
Custom Permission Misconfigurations in Android:
A Large-Scale Security Analysis

Rui Li∗, Wenrui Diao†, and Debin Gao∗
∗Singapore Management University

{ruili, dbgao}@smu.edu.sg
†School of Cyber Science and Technology, Shandong University

diaowenrui@link.cuhk.edu.hk

Abstract—Android’s popularity is due to its openness and vast
app ecosystem. Global developers can use Android Studio and
rich Android APIs to create their apps. Within this ecosystem,
Android permissions play a crucial role in managing access to
resources, with system permissions controlled by system apps
and custom permissions declared by third-party apps. However,
the security of custom permissions has not received enough
attention from the mobile security community, resulting in a lack
of thorough evaluation of security practices for app developers
using custom permissions. This study systematically evaluated
the misconfiguration of custom permissions by Android app
developers. It is based on ten configuration guidelines derived
from the Android development documentation, OS source code,
and related research papers to ensure proper functioning and
adherence to best security practices of custom permissions. The
study established the corresponding violation rules and built a
dataset containing 174,740 APK files for large-scale measurement
and analysis of guideline violations. The measurement results
indicate that misconfiguration of custom permissions by Android
app developers is quite common, with approximately 29.02% of
the 92,461 apps involving custom permissions having configura-
tion guideline violations. The two most common errors in custom
permission configuration are 1) putting custom permissions into
a defective custom group and 2) protecting components with un-
declared custom permissions. Such misconfigurations can lead to
various issues, including private app data leaks, app installation
failures, or incomplete implementation of app functions.

I. INTRODUCTION

Android’s popularity is attributed to its openness, which
has led to a diverse and extensive app ecosystem. Android
provides official app development tools such as Android
Studio and a rich set of Android APIs to empower developers
to create their apps. Google offers detailed development doc-
umentation [3] to assist developers in app building, including
guidance on configuring the app’s manifest file, implementing
app components, and more. Additionally, Google outlines best
security practices [20] in the development documentation to
ensure the security of apps, covering aspects such as app data
storage, app permissions usage, and inter-app interactions. For
apps published on Google Play, Google provides the App
Security Improvement Program (ASIP) to support developers
in building more secure apps [5].

Despite previous research [23], [26], [33] showing that
misconfiguration issues in apps remain widespread, developers
continue to make errors when configuring the app manifest
file, such as incorrectly placing elements and attributes or

misspelling them. Among the security issues caused by these
configuration errors, permission-related problems are the most
common, including over-privileged requests and improper
component protection [30]. Since the scope of custom permis-
sions is theoretically limited to the third-party app itself, their
security has been largely overlooked by the Android security
community [27]. Consequently, the security practices of app
developers using custom permissions have yet to be system-
atically evaluated. Although prior research on manifest file
misconfigurations [33], [26] has partially addressed issues with
custom permissions, it has not comprehensively combined
explanations from the Android development documentation
with the OS source code to study how developers misconfigure
custom permissions empirically.

Our work. This work systematically evaluated the misconfig-
urations of custom permissions by Android app developers.
Specifically, this work first comprehensively analyzed the
Android development documentation and OS source code
and combined it with previous related research to investi-
gate the requirements, limitations, and best security practices
related to custom permission configuration. From this in-
vestigation, ten Custom Permission Configuration Guidelines
(CPC-Guidelines) were derived. These guidelines cover the
declaration and use of custom permissions (see Section III for
details). Subsequently, this work collected 174,740 APK files
from Google Play and third-party markets for large-scale mea-
surement, detecting violations of these ten CPC-Guidelines
and analyzing their potential causes and security implications.
Specifically, this work aims to answer the following three
Research Questions (RQs):

RQ#1: What are the practical security implications of
CPC-Guideline violations?
RQ#2: What is the current state of CPC-Guideline viola-
tions in the wild?
RQ#3: What are the differences in CPC-Guideline viola-
tions between Google Play and third-party market apps?

Our measurement and analysis results show that violating
CPC-Guidelines can lead to sensitive data leaks, app instal-
lation failures, and reduced app functionality. Attackers may
exploit these issues by declaring or requesting improperly

configured custom permissions to access protected resources.
Among the 92,461 apps involving custom permissions, 29.02%
have violations, often due to reliance on third-party app tem-
plates or development guidelines, leading to misconfiguration
to propagate. The violation rate is lower for Google Play apps
(20.55%) compared to third-party market apps (37.95%).
Contributions. The contributions of this work are as follows.

• Systematic configuration guidelines summary. By com-
prehensively investigating the Android development docu-
mentation, Android OS source code, and research related
to app configuration, we systematically summarized cus-
tom permission configuration guidelines that ensure proper
functioning and adherence to best security practices of
custom permissions.

• Large-scale security assessment. We constructed a dataset
of over 170K APK files to perform a large-scale measure-
ment study on Android app developers’ misconfiguration
of custom permissions.

This study revealed how app developers misconfigured
custom permissions, leading to potential security risks. It aims
to offer better guidance on properly implementing custom
permissions and suggestions for improving the design of
Android development documentation and Android Studio.

II. BACKGROUND

In this section, we provide the necessary background of the
configuration related to custom permissions in apps.

To protect user data, Android has implemented various
security mechanisms, with permissions being a core feature.
Permissions are defined in the app’s manifest file and enforced
by the system. Android has two types of permissions: system
permissions, declared by system apps to protect system re-
sources, and custom permissions, declared by third-party apps
to protect their resources for inter-app sharing [9]. System apps
are pre-installed, while third-party apps are built by developers
worldwide and published on app markets. For third-party apps,
custom permission configuration in the manifest files involves
both declaration and use. Table I lists the manifest elements
and attributes related to custom permissions.

A. Custom Permission Declaration

As shown in Table I, three elements are relevant to the
custom permission declaration.
Define a custom permission. An app declares a custom
permission in its manifest file using the <permission> ele-
ment [16]. The common attributes of this element include:

• android:name: specify the custom permission’s name.
• android:protectionLevel: specify the custom permis-

sion’s protection level. There are three main levels for a
custom permission: normal, signature, and dangerous.

