the aforementioned
JNI convention, AppWarder introduces scrambled instruc-
tions to further increase the difficulty of identifying such
behaviors. A simple example is to add random masks on
the pivot addresses before copying them out of the register,
and having the masks removed later at the related detection
sites. These designs together introduce many uncertainties
into the detailed implementation of AppWarder’s detection
sites, and further increases the adversary’s difficulty of
revealing and/or compromising them.

3.3 Repackage Response
Many Android apps communicate with remote servers
as part of their functionalities. Taking this into account,
AppWarder applies two different strategies in responding
to app integrity anomalies detected.

• For apps which require substantial interactions with
their servers to be functional, AppWarder introduces
a proprietary handshake protocol to let the server
side respond to client-side integrity violations.

• In other cases, AppWarder uses a delayed and con-
trolled failure mechanism [26] as its local repackage
response strategy.

Figure 3 illustrates the idea of the proprietary handshake
protocol. Let im denote an integrity metric collected by a
detection site of the subject app (i.e., the client end of the
protocol), and trans(·) denote a transformation (e.g., an
efficient hash function) performed by a response site (also
located at the client side). As the first step of the protocol,
AppWarder generates a random salt s from the server, and
sends it to the app as a challenge. The in-app response site
then uses both s and im to compute a response res =
trans(im, s), and returns it back to the server. Interactions
between the two parties can only continue if the value of res
is as expected (represented by Exp in Figure 3); otherwise,
the server responds to a potential integrity violation by
either disconnecting from the client or starting a patching
process to have the repackaged instance repaired. The main
advantage of the remote response strategy is that it allows
AppWarder to disguise the response behaviors into other
types of events that appear to be irrelevant to the defense.
For example, when having a response that disconnects from
the client, the error could be reported as connection time
out or poor network performance; similarly, a self-patching
response can be done either silently or as an update to a
new version.

For the local response strategy, existing works have
already provided many valid implementations that delay
and control failure responses, e.g., by causing controlled
memory corruptions that would later be triggered at un-
determined timings [26], [27]. More recently, SSN adopted
a stealthy response approach by causing logic malfunctions
in the subject app, which is done by modifying the app’s
integer variables or attributes of its Button, TextView, Edit-
Text objects [8]. AppWarder adopts the controlled memory
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Protected app
(client end) Server

challenge: s

echo: res=trans(im,s)

continue: if res==Exp

s: a random salt im: an integrity metrictrans: a client end transformation
res: client end response Exp: expected value of the repsonse

Fig. 3: proprietary handshake protocol of AppWarder as a
remote repackage response strategy.

corruption approach given that memory allocation is tightly
related to user actions, making the consequences of con-
trolled memory corruptions harder to predict in actual uses
of the subject app. We omit details of this implementation
given that these approaches are not our contribution.

3.4 Secure Communication between Detection and Re-
sponse Sites
As discussed in Section 3.1, for the asynchronous verifica-
tion process of AppWarder to work, integrity metrics need
to be passed from corresponding detection sites to response
sites in a secure manner; otherwise data-flow analysis by
a static or dynamic adversary could potentially trace any
exposed communication to other payload of AppWarder.
To give a motivating example, Algorithm 1 demonstrates
a trivial case of detection-response site communication,
where im, the integrity metric returned by a detection
site detect(·) is directly compared with the corresponding
baseline value bl by a response site using a conditional
branch, and a respond() behavior is triggered should the
verification fails. Such a direct integrity metrics comparison
is sufficient to fulfill the goal of repackage-proofing; how-
ever, by tainting the code section in this code snippet (rep-
resented by “app code”), an adversary could easily trace
the data flow originated from this assumed detection site to
the conditional logic where im and bl are compared, and
consequently compromise the repackage-proofing routine
by making sure that respond() never gets triggered.