• android:permissionGroup: put a custom permission into
a permission group.

• android:description: explain the usage purpose of a
custom permission.

Define a custom group. Custom permissions can be put into
a custom group. When declaring a custom group using the
<permission-group> element, the app can specify its name
and explain the functionality covered by this group through
android:name and android:description, respectively [17].
Define a permission tree. The <permission-tree> element
allows an app to declare a namespace for custom permissions.
The android:name attribute specifies the base name for all
permissions in the tree [18].

B. Custom Permission Use

There are nine elements related to the use of custom
permissions, as listed in Table I.
Protecting app components. An app can declare four types of
components: Activity, Broadcast Receiver, Service, and Con-
tent Provider, through the <activity>/<activity-alias>,
<receiver>, <service>, and <provider> elements, respec-
tively. App components are the essential building blocks of an
Android app. Each component is an entry point through which
the system or a user can enter the app. Thus, to restrict access
to the app, it can use custom permissions to protect its com-
ponents by specifying the android:permission attribute of
the component elements. These elements are contained in the
<application> element. The app can also specify android:
permission of the <application> element to protect all de-
clared components. For the <provider> element, extra <path-
permission> sub-elements, android:readPermssion and
android:writePermission attributes can be set to perform
the fine-grained access control of the Content Provider [4].
Request custom permissions. If an app needs to access
the feature protected by a custom permission, it should re-
quest this permission in its manifest file through the <uses-
permission>/<uses-permission-sdk-23> element. The lat-
ter element specifies that the app wants a particular permission,
but only if it is installed on a device running Android 6.0 (API
level 23) or higher [21].

III. CUSTOM PERMISSION CONFIGURATION GUIDELINES

We systematically examined Android development doc-
umentation, OS design, and relevant research to formu-
late Custom Permission Configuration Guidelines (CPC-
Guidelines) that ensure both proper functionality and security
of custom permissions. These guidelines cover the declaration
and use of custom permissions.

• Android development documentation. We searched the of-
ficial documentation using keywords like "custom permis-
sion", "security", and "best practice", extracting relevant
guidelines for custom permission configuration.

• Android OS source code. We analyzed the implementations
of the app installation process and identified a preparation
stage [19] where the system validates the app’s manifest
file. Restrictions, such as preventing the declaration of
existing permissions, are enforced, and violations result
in installation failures.

TABLE I: Custom permission-related elements in app manifest files.

Usage Element Parts of Attributes† Contained In

Permission Declaration

<permission> name, protectionLevel, permissionGroup, description, ...

<manifest><permission-group> name, label, description, ...

<permission-tree> name, label, ...

Permission Use

<uses-permission> name, maxSdkVersion

<manifest><uses-permission-sdk-23> name, maxSdkVersion

<application> enabled, permission, ...

<activity> name, enabled, permission, exported,...

<application>

<activity-alias> name, targetActivity, enabled, exported, permission, ...

<receiver> name, enabled, exported, permission, ...

<service> name, enabled, exported, permission, ...

<provider> name, authorities,enabled, exported, permission,
readPermission, writePermission, ...

<path-permission> path, permission, readPermission, writePermission, ... <provider>

†: The attributes omit the "android:" prefix.

• Related research. We surveyed prior studies on Android
app misconfigurations, summarizing key recommendations
for custom permission settings.

A. Custom Permission Definition

The configuration guidelines for declaring custom permis-
sions include:

Guideline#1: Custom permissions should be declared ef-
fectively.

The app’s manifest file is a hierarchical XML file with spe-
cific requirements for element placement [4]. Table I outlines
the placing rules for common manifest elements. Errors such
as misplacing elements or misspelling element types prevent
the system from correctly parsing these declarations, rendering
them ineffective. Previous research [33] shows such errors are
common. To ensure custom permission declarations function
properly, developers must avoid these mistakes.

Guideline#2: Custom permission names should be prefixed
with the app’s package name.

Android prohibits apps from declaring existing system per-
missions unless they share the same signature as the original
declaring app. Violations will result in blocked app instal-
lations or ignored permission declarations. To avoid naming
conflicts, Android recommends prefixing custom permission
names with the app’s package name [10].

Guideline#3: The protection levels of custom permissions
should be set to signature.

The signature permission is granted based on the app’s
signature without user intervention, providing a seamless ex-
perience. It restricts access to apps with the same signature,
ensuring stricter security. Therefore, Android recommends
setting the custom permission to signature-level [20].

Guideline#4: Dangerous-level custom permissions should
have usage descriptions.

The dangerous-level permission requires user approval
during the app running. When requested, the system presents
a prompt with contextual information based on the usage
description of the dangerous permission or its belonged
group [16], [13]. If no description is provided, the prompt will
display: "Allow app to perform an unknown action?", which
may lead users to deny the permission request. To avoid this,
Android advises developers to set clear usage descriptions for
dangerous custom permissions [20].

Guideline#5: When placing custom permissions in a
custom group, this group should have a good definition.

A good custom group declaration means that this declaration
exists, and 1) the group name should be started with the app’s
package name; 2) the group’s usage description should be
provided for dangerous custom permissions.

Previous research [28] shows that placing permissions in
undefined groups can cause dormant permission issues. To
address this, Android 12 prohibits permissions in undefined
groups. Additionally, if permission is in a custom group, the
app must share the same signature as the group owner [6].
To avoid installation failures, developers should define custom
groups when using them. Besides, similar to Guideline#2,
group names also have name conflicts. As mentioned in
Guideline#4, the group’s usage description would be displayed
to users during dangerous permission requests.

Guideline#6: Do not declare twin custom permissions.

Previous research [29] identifies twin custom permissions as
an attack vector for the Evil Twins vulnerability. To mitigate
this, Android 12 prohibits the installation of apps declaring
twin custom permissions [7].

Guideline#7: Declare the minimum custom permissions
necessary to meet security requirements.

Android offers pre-defined system permissions that typically
meet most apps’ security needs without requiring new permis-
sion declarations [20].

B. Custom Permission Use

The configuration guidelines involved in the use of custom
permissions include:

Guideline#8: Custom permissions should be used effec-
tively.