Algorithm 1: A trivial (and inadequate) case
of detection-response site communication in
repackage-proofing
· · ·
im = detect(app code);
if im! = bl then

respond();
end
· · ·

To mitigate this issue, AppWarder adopts a customized
communication channel which carries out the communica-
tion in the form of implicit data flows that are intrinsically
difficult to be analyzed. On top of that, AppWarder also
binds the integrity of related detection sites to the correct-
ness of the subject app’s original semantics, making them
difficult to be removed without compromising the original

im = getIntegrityMetric()

···
ImplicitMetric impM = InitialValue;
y = f(im);
while (y>1) {

if (y%2==1) {
y = y∗3+1;
impM = φ1(impM);
}
else {
y = y/2;
impM = φ2(impM);
}
if (x+y<32 && x−y>28) {

do sth();
break;
}
}
···

transmit medium

response when
impM 6= Exp

···
if (x==30) {

do sth();
}
···

subject branch

+

while (y>1) {
if (y%2==1)
y=y∗3+1;

else
y=y/2;

}

Collatz conjecture

Fig. 4: An intuitive example of the communication channel
of AppWarder.

app’s functionality. As mentioned in Section 2.2, the design
of our communication channel is based on the control flow
obfuscation technique built on top of Collatz conjecture [15].
Figure 4 illustrates the idea of our communication channels.
Again, let im denote an integrity metric obtained from a
detection site (as in Figure 3). Our communication channel
creates a projection between im and another variable impM
with only implicit dependency between the two. This allows
AppWarder to detect integrity anomalies by retrieving im
with its detection sites while verifying impM in its response
sites, with the connection between the two portions of the
operation unable to be resolved using data-flow analysis. To
this end, a conditional branch in one of the subject app’s
C/C++ functions is obfuscated using a specialized Collatz-
conjecture-based obfuscation, creating a transmit medium. As
an example, assume that the subject branch to be obfuscated
guards a Do sth() module with the predicate “x==30”. In
our specialized obfuscation, a spurious integer variable y>0
is derived using a customized function f(·) of im, and then
the subject branch is embedded into a Collatz conjecture
loop controlled by y, with the above predicate replaced by
the following combinatory logic:{

x+ y < 32
x− y > 28

. (3)

On top of that, in the two branches of the Collatz function
(namely the if-else structure within the transmit medium in
Figure 3), a pair of distinct non-linear mapping of impM
is deployed. That is, let these mappings be denoted respec-
tively by φ1(·) and φ2(·), then φ1(·) 6=φ2(·) must hold.

The above transformation turns the subject branch into
a dual-purpose construct. On one hand, it still handles the
subject app’s own control flow: as explained in Section 2.2,
Equation 3 is not satisfiable until y yields to 1, at which point
it becomes “29< x < 31” and is functionally equivalent to
“x==30” with x being an integer. On the other hand, when
executing this obfuscation construct, impM is computed
by a composition of φ1(·) and φ2(·) determined by the
Hailstone sequence of y. As long as the subject app is intact,
y takes a fixed sequence of values determined by im. As a
result, by fixing the initialization of impM , this obfuscation
construct becomes a robust projection from im to impM .
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Thus when execution exits the obfuscation construct, re-
sponse sites could refer to the value of impM to determine
whether they should act on a potential integrity violation.
In the meantime, if a detection site which provides im is ex-
posed, an adversary could only leverage this information to
trace AppWarder’s behavior to the communication channel,
but cannot further connect the information flow to impM
due to the lack of direct value assignment. Furthermore,
being an obfuscation structure, logic of the communication
channel itself is also difficult to be revealed using automatic
analysis tools.

To make the example given in Figure 4 more motivating,
assume im=27 when the subject app is not tampered with,
and the InitialV alue for impM is 1. In addition, assume

f(im) = 30− im
φ1(impM) = 2 · impM
φ2(impM) = impM + 5

. (4)

This setting gives y=30−27=3, i.e., the Hailstone sequence
of y is 3→ 10→ 5→ 16→ 8→ 4→ 2→ 1. Therefore, the
Collatz conjecture loop controlled by y iterates for a total of
7 rounds, with φ1(·) executed in the 1st and 3rd round, and
φ2(·) reached in the other rounds. As a result, the final value
of impM is (deterministically) given by

impM = φ42(φ1(φ2(φ1(1)))) = 34. (5)

However, assume that im is changed to 23 after a repackag-
ing attack, and f(·) outputs y=7 as a consequence (we omit
the detailed Hailstone sequence of 7 for simplicity). The final
value of impM in this case would instead be given by

impM= φ42(φ1(φ32(φ1(φ22(φ1(φ2(φ1(φ2(φ1(1))))))))))=242.
(6)

Therefore, AppWarder is able to monitor the subject app’s
integrity status by comparing the value of impM with 34
(denoted as Exp in Figure 4). Here, with im not directly
used to assign impM , but instead controlling the program
logic computing its value, an implicit flow from im to impM
is therefrom established. We will further show how such
intended implicit flows are used as the security basis of
AppWarder in Section 5.2.