As with Guideline#1, developers should avoid spelling errors
and incorrect placement of elements and attributes to ensure
proper use of custom permissions.

Guideline#9: Custom permissions used to protect compo-
nents should be defined.

If custom permissions are used to protect components but
are undefined, it can lead to dangling attribute references,
which pose security risks [22]. Attackers can exploit these
dangling references. Therefore, developers must define custom
permissions to prevent such vulnerabilities.

Guideline#10: Do not use custom permissions to protect
inaccessible components.

If a component is inaccessible, permission protection is
unnecessary, as other apps cannot access it. Android advises
adding permissions only when a component becomes public,
to avoid later removal that could affect users [20]. Using
custom permissions for inaccessible components may suggest
a misunderstanding or over-caution by the developer [26].

IV. METHODOLOGY

This section outlines the methodology for evaluating CPC-
Guideline violations, as depicted in Figure 1. The process
involves the following steps:
• Violation rule establishment. Following the summarized

CPC-Guidelines, rules were defined to detect violations.
• APK dataset construction. A large dataset of APKs from

Google Play and third-party markets was constructed.
• Configuration extraction. Manifest files were parsed to

extract relevant data for further measurement and analysis.
• Measurement and analysis. We statistically examine vi-

olations, analyzing their causes and security implications.

A. Violation Rule Establishment

For each guideline presented in Section III, we established
corresponding violation rules, where Rule#N corresponds to
Guideline#N.
. Rule#1: The app contains an ineffective custom permis-

sion declaration. Specific violations include:

• Typo in element type (Elem-typo). The developer mis-
spelled <permission>.

• Incorrect placement of element (Elem-misplaced). The
developer incorrectly placed the <permission> element.
The correct location is listed in Table I.

• Missing of element name (Name-missing). The developer
did not set android:name of the <permission> element.

. Rule#2: The custom permission name is not prefixed
with the app’s package name.
. Rule#3: The protection level of the custom permission

is not set to signature. Specific violations include:
• No protection level set (No-protect). The protection level

(android:protectionLevel) is not explicitly specified,
defaulting to normal.

• Inappropriate protection level (Not-signature). The protec-
tion level is set to something other than signature, such
as dangerous.

. Rule#4: The usage description (android:description)
of the dangerous-level custom permission is missing.
. Rule#5: The app assigns custom permissions to a

defective custom group. Specific violations include:
• Undefined group (No-defCg). The developer did not de-

clare the group by the <permission-group> element.
• No prefixing group name with the app’s package name

(No-prefixCg). The group name does not start with the
app’s package name.

• Group’s usage description is missing (No-desCg). When
defining the belonged group of dangerous custom per-
missions, the developer did not specify android:des-
cription of the <permission-group> element.

. Rule#6: The app declares twin custom permissions.
Specific violations include:
• Twin custom permission declarations (Twin-perms): The

developer declared two custom permissions with the same
name but different attributes.

• Duplicate custom permission and permission tree (Twin-
perm&tree): The developer declared a custom permission
and a permission tree with the same name.

. Rule#7: The app declares unnecessary custom permis-
sions. Specifically, these permissions are neither requested
by the <uses-permission>/<uses-permission-sdk-23> el-
ement nor used to protect any components through the per-
mission attributes1.
. Rule#8: The app uses custom permissions ineffectively.

Specific violations include:
• Typo in permission attribute (Attr-typo). The developer

misspelled permission attributes.
• Typo in element type (Elem-typo). The developer mis-

spelled <uses-permission>, <uses-permission-sdk-
23>, or permission attribute-supported elements (as listed
in Table I) which are protected by custom permissions.

1Permission attribute: android:permission, android:readPermission,
or android:writePermission.

Measurement &
Analysis

CPC-Guideline
Summary

RQ#1 RQ#2 RQ#3

 Literature Literature Literature

 APK Dataset
Construction

 APK Dataset
Construction

Configuration
Extraction

Configuration
Extraction

AndroZoo

App Markets

AndroZoo

App Markets

 Violation Rule
Establishment

 Violation Rule
Establishment

Fig. 1: Overview of measurement methodology.

• Incorrect placement of permission attribute (Attr-
misplaced). The developer placed permission attributes in
unsupported elements.

• Incorrect placement of element (Elem-misplaced). The de-
veloper misplaced <uses-permission>/<uses-permiss-
ion-sdk-23> elements or permission attribute-supported
elements which are protected by custom permissions. The
correct locations are listed in Table I.

. Rule#9: The app uses undefined custom permissions to
protect components. That is, the developer did not declare
these permissions using the <permission> elements.
. Rule#10: The app uses custom permissions to protect

inaccessible components.
A component is inaccessible when the developer specified

its android:enable to false or specified android:enable to
true and android:exported to false. If the developer did
not set these two attributes, the default value of android:
enable is true. For android:exported, the default value
is true of <activity>/<activity-alias>, <service>, and
<receiver> elements with intent filters. For <provider>
elements, if the app’s target SDK ≥ 17, the default value is
false; otherwise, it is true.
Remarks. To minimize redundant violation statistics, we
impose two restrictions: 1) since Guideline#1 covers inef-
fective custom permission declarations, only violations of
Guideline#2~#7, #9 are considered if custom permissions are
declared effectively; 2) since Guideline#8 covers ineffective
custom permission use, only violations of Guidelines#7, #9,
#10 are considered if custom permissions are used effectively.

B. APK Dataset Construction

We collected APK files from the Google Play Store and
third-party markets. Since bulk downloading from Google Play
is restricted, we used the AndroZoo dataset [24] for Google
Play APK files. For third-party markets, we developed an
automated crawler to collect APK files from four markets:
2265, Lenovo, Leyou, and Mdpda. In total, we gathered
109,240 apps from Google Play and 65,699 from third-party
markets. After deduplication and filtering out invalid APK
files2, we obtained 109,239 unique Google Play apps and
65,501 unique third-party market apps, totaling 174,740 apps.

2An APK file is considered valid if it has been signed and its manifest file
can be successfully parsed.

C. App Configuration Extraction

After constructing the APK dataset, we extracted app con-
figuration data from the manifest files of each APK. This
data includes basic app information and details on custom
permission declaration and use.
Basic information. The extracted app basic information in-
cludes: 1) package name: the package attribute in the <man-
ifest> element; 2) version: the android:versionCode and
android:versionName attributes in the <manifest> element;
3) target SDK: the android:targetSdkVersion attribute in
the <uses-sdk> element; 4) signing information: the certifi-
cate’s subject, issuer, and SHA1 digest. This information is
used to detect and analyze CPC-Guideline violations.
Permission declaration and use. We extracted two types of
custom permission configuration data based on violation rules,
considering spelling errors and incorrect placements:

• Custom permission declaration. Data from <permission>,
<permission-group>, and <permission-tree> elements,
or similar elements.

• Custom permission use. Data from 1) <uses-permission>
and <uses-permission-sdk-23> elements or similar el-
ements; 2) elements containing permission attributes or
similar attributes.

We ensured that the extracted permissions and groups used
were custom, not system.
Implementation. Androguard [2] was used to unpack APKs
and extract manifest data. For custom permission configura-
tion data, we integrated the Python fuzzy matching library,
Fuzzywuzzy [11], to match relevant configurations. Addition-
ally, we collected system permission and group declarations
from Android 2.3.3~14 images (API levels 10~34) to identify
system permissions and groups used by apps.

D. Measurement and Analysis

After extracting configuration data from each app in the
APK dataset, we detect CPC-Guideline violations and analyze
their causes and security implications. This study addresses the
following three Research Questions (RQ):

RQ#1: What are the practical security implications of
CPC-Guideline violations?

® What are the practical security risks of violating the ex-
tracted CPC-Guidelines? Can attackers exploit these violations
for practical attacks?

RQ#2: What is the current state of CPC-Guideline viola-
tions in the wild?

® Among the 174,740 collected apps, how many violate CPC-
Guidelines, and what is the violation status of each Guideline?

RQ#3: What are the differences in CPC-Guideline viola-
tions between Google Play and third-party market apps?

® Section I mentions that Android’s App Security Improve-
ment Program (ASIP) helps Google Play developers create
more secure apps [5]. Does ASIP result in fewer violations
for Google Play apps than third-party market apps?

V. SECURITY ANALYSIS AND MEASUREMENT

Following the methodology in Section IV, we analyzed
the security implications of CPC-Guidelines and conducted
a large-scale measurement based on the constructed APK
dataset. This section summarizes the results and addresses the
three research questions outlined in Section IV-D.

A. RQ#1: What are the practical security implications of
CPC-Guideline violations?

Guideline#1: Custom permissions should be declared effec-
tively. Violations of Guideline#1 can cause custom permission
declarations to fail. The protection these permissions provide
will be ineffective, leading to sensitive data leaks.
Guideline#2: Custom permission names should be prefixed
with the app’s package name. Violations of Guideline#2 may
result in different apps with different package names declaring
the same custom permissions. If apps have different signatures,
only one can be installed, leading to other installation failures.
If signatures match, the installation order determines the
permission owner, causing some permission protections for
apps’ resources not as desired, which may lead to data leaks.
Guideline#3: The protection levels of custom permissions
should be set to signature. Violations of Guideline#3 can
result in insufficient protection. The normal-level custom
permission is granted automatically, causing the protection
for sensitive data to be weak. Using the dangerous custom
permission requires user consent and risks being denied,
potentially impacting app functionality.
Guideline#4: Dangerous-level custom permissions should
have usage descriptions. Violating Guideline#4 may lead to
users rejecting permission requests due to unclear purposes,
causing the app to malfunction and negatively impacting the
user experience.
Guideline#5: When placing custom permissions in a custom
group, this group should have a good definition. Violating
Guideline#5 can cause the custom permission to be put into
a defective custom group, like a dormant group discussed in
[28], and further leading to installation failure on Android 12

or higher or sensitive data leaks on Android 11 or lower by
exploiting the dormant group vulnerability.
Guideline#6: Do not declare twin custom permissions. Vi-
olating Guideline#6 may prevent app installation on Android
12 or higher. On older versions, it could cause exploitation by
attackers using the Evil Twins vulnerability [29], leading to
unauthorized access to sensitive resources.
Guideline#7: Declare the minimum custom permissions nec-
essary to meet security requirements. Violating Guideline#7
may result in the dangling use of declared permissions, leading
to failed protection and exposure of sensitive resources. Exces-
sive permissions may also increase the risk of name conflicts,
hindering app installation.
Guideline#8: Custom permissions should be used effectively.
Violating Guideline#8 can render custom permission use inef-
fective, causing permission request failure and impacting app
functionality. It may also result in unprotected components,
leading to data leaks.
Guideline#9: Custom permissions used to protect compo-
nents should be defined. Violating Guideline#9 may lead to
dangling references in component permissions. If attackers
declare the dangling custom permissions, they can gain control
of these permission and access the protected components.
Guideline#10: Do not use custom permissions to protect
inaccessible components. While violating Guideline#10 may
not have direct security implications, as noted in Section III-B,
removing redundant component permissions in future updates
could negatively impact existing users.

Answer to RQ#1

Violating CPC-Guidelines can lead to the leakage of
sensitive user information, affect app installation, and
impair the app’s functionality. Attackers can exploit these
violations by declaring or requesting misconfigured custom
permissions in the target app.

B. RQ#2: What is the current state of CPC-Guideline viola-
tions in the wild?

Among the 174,740 apps collected, 92,461 (52.91%) involve
(i.e., declare or use) custom permissions and 26,828 (29.02%)
of these apps violate CPC-Guidelines. This highlights the issue
of custom permission misconfiguration is common.