4 IMPLEMENTATION

We implemented a semi-automatic toolkit of AppWarder
(with more than 1,200 lines in Java and 2,000 lines in
C/C++), consisting of a Gradle7 plugin (currently based
on Gradle v5.4.1) which manages the payload deploy-
ment procedure in general, and a Clang-based code-
rewriting module built using LLVM’s Libtooling8. Given
that AppWarder aims to include native code partition of the
subject app into its surveillance while having itself deployed
in that partition as well, we adopt partial code-data isolation
in the embedded payload. To be specific,

• offsets for indexing the app’s DEX checksums and
the baselines for verifying these checksums (hence-
forth the DEX offsets/baselines for short) are al-
lowed to be used as immediate operands within
AppWarder’s instructions;

7. https://gradle.org/.
8. https://clang.llvm.org/docs/LibTooling.html.

• offsets and baselines for indexing and verifying
the app’s native code (henceforth the native offset-
s/baselines), on the other hand, can only be put
inside data section of the respective native libraries
and referenced using addresses in the code of our
framework.

This layout allows AppWarder to complete transforming the
subject app’s native code partition before determining value
of key parameters required for verifying its integrity.

4.1 General Work Flow
Note that the Gradle tool chain of Android Studio
builds the APK of a subject app in the general order of
native→Java→class→DEX→APK. That is, it first compiles
the app’s C/C++ source into .so libraries, then compile the
Java source into .class files, and then uses the above files
to generate DEX files and finally makes the APK. To comply
with this general procedure, the pipeline of AppWarder is
designed as shown in Figure 5.

To begin with, our toolkit modifies the AST (Abstract
Syntax Tree) of the app’s C/C++ source and deploys a semi-
manufactured version of AppWarder payload, and then
compiles the modified code into preparatory .so libraries
(step ¬). This involves

• distributing detection and response sites into differ-
ent native functions of the app;

• based on the app’s call graph, choosing detection
sites that serve as sources of to-be-verified integrity
metrics for each of the response site; and

• finally, embedding the communication channels to
fulfill the aforementioned correspondences.

Note that at this step, content of these libraries are still
incomplete. Specifically, the DEX offsets/baselines as well as
the native baselines required by AppWarder’s detection/re-
sponse sites have not been computed yet. However, by
reserving space for such undetermined parameters using
padding, our plugin is able to guarantee that position of
code items in the preparatory libraries do not shift due to
any subsequent parameter updating. Therefore, the native
offsets of these libraries can be computed in this step.

Next, AppWarder compiles the app’s DEX files using
both its Java source and the preparatory libraries (step 

and ®). With these files generated, our plugin can determine
the DEX offsets and baselines and update the corresponding
parameters in its payload (step ¯). This would at last
complete code sections of the previously generated prepara-
tory libraries, allowing AppWarder to further compute and
update the native baselines for its payload (also in step
¯). In order to launch the above parameter updating at
the most appropriate timing, our plugin hooks the Gradle
task for generating DEX files to enable itself to take over
immediately after these files are built. Finally, after finishing
preparing all the code files, our plugin makes the APK of
the subject app’s repackage-proofed instance (step °).

Figure 6 shows a proof-of-concept demo of AppWarder
deployed on Frozen Bubble, a FOSS (Free and Open Source
Software) app that can be found from both the F-Droid
catalog9 and Google Play. Specifically, Figure 6.a and .b

9. https://f-droid.org/en/.
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Fig. 5: Implementation pipeline of AppWarder.

(a) normal instance (b) after repackaging (c) test after repack-
aging (crashed)

Fig. 6: A proof-of-concept demo of AppWarder responding
to a trivial app repackaging attack.

respectively demonstrates the UI of our demo as well as
a repackaged instance of it. And as presented in Figure 6.c,
when the repackaged instance runs, our repackage-proofing
framework causes it to crash in the matter of seconds.