The violation status for each guideline is detailed in Ta-
ble II. Guideline#5 and Guideline#9 have the highest violation
rates, around 80%, indicating two common custom permission
misconfigurations: 1) placing custom permissions in defective
groups and 2) neglecting to declare custom permissions when
protecting components. In contrast, Guideline#6 has the fewest
violations, likely due to Android Studio’s error detection for
twin custom permissions, preventing the app from being built.
Guideline#1: Custom permissions should be declared effec-
tively. A total of 65,668 apps make 112,229 custom permission
declarations, with 167 (0.15%) violating Guideline#1. Table III
details these violations, showing that the majority (98.20%) re-
sult from Elem-misplaced, where developers incorrectly placed

TABLE II: Violation statistics of each guideline.

Guideline# 1 2 3 4 5 6 7 8 9 10

App Involved Amount† 65,668 65,540 65,540 280 558 65,540 65,540 91,482 16,091 16,091

App Violated Amount‡ 160 11,020 6,781 99 453 48 4,836 1,255 12,747 5,442

Violation Rate§ 0.24% 16.81% 10.35% 35.36% 81.18% 0.07% 7.38% 1.37% 79.22% 33.82%

†: The amount of apps involving CPC-Guideline#. ‡: The amount of apps violating CPC-Guideline#.
§: The violation rate of Guideline# = the amount of apps violating Guideline# / the amount of apps involving Guideline#.

TABLE III: Violation statistics of Guideline#1.

Rule#1 Elem-typo Elem-misplaced Name-missing

Amount† 3 164 0

Percentage 1.80% 98.20% 0.00%

†: The amount of ineffective custom permission declarations.

the <permission> element inside the <application> ele-
ment. Further analysis revealed that 91.02% of these violations
are linked to third-party push services, with 45.51% associated
with apps having the package name prefix com.appbyme.app.
These apps were found to originate from the DIY mobile app
platform Appbyme, suggesting that developers likely propa-
gated this misplacement when using app templates provided
by the platform to integrate third-party push services.
Guideline#2: Custom permission names should be prefixed
with the app’s package name. Among 112,062 effectively
declared custom permissions, with 13,902 (12.41%) violating
Guideline#2. These violations fall into two primary categories:
• Third-party service specific. Custom permissions are pri-

marily used for third-party services [28], which often re-
quire particular permission names declared in the manifest.
For instance, 3,914 (28.15%) custom permissions related
to the message push service provided by GeTui [12], which
requires permission names like getui.permission.Ge-
tuiService.{package name}.

• Duplicate with system permission names. There are 3,845
(27.66%) custom permissions sharing names with system
permissions. Such permission declarations will be ignored
by Android.

Guideline#3: The protection levels of custom permissions
should be set to signature. Among the 112,062 effective
custom permissions, 8,751 (7.81%) violated Guideline#3. Ta-
ble IV details these violations, while Table V shows the
protection level distribution of the 5,327 custom permissions
that trigger Rule#3: Not-signature, with normal being the
most common. As noted in Section IV-A, if a permission’s
protection level is not explicitly set, it defaults to normal. Con-
sequently, 8,263 (94.42%) out of the 8,751 custom permissions
violating Rule#3 would be parsed as normal ones. Further
analysis revealed two main reasons for this phenomenon:
• Apps come from third-party templates. Developers use

third-party templates or open-source frameworks for app
development, propagating normal custom permissions. For
instance, 98 normal custom permissions were found in

TABLE IV: Violation statistics of Guideline#3.

Rule#3 No-protect Not-signature

Amount† 3,424 5,327

Percentage 39.13% 60.87%

†: The amount of effective custom permission declarations.

TABLE V: Protection levels triggering Rule#3: Not-signature.

Protection Level normal dangerous instant

Amount† 4,839 486 2

Percentage 90.84% 9.12% 0.04%

†: The amount of effective custom permission declarations.

apps prefixed with com.wta.NewCloudApp.jiuwei, all
from the newCloudApp framework [14], which is used for
remote operations via the Newland IoT Cloud Platform.

• Apps are developed by the same company. Apps from
the same company are often developed using proprietary
templates, leading to the widespread use of normal custom
permissions. For instance, 204 custom permissions without
protection levels (default to normal) were found in apps
from Sinyee Inc, all sharing the same signature certificate.

Guideline#4: Dangerous-level custom permissions should
have usage descriptions. There are 486 effective danger-
ous-level custom permissions, with 160 (32.92%) violating
Guideline#4. This may stem from unfamiliarity with Android’s
group-based runtime permission management.
Guideline#5: When placing custom permissions in a custom
group, this group should have a good definition. Of the
112,062 effective custom permissions, 615 (0.55%) are as-
signed to custom groups, with 491 (79.84%) violating Guide-
line#5. Table VI details these violations. Although custom
groups are rarely used, it is very common for developers
not to define these groups. Further analysis revealed that
399 (81.26%) of the violations involve group names ending
with andpermission. AndPermission is a third-party open-
source framework for permission management. We found
that AndPermission’s manifest file puts the custom permis-
sion into an undefined custom group named ${applica-
tionId}.andpermission [1]. Thus, the primary reason for
these violations is the integration of third-party frameworks
that propagate misconfiguration.
Guideline#6: Do not declare twin custom permissions.
Among 65,540 apps with effective custom permissions, 48
(0.07%) violate Guideline#6 by declaring 48 pairs of twin

TABLE VI: Violation statistics of Guideline#5.

Rule#5 No-defCg No-prefixCg No-desCg

Amount† 441 45 5

Percentage 89.82% 9.16% 1.02%

†: The amount of effective custom permission declarations.

TABLE VII: Violation statistics of Guideline#6.

Rule#6 Twin-perms Twin-perm&tree

Amount† 47 1

Percentage 97.92% 2.08%

†: The amount of twin custom permission pairs.

custom permissions3. Violations of Guideline#6 are rare, which
may be due to the nonsupport of Android Studio to build apps
with twin declarations. The developers need to build them
through APK repackaging [29]. Table VII details these viola-
tions. Majority violations trigger Twin-perms because only five
apps declare both permission trees and custom permissions.

Guideline#7: Declare the minimum custom permissions
necessary to meet security requirements. Of the 112,062
effective custom permissions, 5,249 (4.68%) unused ones
violate Guideline#7, and 681 (12.97%) are due to misspellings
in the custom permission names or misplacing of the <uses-
permission> element when using them. For the remaining
4,568 (87.03%) really unused permissions, our further analysis
showed that the main reason for these violations is that apps
are developed by the same subject (having the same certificate
subject), causing the misconfiguration to propagate.