4.2 Deployment of Detection/Response Sites
Thanks to its secure communication mechanism, AppWarder
is able to adopt a flexible strategy in deploying its detection
and response sites. In general, given a subject app, our
toolkit analyzes its call graph and embeds detection and
response sites of AppWarder into randomly selected native
methods. Due to the native-level addressing approach men-
tioned in Section 3.2.2, methods that can directly be invoked
via JNI are given priority. Other methods with large code
bodies are also preferred because it is less likely for the
embedded code pieces to become dominating components.
On the other hand, our toolkit rules out

• methods for error/exception handling only, because
the chance for them to be executed could be slim;

• methods called iteratively, to avoid causing unneces-
sary performance burden.

Due to the same reason, our toolkit also analyzes control
flow graph of the selected methods to avoid placing detec-
tion/response sites of AppWarder into loop bodies.

The dependencies between AppWarder’s detection/re-
sponse sites are established after their embedding. Specif-
ically, after a detection site has retrieved an integrity metric
reading, address of the metric will be updated into a dy-
namically maintained lookup table (referenced by a global
pointer). Any response site assigned to verify this metric
will first check the lookup table, and proceed only if the
corresponding entry is not null. Android apps typically

contain many functional modules that do not follow a
strict execution sequence, thus the behavior of response
sites would vary according to specific user behaviors. Con-
sequently, this makes the cross verification mechanism of
AppWarder probabilistic and more difficult to resolve via
static program analysis. This lookup-table-based response
site implementation is important because without such a
design, AppWarder’s detection/response dependencies can
only be established in a deterministic manner, which would
significantly limit the available locations for deploying re-
sponse sites (and consequently, the overall complexity of
AppWarder’s payload). For example, any response site can
only be placed at a location where all detection sites it
depends on are guaranteed to be executed, and, detec-
tion/response dependencies crossing different Android ac-
tivities/services can no longer be allowed because these
functional modules may not follow a strict execution se-
quence.

To make the above implementation less suspicious to
adversaries, AppWarder maintains multiple lookup tables
for different detection and response sites, which are built in
various forms (e.g., arrays, instances of structs/classes, and
etc.). The timing of lookup table updating is also flexible.
A table entry can be updated either after a detection site
finishes metric acquisition, or after the retrieved metric has
been transformed by a secure communication channel.

5 EFFECTIVENESS

There were generally two theories on which effectiveness
of a repackage-proofing scheme should be established. The
first was proposed by Droidmarking [9], which suggested
abandoning stealth of its payload and relying only on the
resilience provided by the self-decrypting code mechanism.
Unfortunately, self-decrypting code can be vulnerable over
dynamic adversaries. The second and more conservative
idea, as used in SSN [8], saw repackage proofing as a spe-
cial code tamper-proofing defense and accordingly valued
both stealth and resilience of its payload. The design of
AppWarder adopts the second theory, hence in this section,
we begin with a discussion on the stealth of its key com-
ponents, and then test the resilience of its communication
channels via simulations. Finally, we provide a brief evalu-
ation on the potential performance overhead of AppWarder.

Note that we do not take the timeliness of AppWarder’s
response activation (namely, the time it takes for a repack-
aged instance to crash/exit as the repackage-proofing re-
sponse) as a key component in our evaluation, because
this depends almost exclusively on the specific placement
of repackage-proofing payload. To give an example, one
could easily achieve good timeliness by having a repackage
detecting and responding routine embedded in the subject
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app’s entry method to make it immediately respond to
potential integrity violations upon app starting. However,
such a strategy is likely unreliable as the responding routine
(with relatively unique location as its signature) could be
revealed and removed by an adversary. Therefore, we trade
this timeliness property for better security resilience with a
more randomly distributed detection and response sites.

In addition, it is necessary to point out that software-
based protection approaches can typically be cracked as
long as a determined adversary is willing to put in sufficient
time and resource. The security goal of our framework is
more about raising the bar, i.e., to increase the difficulty of
pulling off a repackaging attack to an extent that doing so
becomes significantly inefficient compared to developing an
app of same function from scratch or reverse engineering
the critical logic.

5.1 Stealth
The stealth of repackage proofing mainly deals with the
difficulty for static analysis techniques to distinguish pay-
load of the repackage-proofing scheme from the original
app. Since the definition of this concept makes it hard to be
quantified via experiments, we instead provide a high-level
analysis on the stealth of AppWarder.

As described in Section 3, the payload of AppWarder
consists mainly the detection and response sites as well
as the communication channels for passing key parame-
ters between them. The construction of these components
involve 1) data reading referenced by pointers, 2) condition-
controlled loops, 3) dynamic memory allocations, 4) net-
work communications, 5) file reading/writing operations,
and 6) executing shell commands. All of these are common
operations that can be found in normal apps, indicating
that the instruction-level signature of AppWarder’s payload
is not significant. Particularly, the remote response strategy
of AppWarder works in the form of a proprietary protocol,
making response sites adopting this strategy unlikely to
be recognized. And in real-world practices, many apps use
shell commands (e.g., ping and ls) for purposes like testing
network status and locating required files.

In addition, by encoding parameters of API calls in
its payload, specifically the name of files to be operated
and the shell commands to be executed, AppWarder could
make it more difficult for static analysis to determine which
instructions serve for its functionality. This effect could
be enhanced by modifying the protected app’s own file
operations and/or shell command execution behaviors by
encoding their parameters as well, which would further
increase the stealth of AppWarder.

5.2 Resilience
Note that in the evaluation of AppWarder’s stealth, only
those approaches available to static adversaries were con-
sidered. This is because for a dynamic adversary, AppWarder
would inevitably expose part of its payload at runtime.
Exploiting this, such an adversary may resort to more so-
phisticated program analysis techniques, e.g., dynamic bi-
nary instrumentation (with tools like Frida10) or data-flow

10. https://github.com/frida.

Fig. 7: Android’s work flow of obtaining the interface of PMS

analysis, to trace the verification procedure of AppWarder,
hoping that the small amount of detection and/or response
sites exposed could lead to more payload discovery. Alter-
natively, the dynamic adversary could attack AppWarder by
hijacking key system API calls of Android (see Section 3.2.2),
so that the verification process of our framework can be
deceived while not being compromised directly.

5.2.1 Security against API hijacking
To begin with, it’s necessary to understand that native-level
hooking (as mentioned in Section 3.2.2) is not the only type
of API hijacking capable of defeating the previously pro-
posed app repackage-proofing schemes. Java APIs provided
by services of the Android framework are also vulnerable to
such type of malicious manipulations. To give an example,
most existing repackage-proofing schemes use the app’s
signing key as an integrity metric, which is obtained via
Android’s PackageManagerService (PMS). Before invoking
any PMS APIs, an app must obtain an interface of this
service by calling getPackageManager. According to the
work flow shown in Figure 7, this interface is eventually
converted from the static field sPackageManager within
the app’s ActivityThread object, and then returned by
method ActivityThread.getPackageManager. Also note
that ActivityThread.getPackageManager directly returns
the current value of sPackageManager if it is not NULL
(to avoid performance overhead caused by further con-
sulting the Android framework). Therefore, by corrupting
sPackageManager with a pointer of the hook function be-
fore anything else in the victim app tries to obtain the PMS
interface, a dynamic adversary could fake all PMS API calls
and hence counterfeit the related integrity verification.

Table 2 lists the integrity verification approaches that
have been adopted by AppWarder and that can be found
in past related literature, as well as the API dependency
status of these approaches. We can see that while most of
the existing repackage-proofing schemes adopted multiple
ways of integrity checking, all the previously proposed
approaches either rely on Java/native APIs of Android
framework. We have implemented a collection of proof-of-
concept demos of the known API hijacking attacks aiming to
bypass repackage-proofing protection11, and have verified
that all known sources of integrity metrics that have been
adopted in the existing repackage-proofing schemes can be
undermined by at least one of these demos.

11. See https://github.com/jnsiw/AWARE for our attack demo and
example cases.
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TABLE 2: Comparison on different integrity check methods
adopted by AppWarder and the existing repackage-proofing
schemes (regarding API dependency).

integrity checking method API dependency
rely on Android

services?
rely on

native API?
singing key verification

[8], [9], [12]
√

×
MANIFEST.MF digest

verification [12]
√ √

code checksum verification
(using memory mapping)

[11], [12], [14]
×

√

AppWarder:DEX parsing ×
√

AppWarder: code checksum
verification (using residual

function pointer)
× ×

On the other hand, while AppWarder’s file parsing based
DEX checksum verification mechanism may also suffer from
attacks using PLT hooking, our native-level integrity mea-
suring process, which locates code sections to be checked
using JNI residual function pointers, is (to the best of our
knowledge) the only anti-repackaging verification mecha-
nism that cannot be targeted by API hijacking. With this
native-level integrity checking as a security root, together
with the cross-verification network architecture, AppWarder
could therefore effectively fight against potential dynamic
attacks based on API hijacking (unlike other schemes pro-
posed in past works).