Guideline#8: Custom permissions should be used effectively.
A total of 91,482 apps use custom permissions 649,571 times.
Among these, 1,338 (0.21%) use instances violate Guideline#8,
as detailed in Table VIII. The majority (82.59%) violations
stem from Attr-misplaced, where most developers misplaced
android:permission inside the <action> element. This type
of element specifies the generic action components can re-
spond to [8]. Therefore, it suggests developers intended to
protect components with custom permissions but were unfa-
miliar with Android’s permission enforcement rules.

Guideline#9: Custom permissions used to protect compo-
nents should be defined. A total of 16,091 apps effec-
tively use custom permissions 82,991 times to protect 74,653
components. Among these, 35,164 (42.37%) use instances
violate Guideline#9 due to permission undefined, impacting
34,844 components, and 1,290 (3.67%) violations are due to
misspellings in the custom permission names or the misplacing
of the <permission> element. For the remaining 33,874
(96.33%) use instances of really undefined custom permis-
sions, our further investigation identified two main reasons
for these violations:

3To avoid double-counting, in an app, all custom permissions with the same
name but different attributes, or all custom permissions and permission trees
with the same name, are counted as one pair of twin custom permissions.

TABLE VIII: Violation statistics of Guideline#8.

Rule#8 Attr-
typo

Elem-
typo

Attr-
misplaced

Elem-
misplaced

Amount† 1 23 1,105 209

Percentage 0.07% 1.72% 82.59% 15.62%

†: The amount of ineffective custom permission use.

• Apps integrate third-party services or frameworks. Some
third-party services or frameworks provide app develop-
ment guidelines containing custom permission misconfig-
uration. For instance, 11,738 (34.65%) custom permission
use instances related to the OPPO Push service. OPPO
Push’s official document instructs developers to use unde-
fined custom permission to protect components [15].

• Developers are unfamiliar with permission enforcement
rules. Around 1,417 (4.18%) used permissions have names
like normal, signature, False, True, and FriendsOnly.
These strings indicate that developers intended to protect
components but were unfamiliar with the permission en-
forcement rules against the components.

Guideline#10: Do not use custom permissions to pro-
tect inaccessible components. Of the 82,991 effectively cus-
tom permission use instances to protect components, 18,600
(22.41%) violate Guideline#10, involving 18,237 inaccessible
components. Further investigation showed that the main reason
for these violations is that apps are developed by the same
company. Simultaneously violating Guideline#9 and #10 –
using undeclared custom permissions to protect inaccessible
components – reflects a misunderstanding of the Android
permission model. We identified 4,257 apps that have this issue
with various signatures, indicating it is widespread.

Answer to RQ#2

Of the 174,740 collected apps, 52.91% declare or use
custom permission, and 29.02% of them have at least
one CPC-Guideline violation. Guideline#5 and #9 have the
highest violation rates, indicating developers commonly
1) place custom permissions in defective groups and 2)
protect components with undefined custom permissions.
These violations often result from using third-party app
templates or service guidelines for app development.

C. RQ#3: What are the differences in CPC-Guideline viola-
tions between Google Play and third-party market apps?

Among the 109,239 Google Play apps collected, 47,498
(43.48%) involve the declaration and use of custom permis-
sions, with 9,763 (20.55%) having CPC-Guideline violations.
In contrast, among the 65,501 third-party market apps col-
lected, 44,963 (68.64%) involve custom permissions, with
17,065 (37.95%) having violations.

From the perspective of the guidelines, Table IX presents
the violations of each guideline in Google Play and third-party
market apps. The most significant difference between them is
in Guideline#2, indicating that Google Play app developers

TABLE IX: Violation statistics of each guideline in Google Play and third-party market apps.

Guideline# 1 2 3 4 5 6 7 8 9 10

Violation
Rate§

Google Play 0.05% 8.70% 4.60% 34.05% 71.01% 0.13% 5.38% 1.27% 74.95% 32.73%

Third-party Market 0.45% 25.39% 16.42% 37.89% 82.62% 0.01% 9.49% 1.48% 82.06% 34.54%

§: The violation rate of Guideline# = the amount of apps violating Guideline# / the amount of apps involving Guideline#.

are more likely to define custom permissions starting with the
package names. This may be because third-party market app
developers’ preference for using third-party services results
in declaring more service-specific permission names violating
Guideline#2, as discussed in Section V-B.

From the perspective of the apps, Figure 2 illustrates the
number of guidelines violated by Google Play and third-
party market apps, respectively. It shows that more than half
(64.30%) of Google Play apps violate only one guideline.

Overall, the violation state for Google Play apps is slighter
than that for third-party market apps. Based on AISP, Android
provides better security assurance for Google Play apps.

Answer to RQ#3

Among Google Play apps involving custom permissions,
20.55% have guideline violations, compared to 37.95% for
third-party market apps. It shows that Google Play apps
perform better in custom permission configuration, with
the most notable difference in violations of Guideline#2.

VI. MITIGATION MEASURES

To address custom permission misconfigurations, we pro-
pose several mitigation measures.
For Google. Google should consider the following measures
to improve the security and correctness of custom permission
implementations in Android apps.
• Provide more precise and comprehensive guidelines on

custom permission security in the Android documentation.
Information on custom permissions in the current Android
documentation is scattered across various sections, such as
the manifest introduction [4] and compatibility documen-
tation [6]. Some security practices, like Guideline#6, are
undocumented. A more systematic guide documentation
would help developers use custom permissions securely.

• Enhance inspection mechanisms in Android Studio. While
Android Studio checks for errors like misspellings, it lacks
prompts for best practices related to custom permissions,
such as those in Guideline#2~#5. Integrating comprehen-
sive checks combined with the documentation would help
developers avoid misconfigurations.

For Android app developers. Android app developers are
encouraged to adopt the following practices to reduce the risk
of custom permission misconfigurations.
• Regularly review the Android documentation. Reviewing

the Android documentation regularly helps developers stay
informed about the latest security requirements and make
timely adjustments to their apps.