5.2.2 Security against Dynamic Binary Instrumentation

First of all, AppWarder is an application-level defense not
designed to withstand attacks and analysis from the oper-
ating system, kernel, or debugger. In fact, the reason why
AppWarder had to resort to the complex detection- and
response-site communication using Collatz conjecture is to
make sure that its repackage-proofing payload cannot be
reliably removed by an attacker given successful dynamic
analysis from the operating system, kernel, or debugger.

That said, AppWarder is able to withstand dynamic bi-
nary instrumentation techniques carried out at user level,
such as Frida. In analyses assisted by such dynamic binary
instrumentation techniques, an attack inevitably involves
tampering with in-memory status of the app’s native code
files to attach the DBI library and place hooks, which will be
picked up by our native-level integrity measuring process.

5.2.3 Security against data flow analysis

Against attacks based on data flow analysis, the resilience
of AppWarder mainly relies on its communication channels.
Note that a similar idea was adopted in another repackage-
proofing scheme, namely SSN [8], which leveraged An-
droid’s R class feature (Recall Section 2.1) as the communi-
cation medium and relied on reflections to achieve the data
transmission. However, such a design was thought to be
secure merely because at the time of the proposal, analysis
tools targeting Android have not yet supported tracing the
aforementioned app features, which is no longer the case
today. To demonstrate this, we extended a test case in

DroidBench12, namely FieldSensitivity3, to obtain the
SIM serial number of the device and transmit it to an infor-
mation leakage sink using the R-class-based communication
channel13. Source code of the extended test case is shown in
Figure 8.a, where an R class object test was created (line 30)
with its field ic launcher selected to be the communication
medium (line 36). The extended test case was then analyzed
using Argus-SAF, a state-of-the-art analysis framework for
Android, under its component-based taint analysis mode.
The result showed that Argus-SAF successfully traced the
embedded information leakage through the R-class-based
communication channel. Specifically, as demonstrated in
Figure 8.b, the taint path obtained by Argus-SAF precisely
located the reflection operations set(·) and get(·) where the
R class fields were manipulated (highlighted at line 28 to 30).
This proved that the existing communication channel design
proposed in SSN is in fact insecure even if it is implemented
using reflections.

Contrary to the R-class-based design, the communica-
tion channels of AppWarder are constructed on an implicit
value assignment mechanism which exists as a side effect
of the Collatz-conjecture-based obfuscation, which therefore
establish their security basis on a intrinsic limitation of
data-flow analysis. Specifically, under-tainting due to im-
plicit flows is a well-known disadvantage of taint analy-
sis [29], hence standard data-flow analysis based on such
techniques cannot propagate through AppWarder’s commu-
nication channels because of the implicit value assignment
mechanism. A simple alternative is to alter the taint policy
to perform propagation for every branch whose condition
was tainted. The tradeoff of doing so, though, is severe
over-tainting [30], which will bury dependencies related to
payload of AppWarder into numerous irrelevant taint traces.
More recent data-flow analysis tools on Android utilize
symbolic execution to provide precise control-flow graph
(CFG) and support annotation-based analysis. For example,
Argus-SAF, or to be exact, its JNI data-flow analysis com-
ponent JN-SAF [21], relies on symbolic execution backed by
angr [31]. However, our communication channels are by all
means still Collatz-conjecture-based obfuscation constructs,
which are designed specifically to impede symbolic execu-
tion by exploiting an intrinsic weakness of the technique,
namely the path explosion problem.

To make the evaluation comparable, we have verified
the effect of our communication channels using Argus-SAF
again. Because AppWarder is deployed in the native parti-
tion of the protected apps, we adopted native leak14, the
official native flow benchmark of the toolkit, as the subject
for this test. This app passes the device’s IMEI code to a na-
tive method send(·) once its request for READ PHONE STATE
permission is granted, and the latter leaks the IMEI. We
modified the send(·) method to pass the IMEI through our
communication channel, then let it instead leak the sink

12. An open test suite for evaluating taint-analysis tools [28]; https:
//github.com/secure-software-engineering/DroidBench.

13. We chose to set the communication channel on an information
leakage propagation because the design objective of Android data-flow
analysis tools is usually to detect such leakage, hence doing so could
correctly demonstrate the channel’s effect without undermining our
conclusions.

14. https://github.com/arguslab/NativeFlowBench/blob/master/
native leak/.
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(a) Extended instance of FieldSensitivity3 with the R-class-based communication channel
mounted

(b) Taint result of the extended FieldSensitivity3

Fig. 8: Verifying the effectiveness of the R-class-based communication channel against Argus-SAF.

variable result coming out of the channel (see Figure 9.a).
To give a better demonstration, we implemented the tested
channel as a method named Channel(·). Also, we used two
settings to either let Argus-SAF run on its standard taint
policy, or force it to perform symbolic execution on the
embedded communication channel.

According to the results of this experiment, when an-
alyzing the original version of native leak with the API
Telephony.getDeviceId tainted, Argus-SAF succeeded in
finding send as the sink (as highlighted in Figure 9.b). How-
ever, when working on our modified native leak, Argus-
SAF (on both settings) failed to find a sink (see Figure 9.c and
.d). Furthermore, we found that when using its standard
taint policy, Argus-SAF could properly establish the CFG
of the modified send(·) method (highlighted in Figure 9.c)
although it failed to give a valid output. This is because
the taint trace was lost inside method Channel(·) where the
our communication channel construct was embedded, indi-

cating that AppWarder effectively prohibited standard data
flow analysis by causing under-tainting. However, when
forcing the analyzer to reason through our communication
channel with symbolic execution, we found that Argus-
SAF even failed to resolve the correct CFG (highlighted
in Figure 9.d), which, compared with results shown in
Figure 9.b and .c, indicates that the Collatz-conjecture-based
obfuscation enforced by our communication channel had
caused the symbolic execution of Argus-SAF to fail. All these
suggested that with our communication channel design,
AppWarder achieves good resilience against attacks based
on sophisticated data flow analysis.

5.3 Performance Overhead
Intuitively, it is not easy to give a fair comparison on the
aspect of overhead between different repackage-proofing
schemes. For example, overhead caused by a self-decrypting
code snippet depends heavily on the adopted cryptographic
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(a) Modified send with our communication channel mounted

(b) Taint result of the original native leak

(c) Taint result of the modified native leak (standard implicit flow)

(d) Taint result of the modified native leak (forcing symbolic
execution on our communication channel)

Fig. 9: Resilience of AppWarder against Argus-SAF.

algorithm as well as the length of the encrypted code
segment, making it hard to establish a baseline. There-
fore, here we make an empirical comparison between the
overhead of individual basic components used in existing
repackage-proofing schemes and the potential bottleneck
that AppWarder introduces. We believe that considering the
aforementioned difficulty, understanding the performance
of key basic components to be used in a repackage-proofing
payload, including both the existing implementations and
the components of our framework, could be the best possi-
ble way to gain some credible insights regarding whether
the potential overhead caused by applying AppWarder
would be acceptable in practice.

Following the above motivation, the potential bottleneck
components involved in the repackage-proofing schemes
have to be identified first. For AppWarder, the design of
our communication channel is an iterative obfuscation con-
struct, which could loop for an uncertain number of rounds
due to the “randomness” property of the Collatz conjecture.
We therefore believe that the communication channels as
the potential performance bottleneck of our framework.
For the existing repackage-proofing schemes, on the other
hand, with undetermined processes like operations of self-
decrypting code be omitted, it is reasonable to consider the
overhead of integrity metric retrieving components as the
second most significant performance bottleneck. We imple-
mented three different integrity metric acquisition compo-
nents, which respectively obtain the app’s public key and

TABLE 3: An empirical comparison on the potential perfor-
mance bottleneck of AppWarder and the existing repackage-
proofing schemes.

Component Average
Overhead (ms)

Code Bloat
(bytes)

public key (direct API call) 0.8946 178
public key (using reflection) 1.7042 542

digests in MANIFEST.MF 6.1545 136
our communication channel 0.202 (average) 420

the digests within MANIFEST.MF. In particular, we consid-
ered two cases of public key acquisition, with one of them
calling the involved APIs directly while the other making
the invocations using reflections. For our communication
channels, given that the performance of a Collatz conjecture
process is determined mainly by the computed integer, we
tested the performance of our component with the initial
integer ranging between 127 and 65,535.