1 2 3 4 5 6
Violated CPC-Guideline Amount

0

10

20

30

40

50

60

Pe
rc

en
ta

ge
 (%

) i
n

Ap
ps

 w
ith

 V
io

la
tio

ns 64.3%

29.29%

5.4%
0.84% 0.15% 0.01%

49.76%

34.97%

12.15%

2.7% 0.4% 0.02%

Google Play App
Third-party Market App

Fig. 2: Statistics by the number of violated guidelines in
Google Play and third-party market apps with violations.

• Inspect third-party app templates. When using third-party
templates, developers should check them for custom per-
mission misconfigurations and make necessary corrections.

• Use the latest version of Android Studio. With each update,
Android Studio provides more comprehensive checks. Us-
ing the latest version helps avoid basic configuration errors
like misspellings and incorrect placements.

VII. RELATED WORK

In this section, we review the related work on Android
custom permissions and app misconfigurations.
Custom permissions. Li et al. [27] systematically evaluated
the design and implementation of Android custom permis-
sions. The authors designed a tool called CuperFuzzer to
detect vulnerabilities, which revealed severe design flaws in
the Android permission framework that could allow malicious
apps to gain unauthorized access to system resources. They
also identified the Evil Twin flaw [29] in the Android manifest
processing procedure, which can be exploited through twin
custom permission elements to achieve privilege escalation.
Tuncay et al. [31] identified vulnerabilities arising from inter-
actions between system and custom permissions and proposed
a modular design called Cusper to address these issues. Unlike
the aforementioned studies, our work focuses on misconfigura-
tions by app developers rather than design and implementation
flaws in the Android OS.
App misconfigurations. Yang et al. [33] developed ManiS-
cope to detect misconfigurations in Android manifest files.
Analyzing over 2.5 million apps, they found misconfigurations
in over 33% of Google Play and 35% of Samsung pre-installed
apps, many of which pose serious security risks like data leaks

and component hijacking. Jha et al. [26] analyzed 13,483
Android apps to identify common developer mistakes in
Android manifest files, uncovering 59,547 configuration errors
across 11,110 apps using a rule-based static analysis tool.
Han et al. [25] developed SADroid to detect misconfiguration
vulnerabilities, highlighting the security risks due to Android
permission model weaknesses. Scoccia et al. [30] studied 574
GitHub repositories and found that permission-related issues
often persist for years. Yang et al. [32] analyzed 251,749
apps, revealing developers inconsistently following Google’s
security guidelines. Unlike the previous studies, our work
focuses on the misconfiguration of custom permissions within
apps, a topic that has not been systematically explored before.

VIII. CONCLUSION

This study examined custom permission misconfigurations
by Android app developers. We reviewed the Android docu-
mentation, OS source code, and related research to identify
ten guidelines for proper custom permission usage. Analyz-
ing 174,740 apps from Google Play and third-party stores,
we found widespread violations, particularly in using defec-
tive custom groups and undefined custom permissions. Such
practices can cause data leaks, app installation failures, and
functional issues. Custom permission misconfigurations often
result from developers using third-party app templates or
following service documentation for app development, leading
to misconfigurations to propagate. We also proposed several
improvements for both Google and Android app developers to
avoid custom permission misconfigurations.

ACKNOWLEDGEMENTS

This work is supported by the National Research Founda-
tion, Singapore, and the Cyber Security Agency of Singapore
under its National Cybersecurity R&D Programme (Proposal
ID: NCR25-DeSCEmT-SMU). Any opinions, findings, conclu-
sions, or recommendations expressed in this material are those
of the authors and do not reflect the views of the National Re-
search Foundation, Singapore, and the Cyber Security Agency
of Singapore.

REFERENCES

[1] “AndPermission,” Available: https://github.com/yanzhenjie/AndPermiss
ion/blob/master/permission/src/main/AndroidManifest.xml.

[2] “Androguard,” Available: https://github.com/androguard.
[3] “Android for Developers,” Available: https://developer.android.com/.
[4] “App manifest overview,” Available: https://developer.android.com/gu

ide/topics/manifest/manifest-intro.
[5] “App security improvement program,” Available: https://developer.andr

oid.com/privacy-and-security/googleplay-asi.
[6] “Behavior changes included in the compatibility framework,” Available:

https://developer.android.com/about/versions/12/reference/compat-fra
mework-changes#list.

[7] “Bug: 213323615,” Available: https://android.googlesource.com/platfor
m/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d.

[8] “Building an intent,” Available: https://developer.android.com/guide/co
mponents/intents-filters#Building.

[9] “Define a custom app permission,” Available: https://developer.android.
com/guide/topics/permissions/defining.

[10] “Define and enforce permissions: Naming convention,” Available: https:
//developer.android.com/guide/topics/permissions/defining#naming.

[11] “FuzzyWuzzy,” Available: https://pypi.org/project/fuzzywuzzy/.

[12] “GeTui: Document Center (in Chinese),” Available: https://docs.getui.c
om/getui/mobile/android/overview/.

[13] “Increased situational context,” Available: https://developer.android.co
m/training/permissions/usage-notes#increased_situational_context.

[14] “newCloudApp,” Available: https://github.com/holai/newCloudApp.
[15] “OPPO Push (in Chinese),” Available: https://open.oppomobile.com/bb

s/forum.php?mod=viewthread&tid=1918l.
[16] “<permission>,” Available: https://developer.android.com/guide/topics

/manifest/permission-element.
[17] “<permission-group>,” Available: https://developer.android.com/guide/

topics/manifest/permission-group-element.
[18] “<permission-tree>,” Available: https://developer.android.com/guide/to

pics/manifest/permission-tree-element.
[19] “preparePackageLI,” Available: https://cs.android.com/android/platfor

m/superproject/main/+/main:frameworks/base/services/core/java/com/a
ndroid/server/pm/InstallPackageHelper.java.

[20] “Security checklist,” Available: https://developer.android.com/privacy-a
nd-security/security-tips.