Table 3 shows the comparison of performance and code
bloat for running all the test components on a Google Pixel
3 XL. The result suggests that:

• as shown in the “Average Overhead” column, an
individual construct of our communication channel
causes smaller overhead on average than all the
tested conventional integrity metric retrieving com-
ponents; and

• as shown in the “Code Bloat” column, an individual
communication channel of ours also utilizes smaller
extra memory space compared to a reflection-based
public key retrieving component.

We stress that the purpose of this comparison is merely to
show that applying our integrity metric does not introduce
a new performance bottleneck.

6 DISCUSSION

6.1 Our Approach vs. Off-Line Repackage Detection

Represented by Google Play, Android app markets have
been trying to mitigate app repackaging via off-line code
comparison (on a variety of app features) for many
years [32]–[36]. Despite the various efforts, several known
shortcomings have limited the effectiveness of off-line
repackaging detection. For starters, any type of code com-
parison could be significantly impeded by either the vari-
ous obfuscation approaches available in the Android com-
munity, or the more cunning app repackaging strategy
known as the multi-generation repackaging [6], [37], [38].
In addition, off-line repackaging detection typically leaves
a surviving time window for repackaged apps before they
are caught, during which they would still be normally
distributed. Consequently, a repackaged app could already
be widely propagated at the time it is removed from the
market.

6.2 Our Approach vs. Pattern Matching and/or Model
Checking

Given that a key code structure which AppWarder relies on
is the loop of Collatz conjecture, targeted attacks against the
proposed framework might resort to techniques like pattern
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matching and model checking to locate code blocks be-
longing to our communication channels, and consequently
undermine the security of the framework. We point out
that existing works have already suggested possible ways
of diversifying and complicating the implementation of the
Collatz-conjecture-based obfuscation constructs, and have
showed that such transformations could effectively impede
analysis using pattern matching and model checking [24].

6.3 Impact of Execute-only Memory (XOM)
For Android 10 and above, Google have enforced a hard-
ening mitigation against just-in-time code reuse attacks,
which involves executable code sections for AArch64 sys-
tem binaries being marked as execute-only (non-readable)
by default15. Although execute-only memory (XOM) is not
compulsive, i.e., it can be disabled at module level and apps
can still make their code sections readable with mprotect,
this new security mechanism would indeed slightly un-
dermine the stealth of AppWarder because it forces the
proposed framework to introduce features that may raise
suspicion.

We believe that this points out an issue which should
come into notice of the Android community: by enforcing
some of the security policies to mitigate one type of attacks,
Android could actually be making the platform more vulnerable
against other types of attacks at the same time. Specifically,
most of the security and access control policies of Android
assume apps running in the system to be trusted, and
aim only at mitigating threats that compromise the apps
from outside their processes. However, app repackaging is
exactly the kind of attack which turns the repackaged apps
themselves into untrusted processes. As a result, Android’s
security mitigation mechanisms make merely trivial impact
(if not none) to app repackaging. On the other hand, the
progressive efforts in restricting accesses to low level system
information have made it increasingly difficult for third-
party apps to protect their own integrity, especially when
fighting against dynamic app repackaging adversaries who
tamper with program logics of the apps after any software-
level defenses have been deployed, while being able to
intercept and manipulate system services at runtime.

Being a popular and evolving type of attacks, app
repackaging could bring consequences as dangerous as
those of any other types of threats. Therefore, we suggest
that it might be a better idea to think twice before applying
security policies which end up making app repackaging
harder to be mitigated.

7 CONCLUSION

In this paper, we propose AppWarder, a novel and secure
repackage-proofing framework for Android apps, which
works by deploying distributed detection and response
sites into the subject app’s native partition to cross-verify
its code files. Integrity metrics obtained by our detec-
tion sites are passed down to the response sites via se-
cure communication channels built on top of a specialized
Collatz-conjecture-based control flow obfuscation approach.

15. https://source.android.com/devices/tech/debug/
execute-only-memory.

By adopting a combination of remote and local response
strategies, AppWarder is also able to respond to detected
anomalies stochastically. Besides being designed in a stati-
cally stealthy way, our evaluations showed that AppWarder
could effectively impede data flow analysis conducted by
Argus-SAF. An empirical comparison based on real device
testings have also suggested that the performance overhead
of AppWarder is acceptable.
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