[21] “<uses-permission-sdk-23>,” Available: https://developer.android.com/
guide/topics/manifest/uses-permission-sdk-23-element.

[22] Y. Aafer, N. Zhang, Z. Zhang, X. Zhang, K. Chen, X. Wang, X. Zhou,
W. Du, and M. Grace, “Hare Hunting in the Wild Android: A Study on
the Threat of Hanging Attribute References,” in Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security
(CCS), Denver, CO, USA, October 12-16, 2015, 2015.

[23] Y. Aafer, X. Zhang, and W. Du, “Harvesting Inconsistent Security
Configurations in Custom Android ROMs via Differential Analysis,” in
Proceedings of the 25th USENIX Security Symposium (USENIX-SEC),
Austin, TX, USA, August 10-12, 2016, 2016.

[24] K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting Millions of Android Apps for the Research Community,” in
Proceedings of the 13th International Conference on Mining Software
Repositories (MSR), Austin, TX, USA, May 14-22, 2016, 2016.

[25] Z. Han, L. Cheng, Y. Zhang, S. Zeng, Y. Deng, and X. Sun, “Systematic
Analysis and Detection of Misconfiguration Vulnerabilities in Android
Smartphones,” in Proceedings of the 13th IEEE International Confer-
ence on Trust, Security and Privacy in Computing and Communications
(TrustCom), Beijing, China, September 24-26, 2014, 2014.

[26] A. K. Jha, S. Lee, and W. J. Lee, “Developer Mistakes in Writing
Android Manifests: An Empirical Study of Configuration Errors,” in
Proceedings of the 14th International Conference on Mining Software
Repositories (MSR), Buenos Aires, Argentina, May 20-28, 2017, 2017.

[27] R. Li, W. Diao, Z. Li, J. Du, and S. Guo, “Android Custom Permissions
Demystified: From Privilege Escalation to Design Shortcomings,” in
Proceedings of the 42nd IEEE Symposium on Security and Privacy
(Oakland), San Francisco, CA, USA, 24-27 May 2021, 2021.

[28] R. Li, W. Diao, Z. Li, S. Yang, S. Li, and S. Guo, “Android Custom
Permissions Demystified: A Comprehensive Security Evaluation,” IEEE
Transactions on Software Engineering, vol. 48(11), pp. 4465–4484,
2022.

[29] R. Li, W. Diao, S. Yang, X. Liu, S. Guo, and K. Zhang, “Lost in
Conversion: Exploit Data Structure Conversion with Attribute Loss to
Break Android Systems,” in Proceedings of the 32nd USENIX Security
Symposium (USENIX-SEC), Anaheim, CA, USA, August 9-11, 2023,
2023, pp. 5503–5520.

[30] G. L. Scoccia, A. Peruma, V. Pujols, I. Malavolta, and D. E. Krutz,
“Permission Issues in Open-Source Android Apps: An Exploratory
Study,” in Proceedings of the 19th International Working Conference
on Source Code Analysis and Manipulation (SCAM), Cleveland, OH,
USA, September 30 - October 1, 2019, 2019.

[31] G. S. Tuncay, S. Demetriou, K. Ganju, and C. A. Gunter, “Resolving
the Predicament of Android Custom Permissions,” in Proceedings of the
25th Network and Distributed System Security Symposium (NDSS), San
Diego, California, USA, February 18-21, 2018, 2018.

[32] S. Yang, Q. Hou, S. Li, and W. Diao, “Do App Developers Follow the
Android Official Data Security Guidelines? An Empirical Measurement
on App Data Security,” in Proceedings of the 30th Asia-Pacific Software
Engineering Conference (APSEC), Seoul, Republic of Korea, December
4-7, 2023, 2023, pp. 71–80.

[33] Y. Yang, M. Elsabagh, C. Zuo, R. Johnson, A. Stavrou, and Z. Lin,
“Detecting and Measuring Misconfigured Manifest in Android Apps,”
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security (CCS), Los Angeles, CA, USA, November 7-
11, 2022, 2022.

https://github.com/yanzhenjie/AndPermission/blob/master/permission/src/main/AndroidManifest.xml
https://github.com/yanzhenjie/AndPermission/blob/master/permission/src/main/AndroidManifest.xml
https://github.com/androguard
https://developer.android.com/
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/privacy-and-security/googleplay-asi
https://developer.android.com/privacy-and-security/googleplay-asi
https://developer.android.com/about/versions/12/reference/compat-framework-changes#list
https://developer.android.com/about/versions/12/reference/compat-framework-changes#list
https://android.googlesource.com/platform/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d
https://android.googlesource.com/platform/frameworks/base/+/548edbb850227e076735615f83f8e23352b0b82d
https://developer.android.com/guide/components/intents-filters#Building
https://developer.android.com/guide/components/intents-filters#Building
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining
https://developer.android.com/guide/topics/permissions/defining#naming
https://developer.android.com/guide/topics/permissions/defining#naming
https://pypi.org/project/fuzzywuzzy/
https://docs.getui.com/getui/mobile/android/overview/
https://docs.getui.com/getui/mobile/android/overview/
https://developer.android.com/training/permissions/usage-notes#increased_situational_context
https://developer.android.com/training/permissions/usage-notes#increased_situational_context
https://github.com/holai/newCloudApp
https://open.oppomobile.com/bbs/forum.php?mod=viewthread&tid=1918l
https://open.oppomobile.com/bbs/forum.php?mod=viewthread&tid=1918l
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-element
https://developer.android.com/guide/topics/manifest/permission-group-element
https://developer.android.com/guide/topics/manifest/permission-group-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://developer.android.com/guide/topics/manifest/permission-tree-element
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/core/java/com/android/server/pm/InstallPackageHelper.java
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/core/java/com/android/server/pm/InstallPackageHelper.java
https://cs.android.com/android/platform/superproject/main/+/main:frameworks/base/services/core/java/com/android/server/pm/InstallPackageHelper.java
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/privacy-and-security/security-tips
https://developer.android.com/guide/topics/manifest/uses-permission-sdk-23-element
https://developer.android.com/guide/topics/manifest/uses-permission-sdk-23-element

